首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The seasonal periodicity of algae on Antarctic fellfield soils   总被引:3,自引:0,他引:3  
Martin C. Davey 《Ecography》1991,14(2):112-120
Investigation of the seasonal changes in composition of an immature Antarctic fellfield cyanobacterial/microalgal community has demonstrated a repeated periodicity. The community consisted of only 14 species. Early spring growth of filamentous chlorophytes under snow and ice was followed by summer dominance of the community by cyanobacteria, particularly Phormidium autumnale. Limitation of the chlorophyte populations appeared to be a result of either dehydration of the soil or increased irradiance. The population maximum of the cyanobacteria occurred in mid-summer, although there were no obvious reasons for the cessation of growth at this time, and declined rapidly in late summer. Regrowth of the community occurred from very small inocula each spring, most of the biomass having been lost during late summer or during the washout associated with the spring thaw. This regrowth demonstrates the potential for the population to establish an immature fellfield community very rapidly foliowing exposure by glacial retreat or physical disturbance.  相似文献   

2.
During summer 2005/2006, we characterized three sampling sites on mineral soils and four on ornithogenic soils from Cierva Point, Antarctic Peninsula, in terms of topographic and abiotic features (altitude, slope, magnetic direction, temperature, texture, pH, conductivity, organic matter, moisture and nutrient concentrations), and compared their microalgal communities through taxonomic composition, species richness, diversity, chlorophyll a content and their variation in time. Average values of pH, moisture, organic matter and nutrient concentrations were always significantly lower in mineral than in ornithogenic soils. Low N/P mass ratio showed potential N-limitation of biomass capacity in the former. On the other hand, the results suggested that physical stability is not as a key stress factor for mineral soil microalgae. Chlorophyll a concentration was not only higher in ornithogenic soils, but it also showed a wider range of values. As this parameter was positively correlated with temperature, pH, nutrients, organic matter and moisture, we cannot come to conclusions regarding the influence of each factor on algal growth. Communities of mineral soils were significantly more diverse than those of enriched ornithogenic soils due to higher species richness as well as higher equitability. Also, their structure was steadier over time, as shown by a cluster analysis based on relative frequency of algal taxa. Although Cyanobacteria and Bacillariophyceae dominated almost all samples, Chlorophyceae represented 34% of the 140 taxa recorded, and most of them observed only in cultures. The detection under controlled conditions of a high latent species richness in harsh mineral soil sites shows that the composition and equitability of these microalgal communities would be more prone to modification due to the manifold local consequences of climatic change than those of ornithogenic soils.  相似文献   

3.
Climate change can influence soil microorganisms directly by altering their growth and activity but also indirectly via effects on the vegetation, which modifies the availability of resources. Direct impacts of climate change on soil microorganisms can occur rapidly, whereas indirect effects mediated by shifts in plant community composition are not immediately apparent and likely to increase over time. We used molecular fingerprinting of bacterial and fungal communities in the soil to investigate the effects of 17 years of temperature and rainfall manipulations in a species‐rich grassland near Buxton, UK. We compared shifts in microbial community structure to changes in plant species composition and key plant traits across 78 microsites within plots subjected to winter heating, rainfall supplementation, or summer drought. We observed marked shifts in soil fungal and bacterial community structure in response to chronic summer drought. Importantly, although dominant microbial taxa were largely unaffected by drought, there were substantial changes in the abundances of subordinate fungal and bacterial taxa. In contrast to short‐term studies that report high resistance of soil fungi to drought, we observed substantial losses of fungal taxa in the summer drought treatments. There was moderate concordance between soil microbial communities and plant species composition within microsites. Vector fitting of community‐weighted mean plant traits to ordinations of soil bacterial and fungal communities showed that shifts in soil microbial community structure were related to plant traits representing the quality of resources available to soil microorganisms: the construction cost of leaf material, foliar carbon‐to‐nitrogen ratios, and leaf dry matter content. Thus, our study provides evidence that climate change could affect soil microbial communities indirectly via changes in plant inputs and highlights the importance of considering long‐term climate change effects, especially in nutrient‐poor systems with slow‐growing vegetation.  相似文献   

4.
Arizona and New Mexico receive half of their annual precipitation during the summer monsoon season, making this large-scale rain event critical for ecosystem productivity. We used the monsoon rains to explore the responses of soil bacterial and fungal communities to natural moisture pulses in a semiarid grassland. Through 454 pyrosequencing of the 16S rRNA gene and ITS region, we phylogenetically characterized these communities at 22 time points during a summer season. Relative humidity increased before the rains arrived, creating conditions in soil that allowed for the growth of microorganisms. During the course of the study, the relative abundances of most bacterial phyla showed little variation, though some bacterial populations responded immediately to an increase in soil moisture once the monsoon rains arrived. The Firmicutes phylum experienced over a sixfold increase in relative abundance with increasing water availability. Conversely, Actinobacteria, the dominant taxa at our site, were negatively affected by the increase in water availability. No relationship was found between bacterial diversity and soil water potential. Bacterial community structure was unrelated to all environmental variables that we measured, with the exception of a significant relationship with atmospheric relative humidity. Relative abundances of fungal phyla fluctuated more throughout the season than bacterial abundances did. Variation in fungal community structure was unrelated to soil water potential and to most environmental variables. However, ordination analysis showed a distinct fungal community structure late in the season, probably due to plant senescence.  相似文献   

5.
Potential community effects of nutrient enhancement are a topic of theoretical interest and increasing management concern in coastal marine systems. While increased nutrient levels may lead to increased microalgal production and biomass, studies have provided variable evidence regarding the existence of upward cascade effects on macrofauna. In benthic marine communities, limitation by predation or factors preventing recruitment response may contribute to weak coupling between resource availability and macrobenthos abundances. We conducted blocked nutrient addition and predator exclusion experiments in the intertidal of two estuaries that varied in background nutrient concentrations (Cape Fear and White Oak, southeastern North Carolina). Benthic community comparisons were also made among these and two other North Carolina estuaries to examine correlations in distribution patterns. Cape Fear, which had the highest background nitrogen and phosphorus concentrations, also had highest ambient benthic microalgal biomass. There was no significant response of microalgal biomass to local nutrient additions in Cape Fear and only one macrofaunal taxon during one season exhibited abundance responses to nutrient additions. White Oak, with lower background nutrient levels, was characterized by significant microalgal responses to nutrient additions and significant macrofauna abundance responses for 50% of the species examined during summer experiments. However, all of these macrofauna declined in abundance with nutrient enhancement while biomass remained constant or significantly increased with nutrient additions. This suggests a complex response of macrofauna to nutrient additions in this estuary with greater biomass per individual but a corresponding decline in abundances. Top-down/bottom-up interactive effects were observed for haustoriid amphipods, which were uncommon or absent when predators had access, but exhibited strong biomass responses to nutrient enhancement when predators were excluded. These results support a growing body of literature that indicates the importance of background conditions in regulating benthic community responses to nutrient enhancement. However, responses may be complex with biomass per individual rather than densities being the primary response variable for some taxa and predator moderation of responses occurring for some taxa but not others.  相似文献   

6.
There is increasing evidence of climate change in Antarctica, especially elevated temperature and ultraviolet B (UVB) flux within the ozone hole. Its origins are debatable, but the effects on ice recession, water availability, and summer growth conditions are demonstrable. Light-dependent, temperature-sensitive, fast-growing organisms respond to these physical and biogeographical changes. Microalgae (cyanobacteria and eukaryotic algae), which are pioneer colonists of Antarctic mineral fellfield soils, are therefore highly suitable biological indicators of such changes. In frost-heaved soil polygons containing naturally sorted fine mineral particles, microalgal growth is restricted to a shallow zone of light penetration. By virtue of this light requirement, microalgae are exposed to extreme seasonal fluctuations in temperature (air and black-body radiation), photosynthetically active radiation, UV radiation, and desiccation. Dominance of conspicuous autofluorescent indicator species with distinctive morphology allowed quantification of responses using epifluorescence microscopy, and image analysis of undisturbed, unstained communities. However, the physical changes in climate, although significant in the long term, are gradual. The changes were therefore amplified experimentally by enclosing the communities at a fellfield site on Signy Island, maritime Antarctica, in cloches (small greenhouses). These were made of polystyrene of either UV transparent or UV opaque acrylic plastic, with or without walls. During a 6-year period, statistically significant changes were observed in microalgal colonization of the soil surface and in the morphology of filamentous populations. Evidence of community succession correlated with measured changes in local environment was found. Results from Signy Island and at continental sites on Alexander Island suggested that rates of microalgal colonization and community development might change significantly during current climate changes in Antarctica. Correspondence to: D.D. Wynn-Williams.  相似文献   

7.
The present study focuses on temporal and microscale spatial variation of the community structure and richness of subaerial microalgae growing on the bark of European beech (Fagus sylvatica) trees in temperate deciduous forests. Subaerial phototrophic biofilms present common and conspicuous microalgal communities growing on a variety of natural and man‐made substrata. However, in comparison with other major microalgal communities such as phytoplankton and microphytobenthos, basic patterns of their spatio‐temporal variation remain largely unknown. The bark samples were collected six times each spring and autumn in a period of 3 years (2010–2013) and were cultured on agar plates, and then individual clonal strains were identified by light microscopy. A total of 55 morphotypes (considered as operational taxonomic units for subsequent analyses) were recognized, which mainly belong to the classes Trebouxiophyceae and Chlorophyceae. Interestingly, temporal variation explained the largest proportion of variation in the community structure. This variation was primarily related to seasonal fluctuations, and although the communities recorded in spring and autumn showed many overlapping taxa, a clear distinction in species composition and abundance was observed. However, the microhabitat characteristics such as bark roughness also significantly structured the microalgal community. Conversely, spatial factors such as the height of the samples above ground or distance of the samples on a trunk seemed to be of lesser importance on this scale. Thus, we concluded that the previously unrecognized seasonal changes, resulting from variation in temperature, humidity, and irradiance, as well as the non‐seasonal temporal changes, possibly resulting from local colonization or extinction of individual taxa, should be considered as one of the important factors in structuring aerial microalgal communities.  相似文献   

8.
9.
Benthic microalgae (BMA) provide vital food resources for heterotrophs and stabilize sediments with their extracellular secretions. A central goal in ecology is to understand how processes such as species interactions and dispersal, contribute to observed patterns of species abundance and distribution. Our objectives were to assess the effects of sediment resuspension on microalgal community structure. We tested whether taxa‐abundance distributions could be predicted using neutral community models (NCMs) and also specific hypotheses about passive migration: (i) As migration decreases in sediment patches, BMA α‐diversity will decrease, and (ii) As migration decreases, BMA community dissimilarity (β‐diversity) will increase. Co‐occurrence indices (checkerboard score and variance ratio) were also computed to test for deterministic factors, such as competition and niche differentiation, in shaping communities. Two intertidal sites (mudflat and sand bar) differing in resuspension regime were sampled throughout the tidal cycle. Fluorometry and denaturing gradient gel electrophoresis were utilized to investigate diatom community structure. Observed taxa‐abundances fit those predicted from NCMs reasonably well (R2 of 0.68–0.93), although comparisons of observed local communities to artificial randomly assembled communities rejected the null hypothesis that diatom communities were assembled solely by stochastic processes. No co‐occurrence tests indicated a significant role for competitive exclusion or niche partitioning in microalgal community assembly. In general, predictions about relationships between migration and species diversity were supported for local community dynamics. BMA at low tide (lowest migration) exhibited reduced α‐diversity as compared to periods of immersion at both mudflat and sand bar sites. β‐diversity was higher during low tide emersion on the mudflat, but did not differ temporally at the sand bar site. In between‐site metacommunity comparisons, low‐ and high‐resuspension sites exhibited distinct community compositions while the low‐energy mudflats contained higher microalgal biomass and greater α‐diversity. To our knowledge this is the first study to test the relevance of neutral processes in structuring marine microalgal communities. Our results demonstrate a prominent role for stochastic factors in structuring local BMA community assembly, although unidentified nonrandom processes also appear to play some role. High passive migration, in particular, appears to help maintain species diversity and structure communities in both sand and muddy habitats.  相似文献   

10.
Soil microbial communities follow distinct seasonal cycles which result in drastic changes in processes involving soil nutrient availability. The biomass of fungi has been reported to be highest during winter, but is fungal growth really occurring in frozen soil? And what is the effect of plant cover on biomass formation and on the composition of fungal communities? To answer these questions, we monitored microbial biomass N, ergosterol, and the amount of fungal hyphae during summer and winter in vegetated and unvegetated soils of an alpine primary successional habitat. The winter fungal communities were identified by rDNA ITS clone libraries. Winter soil temperatures ranged between -0.6°C and -0.1°C in snow-covered soil. We found distinct seasonal patterns for all biomass parameters, with highest biomass concentrations during winter in snow-covered soil. The presence of plant cover had a significant positive effect on the amount of biomass in the soil, but the type of plant cover (plant species) was not a significant factor. A mean hyphal ingrowth of 5.6 m g(-1) soil was detected in snow-covered soil during winter, thus clearly proving fungal growth during winter in snow-covered soil. Winter fungal communities had a typical species composition: saprobial fungi were dominating, among them many basidiomycete yeasts. Plant cover had no influence on the composition of winter fungal communities.  相似文献   

11.
The period when the snowpack melts in late spring is a dynamic time for alpine ecosystems. The large winter microbial community begins to turn over rapidly, releasing nutrients to plants. Past studies have shown that the soil microbial community in alpine dry meadows of the Colorado Rocky Mountains changes in biomass, function, broad-level structure, and fungal diversity between winter and early summer. However, little specific information exists on the diversity of the alpine bacterial community or how it changes during this ecologically important period. We constructed clone libraries of 16S ribosomal DNA from alpine soil collected in winter, spring, and summer. We also cultivated bacteria from the alpine soil and measured the seasonal abundance of selected cultured isolates in hybridization experiments. The uncultured bacterial communities changed between seasons in diversity and abundance within taxa. The Acidobacterium division was most abundant in the spring. The winter community had the highest proportion of Actinobacteria and members of the Cytophaga/Flexibacter/Bacteroides (CFB) division. The summer community had the highest proportion of the Verrucomicrobium division and of beta-PROTEOBACTERIA: As a whole, alpha-Proteobacteria were equally abundant in all seasons, although seasonal changes may have occurred within this group. A number of sequences from currently uncultivated divisions were found, including two novel candidate divisions. The cultured isolates belonged to the alpha-, beta-, and gamma-Proteobacteria, the Actinobacteria, and the CFB groups. The only uncultured sequences that were closely related to the isolates were from winter and spring libraries. Hybridization experiments showed that actinobacterial and beta-proteobacterial isolates were most abundant during winter, while the alpha- and gamma-proteobacterial isolates tested did not vary significantly. While the cultures and clone libraries produced generally distinct groups of organisms, the two approaches gave consistent accounts of seasonal changes in microbial diversity.  相似文献   

12.
Attached algal communities were studied during ice-free periods along the borders of the main channel and in backwaters of the Upper Mississippi River. Diatoms strongly dominated the phycoperiphyton except during late June through August when the green alga Stigeoclonium was abundant. Two distinct assemblages were apparent: a diverse, complex assemblage during spring and late fall annd a less complex, adnate, two-dimensional summer assemblage dominated by Cocconeis placentula var. euglypta and Navicula tripunctata var. schizonemoides. Simultaneous studies revealed two-dimensional periphytic colonization in the main channel and more complex communities in backwaters. Greater physical turbulence (e.g., surface waves) in the main channel may have favored adnate taxa and two-dimensional architecture, whereas lesser turbulence (e.g. protected backwaters) favored the more diverse, complex community. Community architecture and species composition were similar among communities on artificial substrates within each navigation pool (median SIMI0.87), but communities on artificial substrates were not taxonomically very similar (median SIMI=0.44) to epiphytic communities on Cladophora.Accrual of algal cells, chlorophyll a, and aufwuchs ash-free dry weight was usually greater in Pool 5 than in Pool 9. This may have been due to differences in discharges and/or sampler placement. The greatest accrual of cells and chlorophyll a occurred during summer and early fall. Chironomid and tricopteran larvae were common at that time and are known to affect algal accumulation by grazing.  相似文献   

13.
Septate endophytes proliferating in the roots of grasslands’ plants shed doubts on the importance of arbuscular mycorrhizal (AM) symbioses in dry soils. The functionality and diversity of the AM symbioses formed in four replicates of three adjacent plant communities (agricultural, native, and restored) in Grasslands National Park, Canada were assessed in periods of moisture sufficiency and deficiency typical of early and late summer in the region. The community structure of AM fungi, as determined by polymerase chain reaction-denaturing gradient gel electrophoresis, varied with sampling time and plant community. Soil properties other than soil moisture did not change significantly with sampling time. The DNA sequences dominating AM extraradical networks in dry soil apparently belonged to rare taxa unreported in GenBank. DNA sequences of Glomus viscosum, Glomus mosseae, and Glomus hoi were dominant under conditions of moisture sufficiency. In total, nine different AM fungal sequences were found suggesting a role for the AM symbioses in semiarid areas. Significant positive linear relationships between plant P and N concentrations and active extraradical AM fungal biomass, estimated by the abundance of the phospholipid fatty acid marker 16:1ω5, existed under conditions of moisture sufficiency, but not under dry conditions. Active extraradical AM fungal biomass had significantly positive linear relationship with the abundance of two early season grasses, Agropyron cristatum (L.) Gaertn. and Koeleria gracilis Pers., but no relationship was found under dry conditions. The AM symbioses formed under conditions of moisture sufficiency typical of early summer at this location appear to be important for the nutrition of grassland plant communities, but no evidence of mutualism was found under the dry conditions of late summer.  相似文献   

14.
Effects of selected root exudate components on soil bacterial communities   总被引:3,自引:0,他引:3  
Low-molecular-weight organic compounds in root exudates play a key role in plant-microorganism interactions by influencing the structure and function of soil microbial communities. Model exudate solutions, based on organic acids (OAs) (quinic, lactic, maleic acids) and sugars (glucose, sucrose, fructose), previously identified in the rhizosphere of Pinus radiata, were applied to soil microcosms. Root exudate compound solutions stimulated soil dehydrogenase activity and the addition of OAs increased soil pH. The structure of active bacterial communities, based on reverse-transcribed 16S rRNA gene PCR, was assessed by denaturing gradient gel electrophoresis and PhyloChip microarrays. Bacterial taxon richness was greater in all treatments than that in control soil, with a wide range of taxa (88-1043) responding positively to exudate solutions and fewer (<24) responding negatively. OAs caused significantly greater increases than sugars in the detectable richness of the soil bacterial community and larger shifts of dominant taxa. The greater response of bacteria to OAs may be due to the higher amounts of added carbon, solubilization of soil organic matter or shifts in soil pH. Our results indicate that OAs play a significant role in shaping soil bacterial communities and this may therefore have a significant impact on plant growth.  相似文献   

15.
Burrow‐digging organisms act as ecosystem engineers, providing potential habitat to other organisms. In the Mid North region of South Australia, wolf and trapdoor spiders in fragmented grassland communities provide this service. Pygmy bluetongue lizards are an endangered skink, endemic to these grasslands. The lizards obligatorily use burrows dug by these spider groups as refuges, basking sites and ambush points. We investigated the occupancy of these spider burrows by lizards and other organisms within the grassland community, identifying the occasions that burrows were shared by multiple taxa. We found that the lizards and trapdoor spiders are predominantly solitary, while wolf spiders co‐shared burrows more frequently with either weevils or snails. There were numerous taxa that were found to regularly co‐share with other taxa, particularly snails, centipedes and weevils. There was a strong temporal influence on burrow sharing, with most co‐sharing occurring late in summer. This study provides an insight into the use of burrows by the lizards and co‐existing taxa within these grassland communities. The dynamics of burrow‐use by other taxa have the potential to influence long‐term conservation of these lizards as burrow availability is crucial to their survival in these grasslands.  相似文献   

16.

Background and aims

Although changes in water and nitrogen (N) supply have been largely used to explain modifications in plant communities, the spatio-temporal variability of those factors has been little studied in chalky environments.

Methods

In this study, we explored for 1?year the temporal variations in soil water content, N inorganic forms and net N-mineralization and nitrification for two horizons in three herbaceous communities (short grasslands, tall grasslands, and encroached grasslands) in the Hénouville Nature Reserve (Upper-Normandy, France). Plant available soil water and permanent wilting points of seven plant species were also characterized.

Results

We found that plant available soil water was lower in short grasslands than in tall grasslands and encroached grasslands. Soil water content was below permanent wilting point during four months in short grasslands and only three months in the other communities. Seasonal patterns for inorganic N content and N-mineralization and nitrification were observed with peaks of NH 4 + –N in summer and peaks of N-mineralization in spring.

Conclusions

For the studied year, our data highlight the harsh soil desiccation that vegetation endured during the late spring (active growth period) and summer, and show that water shortage is an ecological factor affecting the N cycling in the three successional herbaceous communities.  相似文献   

17.
Permanent quadrats in granite outcrop plant communities allowed us to monitor seasonal variation and annual fluctuation in community structure. Seasonal species turn-over was significant in communities on shallow soil, but not in communities on deeper soil where seasonal dominance shifts were common. Exceptional meteorological events appeared to mediate phenomena of competitive release in some island communities. A decrease in the abundance of Arenaria uniflora in Lichen-annual island communities, following a spring drought, was correlated with an increase in the abundance of Sedum smallii, a shallower-soil species. Richness in Annual-perennial island communities was higher in spring 1985 than in 1984 or 1986, and this occurred as the dominant species, Senecio tomentosus, temporarily declined in importance following a severe drought in late summer 1984. Significant annual fluctuation in the cover of Viguiera porteri could also be related to variations in the summer precipitation regime. Overall, plant responses to drought were individualistic and depended largely on the timing of these meteorological events in relation to the life-stages and/or the physiological status of the plants.Abbreviations AP = Annual-perennial island communities - HST = Herb-shrub-tree island communities - LA = Lichen-annual island communities - SS = Sedum smallii island communities  相似文献   

18.
The relative importance of dispersal limitation versus environmental filtering for community assembly has received much attention for macroorganisms. These processes have only recently been examined in microbial communities. Instead, microbial dispersal has mostly been measured as community composition change over space (i.e., distance decay). Here we directly examined fungal composition in airborne wind currents and soil fungal communities across a 40 000 km2 regional landscape to determine if dispersal limitation or abiotic factors were structuring soil fungal communities. Over this landscape, neither airborne nor soil fungal communities exhibited compositional differences due to geographic distance. Airborne fungal communities shifted temporally while soil fungal communities were correlated with abiotic parameters. These patterns suggest that environmental filtering may have the largest influence on fungal regional community assembly in soils, especially for aerially dispersed fungal taxa. Furthermore, we found evidence that dispersal of fungal spores differs between fungal taxa and can be both a stochastic and deterministic process. The spatial range of soil fungal taxa was correlated with their average regional abundance across all sites, which may imply stochastic dispersal mechanisms. Nevertheless, spore volume was also negatively correlated with spatial range for some species. Smaller volume spores may be adapted to long-range dispersal, or establishment, suggesting that deterministic fungal traits may also influence fungal distributions. Fungal life-history traits may influence their distributions as well. Hypogeous fungal taxa exhibited high local abundance, but small spatial ranges, while epigeous fungal taxa had lower local abundance, but larger spatial ranges. This study is the first, to our knowledge, to directly sample air dispersal and soil fungal communities simultaneously across a regional landscape. We provide some of the first evidence that soil fungal communities are mostly assembled through environmental filtering and experience little dispersal limitation.  相似文献   

19.
Due to the increasing demand for phytoremediation, many transgenic poplars have been developed to enhance the bioremediation of heavy metals. However, structural changes to indigenous fungal communities by genetically modified organisms (GMO) presents a major ecological issue, due to the important role of fungi for plant growth in natural environments. To evaluate the effect of GM plant use on environmental fungal soil communities, extensive sequencing-based community analysis was conducted, while controlling the influence of plant clonality, plant age, soil condition, and harvesting season. The rhizosphere soils of GM and wild type (WT) poplars at a range of growth stages were sampled together with unplanted, contaminated soil, and the fungal community structures were investigated by pyrosequencing the D1/D2 region of the 28S rRNA gene. The results show that the overall structure of the rhizosphere fungal community was not significantly influenced by GM poplars. However, the presence of GM specific taxa, and faster rate of community change during poplar growth, appeared to be characteristic of the GM plant-induced effects on soil-born fungal communities. The results of this study provide additional information about the potential effects of GM poplar trees aged 1.5–3 years, on the soil fungal community.  相似文献   

20.
Climate warming is likely to have pronounced impacts on soil biota in arctic ecosystems. In a warmer climate, heatwaves are more frequent and intense, but it is unclear to what extent soil communities are buffered against this. We studied the effects of an artificially induced heatwave on the structure of testate amoebae communities in dry heath tundra in Qeqertarsuaq (Disko Island, West Greenland) during the summer of 2003. While the heatwave was severe enough to induce significant leaf mortality in the aboveground vegetation, overall testate amoebae abundance did not react to the difference in temperature. However, in the heated plots transient shifts in species populations occurred during the exposure, followed by increases in species richness weeks after the heatwave had ended. The most important taxa appearing after the heating period belonged to bacterivorous genera, in agreement with a transient peak in bacterial colony forming units, caused by the heatwave. Lobose testate amoebae resisted the heating and its associated desiccation better than their filose counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号