首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Brachyury, or T, gene is required for notochord development in animals occupying all three chordate subphyla and probably also had this role in the last common ancestor of the chordate lineages. In two chordate subphyla (vertebrates and cephalochordates), T is also expressed during gastrulation in involuting endodermal and mesodermal cells, and in vertebrates at least, this expression domain is required for proper development. In the basally diverging chordate subphylum Urochordata, animals in the class Ascidiacea do not employ T during gastrulation in endodermal or nonaxial mesodermal cells, and it has been suggested that nonnotochordal roles for T were acquired in the cephalochordate–vertebrate lineage after it split with Urochordata. To test this hypothesis, we cloned T from Oikopleura dioica, a member of the urochordate class Appendicularia (or Larvacea), which diverged basally in the subphylum. Investigation of the expression pattern in developing Oikopleura embryos showed early expression in presumptive notochord precursor cells, in the notochord, and in parts of the developing gut and cells of the endodermal strand. We conclude that the ancestral role of T likely included expression in the developing gut and became necessary in chordates for construction of the notochord.  相似文献   

2.
3.

Background  

Key molecules involved in notochord differentiation and function have been identified through genetic analysis in zebrafish and mice, but MEK1 and 2 have so far not been implicated in this process due to early lethality (Mek1-/-) and functional redundancy (Mek2-/-) in the knockout animals.  相似文献   

4.
Oda-Ishii I  Ishii Y  Mikawa T 《PloS one》2010,5(10):e13689

Background

The notochord is a signaling center required for the patterning of the vertebrate embryic midline, however, the molecular and cellular mechanisms involved in the formation of this essential embryonic tissue remain unclear. The urochordate Ciona intestinalis develops a simple notochord from 40 specific postmitotic mesodermal cells. The precursors intercalate mediolaterally and establish a single array of disk-shaped notochord cells along the midline. However, the role that notochord precursor polarization, particularly along the dorsoventral axis, plays in this morphogenetic process remains poorly understood.

Methodology/Principal Findings

Here we show that the notochord preferentially accumulates an apical cell polarity marker, aPKC, ventrally and a basement membrane marker, laminin, dorsally. This asymmetric accumulation of apicobasal cell polarity markers along the embryonic dorsoventral axis was sustained in notochord precursors during convergence and extension. Further, of several members of the Eph gene family implicated in cellular and tissue morphogenesis, only Ci-Eph4 was predominantly expressed in the notochord throughout cell intercalation. Introduction of a dominant-negative Ci-Eph4 to notochord precursors diminished asymmetric accumulation of apicobasal cell polarity markers, leading to defective intercalation. In contrast, misexpression of a dominant-negative mutant of a planar cell polarity gene Dishevelled preserved asymmetric accumulation of aPKC and laminin in notochord precursors, although their intercalation was incomplete.

Conclusions/Significance

Our data support a model in which in ascidian embryos Eph-dependent dorsoventral polarity of notochord precursors plays a crucial role in mediolateral cell intercalation and is required for proper notochord morphogenesis.  相似文献   

5.
6.
7.
8.

Background  

Keratins make up the largest subgroup of intermediate filaments, and, in chordates, represent the most abundant proteins in epithelial cells. They have been associated with a wide range of functions in the cell, but little information is still available about their expression profile and regulation during flatfish metamorphosis. Senegalese sole (Solea senegalensis) is a commercially important flatfish in which no keratin gene has been described yet.  相似文献   

9.
 The vertebrate Hox genes have been shown to confer regional identity along the anteroposterior axis of the developing embryo, especially within the central nervous system (CNS) and the paraxial mesoderm. The notochord has been shown to play vital roles in patterning adjacent tissues along both the dorsoventral and mediolateral axes. However, the notochord’s role in imparting anteroposterior information to adjacent structures is less well understood, especially as the notochord shows no morphological distinctions along the anteroposterior axis and is not generally described as a segmental or compartmentalized structure. Here we report that four zebrafish hox genes: hoxb1, hoxb5, hoxc6 and hoxc8 are regionally expressed along the anteroposterior extent of the developing notochord. Notochord expression for each gene is transient, but maintains a definite, gene-specific anterior limit throughout its duration. The hox gene expression in the zebrafish notochord is spatially colinear with those genes lying most 3’ in the hox clusters having the most anterior limits. The expression patterns of these hox cluster genes in the zebrafish are the most direct molecular evidence for a system of anteroposterior regionalization of the notochord in any vertebrate studied to date. Received: 30 March 1998 / Accepted: 16 June 1998  相似文献   

10.
The caudal end of the neural tube of the tunicate Oikopleura, the cephalochordate Branchiostoma and newly hatched fry of the clupeiform teleosts Clupea, Engraulis and Sardinops was studied by means of the electron microscope. In Oikopleura and the teleost larvae either Reissner's fiber or an amorphous mass of fiber substance leaks out of the neural tube into the surrounding tissue spaces. In Branchiostoma the disintegrated fiber material is apparently engulfed by the caudal ependymal cells. A relationship seems to exist between the degree of fiber disintegration within the neural tube and the degree of specialization of the caudal neural tube ependymal cells, the two extremes being represented by Branchiostoma with a “closed” Reissner's fiber system with highly specialized caudal ependymal cells and a teleost fry with the intact fiber leaving the neural tube between almost undifferentiated ependymal cells. These observations on lower chordates are in accordance with the hypothesis that Reissner's fiber acts as a detoxicator for the neural tube fluid.  相似文献   

11.
12.
In the course of embryogenesis multicellular structures and organs are assembled from constituent cells. One structural component common to many organs is the tube, which consists most simply of a luminal space surrounded by a single layer of epithelial cells. The notochord of ascidian Ciona forms a tube consisting of only 40 cells, and serves as a hydrostatic “skeleton” essential for swimming. While the early processes of convergent extension in ascidian notochord development have been extensively studied, the later phases of development, which include lumen formation, have not been well characterized. Here we used molecular markers and confocal imaging to describe tubulogenesis in the developing Ciona notochord. We found that during tubulogenesis each notochord cell established de novo apical domains, and underwent a mesenchymal–epithelial transition to become an unusual epithelial cell with two opposing apical domains. Concomitantly, extracellular luminal matrix was produced and deposited between notochord cells. Subsequently, each notochord cell simultaneously executed two types of crawling movements bi-directionally along the anterior/posterior axis on the inner surface of notochordal sheath. Lamellipodia-like protrusions resulted in cell lengthening along the anterior/posterior axis, while the retraction of trailing edges of the same cell led to the merging of the two apical domains. As a result, the notochord cells acquired endothelial-like shape and formed the wall of the central lumen. Inhibition of actin polymerization prevented the cell movement and tube formation. Ciona notochord tube formation utilized an assortment of common and fundamental cellular processes including cell shape change, apical membrane biogenesis, cell/cell adhesion remodeling, dynamic cell crawling, and lumen matrix secretion.  相似文献   

13.

Background  

DUX4 is causally involved in the molecular pathogenesis of the neuromuscular disorder facioscapulohumeral muscular dystrophy (FSHD). It has previously been proposed to have arisen by retrotransposition of DUXC, one of four known intron-containing DUX genes. Here, we investigate the evolutionary history of this multi-member double-homeobox gene family in eutherian mammals.  相似文献   

14.
The notochord develops from notochord progenitor cells (NPCs) and functions as a major signaling center to regulate trunk and tail development. NPCs are initially specified in the node by Wnt and Nodal signals at the gastrula stage. However, the underlying mechanism that maintains the NPCs throughout embryogenesis to contribute to the posterior extension of the notochord remains unclear. Here, we demonstrate that Wnt signaling in the NPCs is essential for posterior extension of the notochord. Genetic labeling revealed that the Noto-expressing cells in the ventral node contribute the NPCs that reside in the tail bud. Robust Wnt signaling in the NPCs was observed during posterior notochord extension. Genetic attenuation of the Wnt signal via notochord-specific β-catenin gene ablation resulted in posterior truncation of the notochord. In the NPCs of such mutant embryos, the expression of notochord-specific genes was down-regulated, and an endodermal marker, E-cadherin, was observed. No significant alteration of cell proliferation or apoptosis of the NPCs was detected. Taken together, our data indicate that the NPCs are derived from Noto-positive node cells, and are not fully committed to a notochordal fate. Sustained Wnt signaling is required to maintain the NPCs’ notochordal fate.  相似文献   

15.
The notochord is one of the characteristic features of the phylum Chordata. The vertebrateBrachyurygene is known to be essential for the terminal differentiation of chordamesoderm into notochord. In the ascidian, which belongs to the subphylum Urochordata, differentiation of notochord cells is induced at the late phase of the 32-cell stage through cellular interaction with adjacent endoderm cells as well as neighboring notochord cells. The ascidianBrachyurygene (As-T) is expressed exclusively in the notochord-lineage blastomeres, and the timing of gene expression at the 64-cell stage precisely coincides with that of the developmental fate restriction of the blastomeres. In addition, experimental studies have demonstrated a close relationship between the inductive events andAs-Texpression. In the present study, we show that overexpression ofAs-Tby microinjection of the synthesizedAs-TRNA results in the occurrence, without the induction, of notochord-specific features in the A-line presumptive notochord blastomeres. We also show that overexpression ofAs-TRNA leads to ectopic expression of notochord-specific features in non-notochord lineages, including those of spinal cord and endoderm. These results strongly suggest that the developmental role of theBrachyuryis conserved throughout chordates in notochord formation.  相似文献   

16.
The notochord is a defining feature of chordates. During notochord formation in vertebrates and tunicates, notochord cells display dynamic morphogenetic movement, called convergent extension, in which cells intercalate and align at the dorsal midline. However, in cephalochordates, the most basal group of chordates, the notochord is formed without convergent extension. It is simply developed from mesodermal cells at the dorsal midline. This suggests that convergent extension movement of notochord cells is a secondarily acquired developmental attribute in the common ancestor of olfactores (vertebrates + tunicates), and that the chordate ancestor innovated the notochord upon a foundation of morphogenetic mechanisms independent of cell movement. Therefore, this review focuses on biological features specific to notochord cells, which have been well studied using clawed frogs, zebrafish, and tunicates. Attributes of notochord cells, such as vacuolation, membrane trafficking, extracellular matrix formation, and apoptosis, can be understood in terms of two properties: turgor pressure of vacuoles and strength of the notochord sheath. To maintain the straight rod-like structure of the notochord, these parameters must be counterbalanced. In the future, the turgor pressure-sheath strength model, proposed in this review, will be examined in light of quantitative molecular data and mathematical simulations, illuminating the evolutionary origin of the notochord.  相似文献   

17.

Background  

Different gene expression patterns correlate with the altered phenotype in biofilm-associated bacteria. Iron and iron-linked genes are thought to play a key-role in biofilm formation. The expression of Fe-linked genes (sirR, sitABC operon) in Staphylococcus epidermidis, was compared in planktonic versus sessile bacteria in vitro and in vivo in a subcutaneous foreign body rat model.  相似文献   

18.

Background  

Hox genes are critical for patterning the bilaterian anterior-posterior axis. The evolution of their clustered genomic arrangement and ancestral function has been debated since their discovery. As acoels appear to represent the sister group to the remaining Bilateria (Nephrozoa), investigatingHox gene expression will provide an insight into the ancestral features of theHox genes in metazoan evolution.  相似文献   

19.
Zusammenfassung Der Aufbau der Chorda dorsalis wurde bei zwei Tunikaten — Dendrodoa grossularia und Oikopleura dioica — elektronenmikroskopisch untersucht.Die Chorda von Dendrodoa besteht aus einem Strang solider, mit Dottereinschlüssen gefüllter, glykogenreicher Zellen. Sie sind von einer Paserschicht umhüllt, an der die quergestreifte Muskulatur des Schwanzes unmittelbar ansetzt.Die Chorda von Oikopleura besteht aus peripher gelegenen epithelartigen Zellen, die eine mit elastischem Material gefüllte, langgestreckte Vakuole umschließen. Ihr Cytoplasma enthält locker verteilt Golgi-Apparat, glattes und granuliertes endoplasmatisches Reticulum, Mitochondrien vom tubulären Typ und optisch leere Vakuolen. An der Faserhülle der Chorda setzen lateral die beiden Stränge quergestreifter Muskulatur an. Am Schwanz beider Formen werden ventrale und dorsale Flossen auf unterschiedliche Weise ausgebildet.
On the fine structure of the notochord of lower chordates (Dendrodoa grossularia and Oikopleura dioica)
Summary The fine structure of the notochord of two tunicate species — Dendrodoa grossularia and Oikopleura diowa — was investigated with the electron microscope.In Dendrodoa, the notochord consists of a cord of solid glycogen-rich cells, which contain numerous big yolk droplets. These cells, which are otherwise poor in cytoplasmic organelles, are surrounded by a layer of fibrils, to which the muscle cells of the tail are firmly attached.In Oikopleura the notochord consists of peripheral flat epitheliumlike cells, which surround a single central rodlike vacuole filled with elastic material. The cytoplasm of the notochordal cells contains loosely distributed Golgi apparatus, smooth and granulated endoplasmic reticulum, mitochondria of the tubular type and empty-appearing vacuoles. The two muscle tracts of the tail are laterally attached to the fibrous sheath of the notochord. The dorsal and ventral fin of the tail exhibit in both animals a completely different ultrastructure.


Die Untersuchungen wurden mit dankenswerter Unterstützung durch die Deutsche Forschungsgemeinschaft durchgeführt.

Herrn Prof. Dr. A. Remane danken wir für Hinweise zur Diskussion.

Herrn Prof. Dr. W. Bargmann danke ich für Überlassung eines Arbeitsplatzes im Anatomischen Institut Kiel.  相似文献   

20.

Background  

Gastrointestinal stromal tumors (GIST) represent the most common mesenchymal tumors of the gastrointestinal tract. About 85% carry an activating mutation in the KIT or PDGFRA gene. Approximately 10% of GIST are so-called wild type GIST (wt-GIST) without mutations in the hot spots. In the present study we evaluated appropriate reference genes for the expression analysis of formalin-fixed, paraffin-embedded and fresh frozen samples from gastrointestinal stromal tumors. We evaluated the gene expression of KIT as well as of the alternative receptor tyrosine kinase genes FLT3, CSF1-R, PDGFRB, AXL and MET by qPCR. wt-GIST were compared to samples with mutations in KIT exon 9 and 11 and PDGFRA exon 18 in order to evaluate whether overexpression of these alternative RTK might contribute to the pathogenesis of wt-GIST.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号