首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Thermodynamic parameters are reported for duplex formation of 40 self-complementary RNA duplexes containing wobble terminal base pairs with all possible 3′ single and double-nucleotide overhangs, mimicking the structures of short interfering RNAs (siRNA) and microRNAs (miRNA). Based on nearest neighbor analysis, the addition of a single 3′ dangling nucleotide increases the stability of duplex formation up to 1 kcal/mol in a sequence-dependent manner. The addition of a second dangling nucleotide increases the stability of duplexes closed with wobble base pairs in an idiosyncratic manner. The results allow for the development of a nearest neighbor model, which improves the predication of free energy and melting temperature for duplexes closed by wobble base pairs with 3′ single or double-nucleotide overhangs. Phylogenetic analysis of naturally occurring miRNAs was performed. Selection of the effector miR strand of the mature miRNA duplex appears to be dependent on the orientation of the GU closing base pair rather than the identity of the 3′ double-nucleotide overhang. Thermodynamic parameters for the 5′ single terminal overhangs adjacent to wobble closing base pairs are also presented.  相似文献   

3.
Soto AM  Gmeiner WH  Marky LA 《Biochemistry》2002,41(21):6842-6849
A combination of spectroscopic and calorimetric techniques was used to determine complete thermodynamic profiles accompanying the folding of a model Okazaki fragment with sequence 5'-r(gagga)d(ATCTTTG)-3'/5'-d(CAAAGATTCCTC)-3' and control DNA (with and without thymidine substitutions for uridine), RNA, and hybrid duplexes. Circular dichroism spectroscopy indicated that all DNA duplexes are in the B conformation, the RNA and hybrid duplexes are in the A conformation, and the Okazaki fragment exhibits a spectrum between the A and B conformations. Ultraviolet and differential scanning calorimetry melting experiments reveal that all duplexes unfold in two-state transitions with thermal stabilities that follow the order RNA > OKA > DNA (with thymidines) > hybrids > DNA (with uridines). The dependence of the transition temperature on salt concentration yielded counterion releases in the following order: DNA (with thymidines) > RNA > DNA (with uridines) > OKA > hybrids. Thus, Okazaki fragments have a conformation and charge density between those of its components DNA and hybrid segments. However, the presence of the RNA-DNA/DNA junction confers on them higher stabilities than their component hybrid and DNA segments. The binding of intercalators to an Okazaki hairpin of sequence 5'-r(gc)d(GCU5GCGC)-3' and to its control DNA hairpin has also been studied. The results show that the binding of intercalators to Okazaki fragments is accompanied with higher heats and lower binding affinities, compared with DNA duplexes. This suggests that the presence of an RNA/DNA junction yields a larger surface contact to interact with the phenanthroline ring of the intercalators, which may lead to a larger disruption of the flexible flanking bases of the junction. The overall results suggest that the presence of this junction stabilizes Okazaki fragments and provides a structural feature that can be exploited in the design of drugs to specifically target these molecules.  相似文献   

4.
microRNAs (miRNAs) and small interfering RNAs (siRNAs) in plants bear a methyl group on the ribose of the 3′ terminal nucleotide. We showed previously that the methylation of miRNAs and siRNAs requires the protein HEN1 in vivo and that purified HEN1 protein methylates miRNA/miRNA* duplexes in vitro. In this study, we show that HEN1 methylates both miRNA/miRNA* and siRNA/siRNA* duplexes in vitro with a preference for 21–24 nt RNA duplexes with 2 nt overhangs. We also demonstrate that HEN1 deposits the methyl group on to the 2′ OH of the 3′ terminal nucleotide. Among various modifications that can occur on the ribose of the terminal nucleotide, such as 2′-deoxy, 3′-deoxy, 2′-O-methyl and 3′-O-methyl, only 2′-O-methyl on a small RNA inhibits the activity of yeast poly(A) polymerase (PAP). These findings indicate that HEN1 specifically methylates miRNAs and siRNAs and implicate the importance of the 2′-O-methyl group in the biology of RNA silencing.  相似文献   

5.
microRNAs are ~ 22 nucleotide regulatory RNAs that are processed into duplexes from hairpin structures and incorporated into Argonaute proteins. Here, we show that a nick in the middle of the guide strand of an miRNA sequence allows for seed-based targeting characteristic of miRNA activity. Insertion of an inverted abasic, a dye, or a small gap between the two segments still permits target knockdown. While activity from the seed region of the segmented miRNA is apparent, activity from the 3' half of the guide strand is impaired, suggesting that an intact guide backbone is required for contribution from the 3' half. miRNA activity was also observed following nicking of a miRNA precursor. These results illustrate a structural flexibility in miRNA duplexes and may have applications in the design of miRNA mimetics.  相似文献   

6.
Small interfering RNAs (siRNAs) and microRNAs (miRNAs) guide catalytic sequence-specific cleavage of fully or nearly fully complementary target mRNAs or control translation and/or stability of many mRNAs that share 6-8 nucleotides (nt) of complementarity to the siRNA and miRNA 5' end. siRNA- and miRNA-containing ribonucleoprotein silencing complexes are assembled from double-stranded 21- to 23-nt RNase III processing intermediates that carry 5' phosphates and 2-nt overhangs with free 3' hydroxyl groups. Despite the structural symmetry of a duplex siRNA, the nucleotide sequence asymmetry can generate a bias for preferred loading of one of the two duplex-forming strands into the RNA-induced silencing complex (RISC). Here we show that the 5'-phosphorylation status of the siRNA strands also acts as an important determinant for strand selection. 5'-O-methylated siRNA duplexes refractory to 5' phosphorylation were examined for their biases in siRNA strand selection. Asymmetric, single methylation of siRNA duplexes reduced the occupancy of the silencing complex by the methylated strand with concomitant elimination of its off-targeting signature and enhanced off-targeting signature of the phosphorylated strand. Methylation of both siRNA strands reduced but did not completely abolish RNA silencing, without affecting strand selection relative to that of the unmodified siRNA. We conclude that asymmetric 5' modification of siRNA duplexes can be useful for controlling targeting specificity.  相似文献   

7.
8.
The ribonuclease Dicer excises mature miRNAs from a diverse group of precursors (pre-miRNAs), most of which contain various secondary structure motifs in their hairpin stem. In this study, we analyzed Dicer cleavage in hairpin substrates deprived of such motifs. We searched for the factors other than the secondary structure, which may influence the length diversity and heterogeneity of miRNAs. We found that the nucleotide sequence at the Dicer cleavage site influences both of these miRNA characteristics. With regard to cleavage mechanism, we demonstrate that the Dicer RNase IIIA domain that cleaves within the 3′ arm of the pre-miRNA is more sensitive to the nucleotide sequence of its substrate than is the RNase IIIB domain. The RNase IIIA domain avoids releasing miRNAs with G nucleotide and prefers to generate miRNAs with a U nucleotide at the 5′ end. We also propose that the sequence restrictions at the Dicer cleavage site might be the factor that contributes to the generation of miRNA duplexes with 3′ overhangs of atypical lengths. This finding implies that the two RNase III domains forming the single processing center of Dicer may exhibit some degree of flexibility, which allows for the formation of these non-standard 3′ overhangs.  相似文献   

9.

Background  

RNA interference (RNAi) emerges as a powerful tool to induce loss-of-function phenotypes. In the context of the brain, gene manipulation is best targeted to specific subsets of cells in order to achieve a physiologically relevant outcome. Polymerase II-based viral expression systems can be used to cell-specifically express constructs incorporating flanking and loop sequences from endogenous microRNA (miRNA), which directs the designed hairpins into the endogenous gene silencing machinery. While many studies have documented non-cell-selective gene knock-down in the brain, it has not been tested whether different cell types or different areas of the central nervous system (CNS) are equally amenable to this approach. We have evaluated this issue using a tetracycline (Tet)-controllable and cell-specific miRNA 30 (miR30)-based short hairpin (shRNA) interference system.  相似文献   

10.

Background

Small RNA sequencing is commonly used to identify novel miRNAs and to determine their expression levels in plants. There are several miRNA identification tools for animals such as miRDeep, miRDeep2 and miRDeep*. miRDeep-P was developed to identify plant miRNA using miRDeep’s probabilistic model of miRNA biogenesis, but it depends on several third party tools and lacks a user-friendly interface. The objective of our miRPlant program is to predict novel plant miRNA, while providing a user-friendly interface with improved accuracy of prediction.

Result

We have developed a user-friendly plant miRNA prediction tool called miRPlant. We show using 16 plant miRNA datasets from four different plant species that miRPlant has at least a 10% improvement in accuracy compared to miRDeep-P, which is the most popular plant miRNA prediction tool. Furthermore, miRPlant uses a Graphical User Interface for data input and output, and identified miRNA are shown with all RNAseq reads in a hairpin diagram.

Conclusions

We have developed miRPlant which extends miRDeep* to various plant species by adopting suitable strategies to identify hairpin excision regions and hairpin structure filtering for plants. miRPlant does not require any third party tools such as mapping or RNA secondary structure prediction tools. miRPlant is also the first plant miRNA prediction tool that dynamically plots miRNA hairpin structure with small reads for identified novel miRNAs. This feature will enable biologists to visualize novel pre-miRNA structure and the location of small RNA reads relative to the hairpin. Moreover, miRPlant can be easily used by biologists with limited bioinformatics skills.miRPlant and its manual are freely available at http://www.australianprostatecentre.org/research/software/mirplant or http://sourceforge.net/projects/mirplant/.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-275) contains supplementary material, which is available to authorized users.  相似文献   

11.

Background  

Recently, HEN1 protein from Arabidopsis thaliana was discovered as an essential enzyme in plant microRNA (miRNA) biogenesis. HEN1 transfers a methyl group from S-adenosylmethionine to the 2'-OH or 3'-OH group of the last nucleotide of miRNA/miRNA* duplexes produced by the nuclease Dicer. Previously it was found that HEN1 possesses a Rossmann-fold methyltransferase (RFM) domain and a long N-terminal extension including a putative double-stranded RNA-binding motif (DSRM). However, little is known about the details of the structure and the mechanism of action of this enzyme, and about its phylogenetic origin.  相似文献   

12.

Background  

Histone protein synthesis is essential for cell proliferation and required for the packaging of DNA into chromatin. In animals, histone proteins are provided by the expression of multicopy replication-dependent histone genes. Histone mRNAs that are processed by a histone-specific mechanism to end after a highly conserved RNA hairpin element, and lack a poly(A) tail. In vertebrates and Drosophila, their expression is dependent on HBP/SLBP that binds to the RNA hairpin element. We showed previously that these cis and trans acting regulators of histone gene expression are conserved in C. elegans. Here we report the results of an investigation of the histone mRNA 3' end structure and of histone gene expression during C. elegans development.  相似文献   

13.

Background  

Short hairpin RNA (shRNA) encoded within an expression vector has proven an effective means of harnessing the RNA interference (RNAi) pathway in mammalian cells. A survey of the literature revealed that shRNA vector construction can be hindered by high mutation rates and the ensuing sequencing is often problematic. Current options for constructing shRNA vectors include the use of annealed complementary oligonucleotides (74 % of surveyed studies), a PCR approach using hairpin containing primers (22 %) and primer extension of hairpin templates (4 %).  相似文献   

14.
Thermodynamic parameters are reported for duplex formation of 48 self-complementary RNA duplexes containing Watson–Crick terminal base pairs (GC, AU and UA) with all 16 possible 3′ double-nucleotide overhangs; mimicking the structures of short interfering RNAs (siRNA) and microRNAs (miRNA). Based on nearest-neighbor analysis, the addition of a second dangling nucleotide to a single 3′ dangling nucleotide increases stability of duplex formation up to 0.8 kcal/mol in a sequence dependent manner. Results from this study in conjunction with data from a previous study [A. S. O'Toole, S. Miller and M. J. Serra (2005) RNA, 11, 512.] allows for the development of a refined nearest-neighbor model to predict the influence of 3′ double-nucleotide overhangs on the stability of duplex formation. The model improves the prediction of free energy and melting temperature when tested against five oligomers with various core duplex sequences. Phylogenetic analysis of naturally occurring miRNAs was performed to support our results. Selection of the effector miR strand of the mature miRNA duplex appears to be dependent upon the identity of the 3′ double-nucleotide overhang. Thermodynamic parameters for 3′ single terminal overhangs adjacent to a UA pair are also presented.  相似文献   

15.
MicroRNAs (miRNAs) are small regulatory RNAs that are essential in all studied metazoans. Research has focused on the prediction and identification of novel miRNAs, while little has been done to validate, annotate, and characterize identified miRNAs. Using Illumina sequencing, ~20 million small RNA sequences were obtained from Caenorhabditis elegans. Of the 175 miRNAs listed on the miRBase database, 106 were validated as deriving from a stem-loop precursor with hallmark characteristics of miRNAs. This result suggests that not all sequences identified as miRNAs belong in this category of small RNAs. Our large data set of validated miRNAs facilitated the determination of general sequence and structural characteristics of miRNAs and miRNA precursors. In contrast to previous observations, we did not observe a preference for the 5' nucleotide of the miRNA to be unpaired compared to the 5' nucleotide of the miRNA*, nor a preference for the miRNA to be on either the 5' or 3' arm of the miRNA precursor stem-loop. We observed that steady-state pools of miRNAs have fairly homogeneous termini, especially at their 5' end. Nearly all mature miRNA-miRNA* duplexes had two nucleotide 3' overhangs, and there was a preference for a uracil in the first and ninth position of the mature miRNA. Finally, we observed that specific nucleotides and structural distortions were overrepresented at certain positions adjacent to Drosha and Dicer cleavage sites. Our study offers a comprehensive data set of C. elegans miRNAs and their precursors that significantly decreases the uncertainty associated with the identity of these molecules in existing databases.  相似文献   

16.
17.
Gwack Y  Yoo H  Song I  Choe J  Han JH 《Journal of virology》1999,73(4):2909-2915
Hepatitis G virus (HGV) nonstructural protein 3 (NS3) contains amino acid sequence motifs typical of ATPase and RNA helicase proteins. In order to examine the RNA helicase activity of the HGV NS3 protein, the NS3 region (amino acids 904 to 1580) was fused with maltose-binding protein (MBP), and the fusion protein was expressed in Escherichia coli and purified with amylose resin and anion-exchange chromatography. The purified MBP-HGV/NS3 protein possessed RNA-stimulated ATPase and RNA helicase activities. Characterization of the ATPase and RNA helicase activities of MBP-HGV/NS3 showed that the optimal reaction conditions were similar to those of other Flaviviridae viral NS3 proteins. However, the kinetic analysis of NTPase activity showed that the MBP-HGV/NS3 protein had several unique properties compared to the other Flaviviridae NS3 proteins. The HGV NS3 helicase unwinds RNA-RNA duplexes in a 3'-to-5' direction and can unwind RNA-DNA heteroduplexes and DNA-DNA duplexes as well. In a gel retardation assay, the MBP-HGV/NS3 helicase bound to RNA, RNA/DNA, and DNA duplexes with 5' and 3' overhangs but not to blunt-ended RNA duplexes. We also found that the conserved motif VI was important for RNA binding. Further deletion mapping showed that the RNA binding domain was located between residues 1383 and 1395, QRRGRTGRGRSGR. Our data showed that the MBP-HCV/NS3 protein also contains the RNA binding domain in the similar domain.  相似文献   

18.

Background  

RNA interference (RNAi) is a regulatory mechanism conserved in higher eukaryotes. The RNAi pathway generates small interfering RNA (siRNA) or micro RNA (miRNA) from either long double stranded stretches of RNA or RNA hairpins, respectively. The siRNA or miRNA then guides an effector complex to a homologous sequence of mRNA and regulates suppression of gene expression through one of several mechanisms. The suppression of gene expression through these mechanisms serves to regulate endogenous gene expression and protect the cell from foreign nucleic acids. There is growing evidence that many viruses have developed in the context of RNAi and express either a suppressor of RNAi or their own viral miRNA.  相似文献   

19.
Synthetic shRNAs as potent RNAi triggers   总被引:19,自引:0,他引:19  
Designing potent silencing triggers is key to the successful application of RNA interference (RNAi) in mammals. Recent studies suggest that the assembly of RNAi effector complexes is coupled to Dicer cleavage. Here we examine whether transfection of optimized Dicer substrates results in an improved RNAi response. Dicer cleavage of chemically synthesized short hairpin RNAs (shRNAs) with 29-base-pair stems and 2-nucleotide 3' overhangs produced predictable homogeneous small RNAs comprising the 22 bases at the 3' end of the stem. Consequently, direct comparisons of synthetic small interfering RNAs and shRNAs that yield the same small RNA became possible. We found synthetic 29-mer shRNAs to be more potent inducers of RNAi than small interfering RNAs. Maximal inhibition of target genes was achieved at lower concentrations and silencing at 24 h was often greater. These studies provide the basis for an improved approach to triggering experimental silencing via the RNAi pathway.  相似文献   

20.
The interaction of short nucleotide duplexes with bis-netropsins, in which netropsin fragments are linked in the tail-to-tail orientation via cis-diammineplatinum group (<--Nt-Pt(NH3)-Nt-->) or aliphatic pentamethylene chain (<--Nt-(CH2)5-Nt-->), has been studied. Both the bis-netropsins have been shown to bind to DNA oligomer 5'-CCTATATCC-3' (I) as a hairpin with parallel orientation of netropsin fragments in 1:1 stoichiometry. Monodentate binding has been detected upon binding of bis-netropsins to other duplexes of sequences 5'-CCXCC-3'--where X = TTATT (II), TTAAT (III), TTTTT (IV), and AATTT (V)--along with the binding of bis-netropsins as a hairpin. The formation of dimeric antiparallel motif between the halves of two bound bis-netropsin molecules has been observed in the complexes of <--Nt-(CH2)5-Nt--> with DNA oligomers IV and V. The ratio of binding constant of bis-netropsin as a hairpin (K2) to monodentate binding constant (K1) has been shown to correlate with the width and/or conformational lability of DNA in the binding site. The share of bis-netropsin bound as a hairpin decreases in the order: TATAT > TTATT > TTAAT > TTTTT > AATTT, whereas the contribution of monodentate binding rises. The minimal strong binding site for <--Nt-Pt(NH3)-Nt--> and <--Nt-(CH2)5-Nt--> binding as a hairpin has been found to be DNA duplex 5'-CGTATACG-3'.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号