首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Femtosecond-pulsed laser irradiation was found to initiate giant plasma membrane vesicle (GPMV) formation on individual cells. Laser-induced GPMV formation resulted from intracellular cavitation and did not require the addition of chemical stressors to the cellular environment. The viscosity, structure, and contents of laser-induced GPMVs were measured with fluorescence microscopy and single-particle tracking. These GPMVs exhibit the following properties: (1) GPMVs grow fastest immediately after laser irradiation; (2) GPMVs contain barriers to free diffusion of incorporated fluorescent beads; (3) materials from both the cytoplasm and surrounding media flow into the growing GPMVs; (4) the GPMVs are surrounded by phospholipids, including phosphatidylserine; (5) F-actin is incorporated into the vesicles; and (6) caspase activity is not essential for GPMV formation. The effective viscosity of 65 nm polystyrene nanoparticles within GPMVs ranged from 32 to 434 cP. The nanoparticle diffusion was commonly affected by relatively large, macromolecular structures within the bleb.  相似文献   

2.
Ternary lipid compositions in model membranes segregate into large-scale liquid-ordered (Lo) and liquid-disordered (Ld) phases. Here, we show μm-sized lipid domain separation leading to vesicle formation in unperturbed human HaCaT keratinocytes. Budding vesicles in the apical portion of the plasma membrane were predominantly labelled with Ld markers 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate, 1,1′-dilinoleyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate, 1,1′-didodecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate and weakly stained by Lo marker fluorescein-labeled cholera toxin B subunit which labels ganglioside GM1 enriched plasma membrane rafts. Cholesterol depletion with methyl-β-cyclodextrin enhanced DiI vesiculation, GM1/DiI domain separation and was accompanied by a detachment of the subcortical cytoskeleton from the plasma membrane. Based on these observations we describe the energetic requirements for plasma membrane vesiculation. We propose that the decrease in total ‘Lo/Ld’ boundary line tension arising from the coalescence of smaller Ld-like domains makes it energetically favourable for Ld-like domains to bend from flat μm-sized surfaces to cap-like budding vesicles. Thus living cells may utilize membrane line tension energies as a control mechanism of exocytic events.  相似文献   

3.
Summary This review describes the uptake of L-glutamate by well-characterized preparations of renal brush border (luminal) and baso-lateral membrane vesicles derived from the plasma membrane of the polar proximal tubular cell. L-glutamate is taken up against its concentration gradient, from both sides, by co-transport systems in which the movement of the amino acid into the cell is coupled to the influx of Na+ and efflux of K+ down their respective electrochemical gradients. The presence of these ion gradient-energized systems, specific for L-glutamate, may account for the exceedingly high intracellular concentration of this metabolically important amino acid in the renal tubule.  相似文献   

4.
A method for preparation of highly purified basolateral plasma membranes from rat kidney proximal tubular cells is reported. These membranes were assayed for the presence of vesicles as well as for their orientation. (Na+ + K+)-ATPase activity and [3H]ouabain binding studies with membranes treated with or without SDS revealed that the preparation consisted of almost 100% vesicles. The percentage of inside-out vesicles was found to be approx. 70%. This percentage was determined measuring the (Na+ + K+)-ATPase activity in K+-loaded vesicles and in membranes treated with or without trypsin and SDS. These membranes represent a very efficient tool to assay the correlation between active transport and ATPase activities in basolateral plasma membranes from rat kidney proximal tubular cells.  相似文献   

5.
A great puzzle in science is establishing a bottom up understanding of life by revealing how a collection of molecules gives rise to a living cell that can survive, communicate, and reproduce. In the confines of physics, chemistry, or material science laboratories where it possible to study complex interactions between molecules in a well-defined environment, our understanding of collective behavior is substantially developed. However, the environment in which molecules of a biological cell perform their functions is far from ideal or controllable. The environment inside cellular regions such as the plasma membrane is heterogeneous and dynamic, and functional molecules such as proteins are both dynamic and promiscuous, as they interact with countless other molecules. This makes it extremely challenging to grasp the inner mechanism of the cells, both experimentally and theoretically. On the bright side, this presents scientists with a colorful playground that waits to be explored: the mesoscopic world inside the cell. This review covers some of the recent experimental and theoretical developments in the study of molecular interactions in the plasma membrane, viewed as a heterogeneous medium where the number of reactants can be small, sometimes countable, and its implications for biological function.  相似文献   

6.
Summary The transport of L-alanine, a natural substrate of system A, across plasma membrane vesicle preparations has been studied in the early stages of rat DENA-PH hepato-carcinogenesis and in a very undifferentiated rat ascites hepatoma cell line (Yoshida AH-130) in the exponential and stationary phase of growth.Kinetic analyses indicated an increase of the Vmax value in DENA-PH-treated rats 30 h after partial hepatectomy as well as in exponential growing Yoshida ascites cells. In DENA-PH-treated rats the Km value was drastically reduced 7 and 60 days after surgery, when enzyme-altered hyperplastic and preneoplastic lesions were present in rat liver. Drastically reduced Km values were also found in Yoshida ascites cells.The results suggest that an altered alanine transporter might take place in liver plasma membranes from carcinogen-treated rats. This appears to occur also in an established tumor cell line, grown in vivo.Abbreviations AAF 2-acetylaminofluorene - DENA diethylnitrosamine - PH partial hepatectomy - PMSF phenylmethanesulfonyl fluoride  相似文献   

7.
Although plasma membrane (PM) cholesterol-rich and -poor domains have been isolated by subcellular fractionation, the real-time arrangement of cholesterol in such domains in living cells is still unclear. Therefore, dehydroergosterol (DHE), a naturally occurring fluorescent sterol, was incorporated into cultured L-cell fibroblasts. Two PM markers, the enhanced cyan fluorescent protein (ECFP-Mem) and 3'-dioctadecyloxacarbocyanine perchlorate [DiOC(18)(3)], were used to distinguish DHE localized at the PM of living cells. Spatial enrichment of DHE in the PM of living cells was visualized in real time by multiphoton laser scanning microscopy (MPLSM). Quantitative models and image-processing techniques were developed for statistical analysis of the distribution of DHE within the PM. The PM was resolved from the cytoplasm in a two-step process, and a smooth trajectory reference of the PM was refined by statistical regression and moments-based techniques. Thus, DHE intensities over the PM were measured following the major DHE intensity distributions. Spatial distributions of DHE within the PM were examined by a statistical inference technique, complete spatial randomness (CSR). For PM regions densely populated with DHE, the distributions of DHE exhibited statistical arrangements that were not spatial random (i.e., homogeneous Poisson process) or regular but, instead, exhibited strong cluster patterns. In effect, real-time MPLSM imaging data for the first time demonstrated that sterol enrichment occurred in clustered regions in the PM, consistent with the existence of cholesterol-rich domains in the plasma membrane of living cells.  相似文献   

8.
The efflux and exchange of glycine were studied in plasma membrane vesicles isolated from cultured glioblastoma cells. The mechanism of glycine translocation has been probed by comparing the ion dependence of net efflux to that of exchange. Dilution-induced efflux requires the simultaneous presence of internal sodium and chloride, while influx is dependent on the presence of these two ions on the outside (Zafra, F. and Giménez, C. (1986) Brain Res. 397, 108-116). Glycine efflux from the membrane vesicles is stimulated by external glycine, this exchange being dependent on external sodium, but not on external chloride. The parallelism observed in influx and efflux processes suggests that glycine is translocated in both directions across the membrane, probably by interacting with the carrier. To account for all the observed effects of external ions, glycine concentrations and membrane potential on glycine influx and efflux, a kinetic model of the Na+/Cl-/glycine cotransport system is discussed.  相似文献   

9.
Plasma membrane vesicles were prepared from isolated rat liver parenchymal cells. The transport of several amino acids was studied and found to be identical to that in membrane vesicles from whole liver tissue.  相似文献   

10.
J M Collins  W M Grogan 《Cytometry》1991,12(3):247-251
The transverse location normal to the bilayer surface of a series of n-(9-anthroyloxy) fatty acid probes, where n = 2, 3, 6, 7, 9, 12, and 16, was determined by fluorescence quenching measurements with a flow cytometer. We show that the anthroyloxy moieties of the probes locate at a graded series of depths in the outer leaflet of the plasma membrane of living HeLa cells, in a manner similar to that previously observed for model membrane systems, and mitochondria. For different n, the efficiency of quenching with an aqueous phase quencher, Cu+2, was 2 greater than or equal to 3 greater than 6 greater than or equal to 7 greater than 9 greater than 12 greater than 16. Therefore, flow cytometry permits use of these probes for measurements of dynamic parameters related to membrane fluidity at different depths in the plasma membranes of living cells.  相似文献   

11.
12.
Grecco HE  Schmick M  Bastiaens PI 《Cell》2011,144(6):897-909
Our understanding of the plasma membrane, once viewed simply as a static barrier, has been revolutionized to encompass a complex, dynamic organelle that integrates the cell with its extracellular environment. Here, we discuss how bidirectional signaling across the plasma membrane is achieved by striking a delicate balance between restriction and propagation of information over different scales of time and space and how underlying dynamic mechanisms give rise to rich, context-dependent signaling responses. In this Review, we show how computer simulations can generate counterintuitive predictions about the spatial organization of these complex processes.  相似文献   

13.
14.
The Placental plasma membrane vesicles are capable of accumulating up to 190 mM Ca2+. This is 24-fold higher than the external Ca2+ concentration.This process is dependent on ATP hydrolysis by the placental Ca2+-ATPase.The PiCa ratio is dependent on the external Ca2+ concentration, and reaches the value of 2 at 10 mM Ca2+.Phosphate (5 mM) can double Ca2+ uptake when measured in the presence of 5 mM Ca2+.Mg2+; increased Ca2+ uptake only at low Ca2+ concentrations, and had no significant effect at 5 mM Ca2+.  相似文献   

15.
The role of the plasma membrane in the regulation of lens fiber cell cytosolic Ca2+ concentration has been examined using a vesicular preparation derived from calf lenses. Calcium accumulation by these vesicles was ATP dependent, and was releasable by the ionophore A23187, indicating that calcium was transported into a vesicular space. Calcium accumulation was stimulated by Ca2+ (K1/2 = 0.08 microM Ca2+) potassium (maximally at 50 mM K+), and cAMP-dependent protein kinase; it was inhibited by both vanadate (IC50 = 5 microM) and the calmodulin inhibitor R24571 (IC50 = 5 microM), indicating that this pump was plasma-membrane derived and likely calmodulin dependent. Valinomycin, in the presence of K+, stimulated calcium uptake, suggesting that the calcium pump either countertransports K+, or is regulated in an electrogenic fashion. Inhibition of calcium uptake by selenite and p-chloromercuribenzoate demonstrates the presence of an essential -SH group(s) in this enzyme. Calcium release from calcium-filled lens vesicles was enhanced by Na+, demonstrating that these vesicles also contain a Na:Ca exchange carrier. p-Chloromercuribenzoate and p-chloromercuribenzoate sulfonic acid also promoted calcium release from calcium-filled vesicles, suggesting that this release, like calcium uptake, is in part mediated by a cysteine-containing protein. We conclude that lens fiber cell cytosolic Ca2+ concentration could be regulated by a number of plasma membrane processes. The sensitivity of both calcium uptake and release to -SH reagents has implications in lens cataract formation, where oxidation of lens proteins has been proposed to account for the elevated cytosolic Ca2+ in this condition.  相似文献   

16.
The observation of phase separation in intact plasma membranes isolated from live cells is a breakthrough for research into eukaryotic membrane lateral heterogeneity, specifically in the context of membrane rafts. These observations are made in giant plasma membrane vesicles (GPMVs), which can be isolated by chemical vesiculants from a variety of cell types and microscopically observed using basic reagents and equipment available in any cell biology laboratory. Microscopic phase separation is detectable by fluorescent labeling, followed by cooling of the membranes below their miscibility phase transition temperature. This protocol describes the methods to prepare and isolate the vesicles, equipment to observe them under temperature-controlled conditions and three examples of fluorescence analysis: (i) fluorescence spectroscopy with an environment-sensitive dye (laurdan); (ii) two-photon microscopy of the same dye; and (iii) quantitative confocal microscopy to determine component partitioning between raft and nonraft phases. GPMV preparation and isolation, including fluorescent labeling and observation, can be accomplished within 4 h.  相似文献   

17.
ATP-induced quenching of fluorescence of acridine orange (a pH probe) or Oxonol V (a potential difference probe) is evoked in turtle bladder membrane vesicles in suspending media of appropriate ionic composition and is insensitive to oligomycin, valinomycin, and ouabain. These effects are ascribed to a membrane-bound, ouabain-resistant ATPase which mediates an active electrogenic proton transport.  相似文献   

18.
Generation of electric (delta psi) and chemical (delta pH) components of electrochemical proton gradient delta muH+, in plasma membrane vesicles of Heracleum sosnovskyi phloem cells was investigated. ATP-dependent generation of delta psi at pH 6.0 in the presence of Mg2+ and K+ was established with the help of fluorescent probes AU+ and ANS-. Protonophore CCCP and proton ATPase inhibitor DCCD suppressed generation, whereas oligomycin, the inhibitor of mitochondrial ATPases did not affect it. Measurings of delta psi value indicated its oscillations within the limits from 10 to 60 mV. ATP-dependent generation of delta pH was established by means of fluorescent probe 9-AA. The effect was eliminated by CCCP and stimulated by K+, that may testify to the transformation of a part of delta psi into delta pH at antiport H+/K+. Existence of H+-ATPase in the plasma membranes of higher plant cells insuring generation of delta muH+ is supposed.  相似文献   

19.
Spectroscopic responses of the potentiometric probe 2-(4-(dimethylamino)styryl)-1-methylpyridinium iodide (DASPMI) were investigated in living cells by means of a time- and space-correlated single photon counting technique. Spatially resolved fluorescence decays from single mitochondria or only a very few organelles of XTH2 cells exhibited three-exponential decay kinetics. Based on DASPMI photophysics in a variety of solvents, these lifetimes were attributed to the fluorescence from the locally excited state, intramolecular charge transfer state, and twisted intramolecular charge transfer state. A considerable variation in lifetimes among mitochondria of different morphologies and within single cells was evident, corresponding to high physiological variations within single cells. Considerable shortening of the short lifetime component (τ1) under a high-membrane-potential condition, such as in the presence of ATP and/or substrate, was similar to quenching and a dramatic decrease of lifetime in polar solvents. Under these conditions τ2 and τ3 increased with decreasing contribution. Inhibiting respiration by cyanide resulted in a notable increase in the mean lifetime and a decrease in mitochondrial fluorescence. Increased DASPMI fluorescence under conditions that elevate the mitochondrial membrane potential has been attributed to uptake according to Nernst distributions, delocalization of π-electrons, quenching processes of the methyl pyridinium moiety, and restricted torsional dynamics at the mitochondrial inner membrane. Accordingly, determination of anisotropy in DASPMI-stained mitochondria in living cells revealed a dependence of anisotropy on the membrane potential. The direct influence of the local electric field on the transition dipole moment of the probe and its torsional dynamics monitor changes in mitochondrial energy status within living cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号