共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A phagemid vector library for cloning DNA with four nucleotide 5' or 3' overhangs has been constructed. This library is based on the pT7T3 vector (Pharmacia) which is a modification of the phagemid pTZ18U vector. We have chosen pT7T3 as the parent vector because it can be used for Sanger's dideoxy sequencing and for the generation of RNA probes with either the T7 or T3 promoter. Each member of the cloning vector series pBM has recognition sites for both of the restriction enzymes BspM1 and BstX1 in addition to the basic multiple cloning sites. BspM1 recognizes the sequence 5'...ACCTGC NNNN/NNNN...3' whereas BstX1 recognizes the sequence 5'...CCAN NNNN/NTGG...3'. Thus these two sites can be overlapped, so that only 256 vectors (instead of 512 vectors) need be constructed to cover all the theoretical possible combinations of sites which give complementary cohesive ends for cloning DNA with four nucleotide 5' or 3' overhangs. This vector library can be used for amplification cloning of DNA in a tandem array by choosing appropriate vectors which have nonpalindromic sequences. We have obtained approximately 200 members of the 256 possible clones and have organized the vectors using a MacIntosh HyperCard program for easy retrieval. 相似文献
3.
4.
Solution structure of a modified 2',5'-linked RNA hairpin involved in an equilibrium with duplex 下载免费PDF全文
The isomerization of phosphodiester functionality of nucleic acids from 3′,5′- to a less common 2′,5′-linkage influences the complex interplay of stereoelectronic effects that drive pseudorotational equilibrium of sugar rings and thus affect the conformational propensities for compact or more extended structures. The present study highlights the subtle balance of non-covalent forces at play in structural equilibrium of 2′,5′-linked RNA analogue, 3′-O-(2-methoxyethyl) substituted dodecamer *CG*CGAA*U*U*CG*CG, 3′-MOE-2′,5′-RNA, where all cytosines and uracils are methylated at C5. The NMR and UV spectroscopic studies have shown that 3′-MOE-2′,5′-RNA adopts both hairpin and duplex secondary structures, which are involved in a dynamic exchange that is slow on the NMR timescale and exhibits strand and salt concentration as well as pH dependence. Unusual effect of pH over a narrow physiological range is observed for imino proton resonances with exchange broadening observed at lower pH and relatively sharp lines observed at higher pH. The solution structure of 3′-MOE-2′,5′-RNA hairpin displays a unique and well-defined loop, which is stabilized by Watson–Crick A5·*U8 base pair and by n → π* stacking interactions of O4′ lone-pair electrons of A6 and *U8 with aromatic rings of A5 and *U7, respectively. In contrast, the stem region of 3′-MOE-2′,5′-RNA hairpin is more flexible. Our data highlight the important feature of backbone modifications that can have pronounced effects on interstrand association of nucleic acids. 相似文献
5.
6.
Thermodynamic parameters are reported for duplex formation of 40 self-complementary RNA duplexes containing wobble terminal base pairs with all possible 3′ single and double-nucleotide overhangs, mimicking the structures of short interfering RNAs (siRNA) and microRNAs (miRNA). Based on nearest neighbor analysis, the addition of a single 3′ dangling nucleotide increases the stability of duplex formation up to 1 kcal/mol in a sequence-dependent manner. The addition of a second dangling nucleotide increases the stability of duplexes closed with wobble base pairs in an idiosyncratic manner. The results allow for the development of a nearest neighbor model, which improves the predication of free energy and melting temperature for duplexes closed by wobble base pairs with 3′ single or double-nucleotide overhangs. Phylogenetic analysis of naturally occurring miRNAs was performed. Selection of the effector miR strand of the mature miRNA duplex appears to be dependent on the orientation of the GU closing base pair rather than the identity of the 3′ double-nucleotide overhang. Thermodynamic parameters for the 5′ single terminal overhangs adjacent to wobble closing base pairs are also presented. 相似文献
7.
Mammalian tRNA 3' processing endoribonuclease (3' tRNase) can recognize and cleave any target RNA that forms a precursor tRNA-like complex with another RNA. Various sets of RNA molecules were tested to identify the smallest RNA that can direct target RNA cleavage by 3' tRNase. A 3' half tRNAArgwas cleaved efficiently by 3' tRNase in the presence of small 5' half tRNAArgvariants, the D stem-loop region of which was partially deleted. Remarkably, 3' tRNase also cleaved the 3' half tRNAArgin the presence of a 7 nt 5' tRNAArg composed only of the acceptor stem region with a catalytic efficiency comparable with that of cleavage directed by an intact 5' half tRNAArg. The catalytic efficiency of cleavage directed by the heptamer decreased as the stability of the T stem-loop structures of 3' half tRNAArg variants decreased. No heptamer-directed cleavage of a 3' half tRNAArg without T stem base pairs was detected. A heptamer also directed cleavage of an HIV-1 RNA containing a stable hairpin structure. These findings suggest that in the presence of an RNA heptamer, 3' tRNase can discriminate and eliminate target RNAs that possess a stable hairpin adjacent to the heptamer binding sequence from a large complex RNA pool. 相似文献
8.
Recent evidence for 5'-cytosine (C)-rich overhangs at the telomeres of the nematode Caenorhabditis elegans provided the impetus to re-examine the end structure of mammalian telomeres. Two-dimensional (2D) gel electrophoresis, single telomere-length analysis (STELA), and strand-specific exonuclease assays revealed the presence of a 5'-C-rich overhang at the telomeres of human and mouse chromosomes. C-overhangs were prominent in G1/S arrested as well as terminally differentiated cells, indicating that they did not represent replication intermediates. C-rich overhangs were far more prevalent in tumor cells engaged in the alternative lengthening of telomeres (ALT) pathway of telomere maintenance, which relies on the homologous recombination (HR) machinery. Transient siRNA-based depletion of the HR-specific proteins RAD51, RAD52, and XRCC3 resulted in changes in C-overhang levels, implicating the involvement of 5'-C-overhangs in the HR-dependent pathway of telomere maintenance. 相似文献
9.
Niewolik D Pannicke U Lu H Ma Y Wang LC Kulesza P Zandi E Lieber MR Schwarz K 《The Journal of biological chemistry》2006,281(45):33900-33909
During V(D)J recombination, the RAG proteins create DNA hairpins at the V, D, or J coding ends, and the structure-specific nuclease Artemis is essential to open these hairpins prior to joining. Artemis also is an endonuclease for 5' and 3' overhangs at many DNA double strand breaks caused by ionizing radiation, and Artemis functions as part of the nonhomologous DNA end joining pathway in repairing these. All of these activities require activation of the Artemis protein by interaction with and phosphorylation by the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). In this study, we have identified a region of the Artemis protein involved in the interaction with DNA-PKcs. Furthermore, the biochemical and functional analyses of C-terminally truncated Artemis variants indicate that the hair-pin opening and DNA overhang endonucleolytic features of Artemis are triggered by DNA-PKcs in two modes. First, autoinhibition mediated by the C-terminal tail of Artemis is relieved by phosphorylation of this tail by DNA-PKcs. Thus, C-terminally truncated Artemis derivatives imitate DNA-PKcs-activated wild type Artemis protein and exhibit intrinsic hairpin opening activity. Second, DNA-PKcs may optimally configure 5' and 3' overhang substrates for the endonucleolytic function of Artemis. 相似文献
10.
5' cleavage site in eukaryotic pre-mRNA splicing is determined by the overall 5' splice region, not by the conserved 5' GU 总被引:40,自引:0,他引:40
We have generated all possible single point mutations of the invariant 5' GT of the large beta-globin intron and determined their effect on splicing in vitro. None of the mutants prevented cleavage in the 5' splice region, but many reduced or abolished exon joining. The mutations GT----TT and GT----CT resulted in a shift of the 5' cleavage site on nucleotide upstream; in the case of the mutation GT----TT, this shift was reverted by a second site mutation within the 5' splice region. Our results suggest that the 5' cleavage site is determined not by the conserved GU sequence but by the 5' splice region as a whole, most probably via base-pairing to the 5' end of the U1 snRNA. 相似文献
11.
Sidney Altman Madeline Baer Cecilia Guerrier-Takada Agustin Vioque 《Trends in biochemical sciences》1986,11(12):515-518
The catalytic activity of E. coli RNase P, an enzyme essential for tRNA biosynthesis in vivo, resides in the RNA subunit of the enzyme. This RNA, which has all the properties of a classical enzyme, can cleave precursor tRNAs in vitro in the total absence of proteins. 相似文献
12.
Enzymatic cleavage of RNA by RNA 总被引:4,自引:0,他引:4
Sidney Altman 《Bioscience reports》1990,10(4):317-337
The discovery and characterization of the catalytic RNA subunit of the enzyme ribonuclease P ofEscherichia coli is described.Nobel lecture given on December 8, 1989, by Professor Sidney Altman, and published in LES PRIX NOBEL 1989, printed in Sweden by Norstedts Tryckeri, Stockholm, Sweden, 1990, republished here with the permission of the Nobel Foundation, the copyright holder. 相似文献
13.
Dicer is a member of the double-stranded (ds) RNA-specific ribonuclease III (RNase III) family that is required for RNA processing and degradation. Like most members of the RNase III family, Dicer possesses a dsRNA binding domain and cleaves long RNA duplexes in vitro. In this study, Dicer substrate selectivity was examined using bipartite substrates. These experiments revealed that an RNA helix possessing a 2-nucleotide (nt) 3'-overhang may bind and direct sequence-specific Dicer-mediated cleavage in trans at a fixed distance from the 3'-end overhang. Chemical modifications of the substrate indicate that the presence of the ribose 2'-hydroxyl group is not required for Dicer binding, but some located near the scissile bonds are needed for RNA cleavage. This suggests a flexible mechanism for substrate selectivity that recognizes the overall shape of an RNA helix. Examination of the structure of natural pre-microRNAs (pre-miRNAs) suggests that they may form bipartite substrates with complementary mRNA sequences, and thus induce seed-independent Dicer cleavage. Indeed, in vitro, natural pre-miRNA directed sequence-specific Dicer-mediated cleavage in trans by supporting the formation of a substrate mimic. 相似文献
14.
The influence of junction conformation on RNA cleavage by the hairpin ribozyme in its natural junction form 下载免费PDF全文
In the natural form of the hairpin ribozyme the two loop-carrying duplexes that comprise the majority of essential bases for activity form two adjacent helical arms of a four-way RNA junction. In the present work we have manipulated the sequence around the junction in a way known to perturb the global folding properties. We find that replacement of the junction by a different sequence that has the same conformational properties as the natural sequence gives closely similar reaction rate and Arrhenius activation energy for the substrate cleavage reaction. By comparison, rotation of the natural sequence in order to alter the three-dimensional folding of the ribozyme leads to a tenfold reduction in the kinetics of cleavage. Replacement with the U1 four-way junction that is resistant to rotation into the antiparallel structure required to allow interaction between the loops also gives a tenfold reduction in cleavage rate. The results indicate that the conformation of the junction has a major influence on the catalytic activity of the ribozyme. The results are all consistent with a role for the junction in the provision of a framework by which the loops are presented for interaction in order to create the active form of the ribozyme. 相似文献
15.
16.
Satellite RNAs associated with Bamboo mosaic virus (satBaMVs) depend on BaMV for replication and encapsidation. Certain satBaMVs isolated from natural fields significantly interfere with BaMV replication. The 5' apical hairpin stem loop (AHSL) of satBaMV is the major determinant in interference with BaMV replication. In this study, by in vivo competition assay, we revealed that the sequence and structure of AHSL, along with specific nucleotides (C(60) and C(83)) required for interference with BaMV replication, are also involved in replication competition among satBaMV variants. Moreover, all of the 5' ends of natural BaMV isolates contain the similar AHSLs having conserved nucleotides (C(64) and C(86)) with those of interfering satBaMVs, suggesting their co-evolution. Mutational analyses revealed that C(86) was essential for BaMV replication, and that replacement of C(64) with U reduced replication efficiency. The non-interfering satBaMV interfered with BaMV replication with the BaMV-C64U mutant as helper. These findings suggest that two cytosines at the equivalent positions in the AHSLs of BaMV and satBaMV play a crucial role in replication competence. The downregulation level, which is dependent upon the molar ratio of interfering satBaMV to BaMV, implies that there is competition for limited replication machinery. 相似文献
17.
Dorléans A Li de la Sierra-Gallay I Piton J Zig L Gilet L Putzer H Condon C 《Structure (London, England : 1993)》2011,19(9):1252-1261
RNase J is a key member of the β-CASP family of metallo-β-lactamases involved in the maturation and turnover of RNAs in prokaryotes. The B.?subtilis enzyme possesses both 5'-3' exoribonucleolytic and endonucleolytic activity, an unusual property for a ribonuclease. Here, we present the crystal structure of T.?thermophilus RNase J bound to a 4 nucleotide RNA. The structure reveals an RNA-binding channel that illustrates how the enzyme functions in 5'-3' exoribonucleolytic mode and how it can function as an endonuclease. A second, negatively charged tunnel leads from the active site, and is ideally located to evacuate the cleaved nucleotide in 5'-3' exonucleolytic mode. We show that B.?subtilis RNase J1, which shows processive behavior on long RNAs, behaves distributively for substrates less than 5 nucleotides in length. We propose a model involving the binding of the RNA to the surface of the β-CASP domain to explain the enzyme's processive action. 相似文献
18.
Mansfield SG Clark RH Puttaraju M Kole J Cohn JA Mitchell LG Garcia-Blanco MA 《RNA (New York, N.Y.)》2003,9(10):1290-1297
Spliceosome-mediated RNA trans-splicing (SMaRT) has been used previously to reprogram mutant endogenous CFTR and factor VIII mRNAs in human epithelial cell and tissue models and knockout mice, respectively. Those studies used 3' exon replacement (3'ER); a process in which the distal portion of RNA is reprogrammed. Here, we also show that the 5' end of mRNA can be completely rewritten by 5'ER. For proof-of-concept, and to test whether 5'ER could generate functional CFTR, we generated a mutant minigene target containing CFTR exons 10-24 (deltaF508) and a mini-intron 10, and a pretrans-splicing molecule (targeted to intron 10) containing CFTR exons 1-10 (+F508), and tested these two constructs in 293T cells for anion efflux transport. Cells cotransfected with target and PTM showed a consistent increase in anion efflux, but there was no response in control cells that received PTM or target alone. Using a LacZ reporter system to accurately quantify trans-splicing efficiency, we tested several unique PTM designs. These studies provided two important findings as follows: (1) efficient trans-splicing can be achieved by binding the PTM to different locations in the target, and (2) relatively few changes in PTM design can have a profound impact on trans-splicing activity. Tethering the PTM close to the target 3' splice site (as opposed to the donor site) and inserting an intron in the PTM coding resulted in a 65-fold enhancement of LacZ activity. These studies demonstrate that (1) SMaRT can be used to reprogram the 5' end of mRNA, and (2) efficiency can be improved substantially. 相似文献
19.
Overexpression of exportin 5 enhances RNA interference mediated by short hairpin RNAs and microRNAs 总被引:9,自引:0,他引:9 下载免费PDF全文
Plasmids or viral vectors that express short hairpin RNAs (shRNAs) have emerged as important tools for the stable inhibition of specific genes by RNA interference. shRNAs are structural and functional homologs of pre-microRNAs, intermediates in the production of endogenously encoded microRNAs (miRNAs). Therefore, overexpressed shRNAs could inhibit miRNA function by competing for a limiting level of one or more factors involved in miRNA biogenesis or function. Here, we demonstrate that overexpressed shRNAs can saturate the activity of endogenous Exportin 5, a factor required for nuclear export of both shRNAs and pre-miRNAs. While shRNA overexpression can therefore inhibit miRNA function, simultaneous overexpression of Exportin 5 reverses this effect. Moreover, Exportin 5 overexpression can significantly enhance RNA interference mediated by shRNAs. These data have implications for the future clinical utilization of shRNAs and also provide a simple method to enhance RNA interference by shRNAs in culture. 相似文献
20.
dsRNA with 5′ overhangs contributes to endogenous and antiviral RNA silencing pathways in plants 下载免费PDF全文
In plants, SGS3 and RNA‐dependent RNA polymerase 6 (RDR6) are required to convert single‐ to double‐stranded RNA (dsRNA) in the innate RNAi‐based antiviral response and to produce both exogenous and endogenous short‐interfering RNAs. Although a role for RDR6‐catalysed RNA‐dependent RNA polymerisation in these processes seems clear, the function of SGS3 is unknown. Here, we show that SGS3 is a dsRNA‐binding protein with unexpected substrate selectivity favouring 5′‐overhang‐containing dsRNA. The conserved XS and coiled‐coil domains are responsible for RNA‐binding activity. Furthermore, we find that the V2 protein from tomato yellow leaf curl virus, which suppresses the RNAi‐based host immune response, is a dsRNA‐binding protein with similar specificity to SGS3. In competition‐binding experiments, V2 outcompetes SGS3 for substrate dsRNA recognition, whereas a V2 point mutant lacking the suppressor function in vivo cannot efficiently overcome SGS3 binding. These findings suggest that SGS3 recognition of dsRNA containing a 5′ overhang is required for subsequent steps in RNA‐mediated gene silencing in plants, and that V2 functions as a viral suppressor by preventing SGS3 from accessing substrate RNAs. 相似文献