首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A non-hydrophobic sequence that contributes to the biogenesis of a transmembrane protein is termed a stop-transfer effector (STE). To examine the mechanism of STE-mediated stop-transfer, a series of fusion proteins were constructed containing variants of a putative STE from murine IgM fused to an otherwise translocated hydrophobic sequence. Unexpectedly, the fraction of molecules adopting transmembrane topology was insensitive to many amino acid substitutions within the STE sequence but varied directly with the number of negative charges. Furthermore, when present at the amino terminus of a reporter, mutants were observed that adopted type I (amino terminus lumenal) and type II (amino terminus cytoplasmic) transmembrane topologies, demonstrating that the STE sequence can be located at either side of the endoplasmic reticulum membrane. Our results suggest that recognition of a broad structural feature formed primarily by negatively charged residues within the STE halts translocation and triggers membrane integration, even when the negative charges end up on the cytoplasmic side of the membrane. Since functional STE sequences photocross-link to two membrane proteins not previously identified at the translocon, these unique proteins are presumably involved in recognizing STE sequences and/or facilitating STE function.  相似文献   

3.
Oleosin protein is targeted to oil bodies via the endoplasmic reticulum (ER) and consists of a lipid-submerged hydrophobic (H) domain that is flanked by cytosolic hydrophilic domains. We investigated the relationship between oleosin ER topology and its subsequent ability to target to oil bodies. Oleosin variants were created to yield differing ER membrane topologies and tagged with a reporter enzyme. Localisation was assessed by fractionation after transient expression in embryonic cells. Membrane-straddled topologies with N-terminal sequence in the ER lumen and C-terminal sequence in the cytosol were unable to target to oil bodies efficiently. Similarly, a translocated topology with only ER membrane and lumenal sequence was unable to target to oil bodies efficiently. Both topology variants accumulated proportionately higher in ER microsomal fractions, demonstrating a block in transferring from ER to oil bodies. The residual oil body accumulation for the inverted topology was shown to be because of partial adoption of native ER membrane topology, using a reporter variant, which becomes inactivated by ER-mediated glycosylation. In addition, the importance of H domain sequence for oil body targeting was assessed using variants that maintain native ER topology. The central proline knot motif (PKM) has previously been shown to be critical for oil body targeting, but here the arms of the H domain flanking this motif were shown to be interchangeable with only a moderate reduction in oil body targeting. We conclude that oil body targeting of oleosin depends on a specific ER membrane topology but does not require a specific sequence in the H domain flanking arms.  相似文献   

4.
The complete presequences of the nucleus-encoded precursors to two proteins, cytochrome c6 and the 30-kDa protein of the oxygen-evolving complex, that reside in the thylakoid lumen of the chloroplasts of Euglena gracilis are presented. Sorting of these proteins involves translocation across four membranes, the three-membraned chloroplast envelope and the thylakoid membrane. The tripartite presequences show the structure: signal sequence transit sequence signal sequence. Three hydrophobic domains become apparent: two of them correspond to signal sequences for translocation across the endoplasmic reticulum (ER) membrane and the thylakoid membrane, respectively, whereas the third constitutes the stop-transfer signal contained in the long stroma-targeting part of the tripartite presequence.  相似文献   

5.
Oleosin proteins from Arabidopsis assume a unique endoplasmic reticulum (ER) topology with a membrane-integrated hydrophobic (H) domain of 72 residues, flanked by two cytosolic hydrophilic domains. We have investigated the targeting and topological determinants present within the oleosin polypeptide sequence using ER-derived canine pancreatic microsomes. Our data indicate that oleosins are integrated into membranes by a cotranslational, translocon-mediated pathway. This is supported by the identification of two independent functional signal sequences in the H domain, and by demonstrating the involvement of the SRP receptor in membrane targeting. Oleosin topology was manipulated by the addition of an N-terminal cleavable signal sequence, resulting in translocation of the N terminus to the microsomal lumen. Surprisingly, the C terminus failed to translocate. Inhibition of C-terminal translocation was not dependent on either the sequence of hydrophobic segments in the H domain, the central proline knot motif or charges flanking the H domain. Therefore, the topological constraint results from the length and/or the hydrophobicity of the H domain, implying a general case that long hydrophobic spans are unable to translocate their C terminus to the ER lumen.  相似文献   

6.
Beaudoin F  Napier JA 《Planta》2002,215(2):293-303
A range of N- and C-terminal deletions of an oleosin from Helianthus annuus L. were used to study the endoplasmic reticulum (ER) targeting and membrane insertion of this protein both in vitro and in vivo in yeast ( Saccharomyces cerevisiae). Neither the N- nor the C-terminal hydrophilic domains are important for targeting and/or membrane insertion, with all the information required for these processes located within the central hydrophobic region of the protein. However, in vitro membrane-insertion experiments suggest that these domains are important for a correct topology of the oleosin within the ER membrane. The first half of the hydrophobic central domain, flanked by the positively charged N-terminal domain, is likely to function as a type-II signal-anchor (SAII) sequence. However, in the absence of the N-terminal 26 residues of this domain, the proline-knot region and the second half of this hydrophobic domain are sufficient to direct oleosin to the ER and to allow stable (but far less efficient) integration of the protein into the membrane. Taken together, these results indicate that oleosin contains more than one domain that is capable of interacting with the signal recognition particle to direct the protein to the ER membrane.  相似文献   

7.
Signal and stop-transfer sequences are the known determinants involved in topogenesis of integral membrane proteins. To study the characteristics of stop-transfer sequences, artificial proteins have been created on the DNA level based on the cDNA of the asialoglycoprotein receptor H1. Its internal signal/anchor domain initiates translocation of the downstream sequence across the endoplasmic reticulum membrane. The ability of several hydrophobic sequences inserted into the translocating polypeptide to stop further transfer was analyzed by translation of the fusion proteins using the wheat germ extract and rabbit reticulocyte lysate systems with dog pancreas microsomes. We discovered that some of the sequences behave differently with respect to translocation across the membrane depending on the translation system. Expression of one of the fusion proteins in fibroblasts showed that the reticulocyte lysate system reflects more closely the in vivo situation than the wheat germ system. Our results suggest that in a homologous system the translating ribosomes interact with the translocation machinery and influence the termination of polypeptide transfer by hydrophobic sequences.  相似文献   

8.
N Campos  A Boronat 《The Plant cell》1995,7(12):2163-2174
The enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) catalyzes the synthesis of mevalonate. This is the first committed step of isoprenoid biosynthesis. A common feature of all known plant HMGR isoforms is the presence of two highly conserved hydrophobic sequences in the N-terminal quarter of the protein. Using an in vitro system, we showed that the two hydrophobic sequences of Arabidopsis HMGR1S function as internal signal sequences. Specific recognition of these sequences by the signal recognition particle mediates the targeting of the protein to microsomes derived from the endoplasmic reticulum. Arabidopsis HMGR is inserted into the microsomal membrane, and the two hydrophobic sequences become membrane-spanning segments. The N-terminal end and the C-terminal catalytic domain of Arabidopsis HMGR are positioned on the cytosolic side of the membrane, whereas only a short hydrophilic sequence is exposed to the lumen. Our results suggest that the plant HMGR isoforms known to date are primarily targeted to the endoplasmic reticulum and have the same topology in the membrane. This reinforces the hypothesis that mevalonate is synthesized only in the cytosol. The possibility that plant HMGRs might be located in different regions of the endomembrane system is discussed.  相似文献   

9.
H P Wessels  M Spiess 《Cell》1988,55(1):61-70
To study the insertion of multispanning membrane proteins into the endoplasmic reticulum, we constructed novel proteins on the cDNA level by repeating, up to four times, the internal signal-anchor domain of the asialoglycoprotein receptor H1. Upon in vitro translation in the presence of microsomes, these polypeptides are indeed inserted as polytopic membrane proteins. The first hydrophobic domain functions as a signal and the second as a stop-transfer sequence, while the third initiates a second translocation process, halted again by the fourth. We were able to demonstrate that insertion occurs sequentially, starting with the first apolar segment from the amino terminus. By replacing the original signal-anchor domains by a mutant sequence not recognized by signal recognition particle (SRP), it was shown that only the first hydrophobic domain needs to be a signal sequence and that the second translocation event does not require SRP.  相似文献   

10.
A complete amino acid sequence for rat testis P-450(17)alpha was deduced from nucleotide analysis of a cDNA clone isolated from a rat Leydig cell cDNA library. This DNA clone, containing initiation and termination codons and a polyA tail, translated a polypeptide in COS-1 cells that expressed both 17 alpha-hydroxylase and 17,20 lyase activities. It exhibited significant similarity to the nucleotide and deduced amino acid sequences of the bovine and human cytochrome P-450(17)alpha, particularly with respect to the highly conserved regions and secondary structure. The P-450(17)alpha appears to be anchored to the membrane of the endoplasmic reticulum through two transmembrane regions, specifically the N terminal insertion peptide and the stop-transfer sequence. Hydropathic analysis indicates that the remainder of the C terminus is associated with the membrane through four hydrophobic clefts, including the putative steroid binding site.  相似文献   

11.
A number of studies using chimeric constructs made by fusing endoplasmic/sarcoplasmic reticulum calcium pump (SERCA) sequences with those of the plasma membrane located calcium pump (PMCA) have suggested that the retention/retrieval signal responsible for maintaining SERCA in the endoplasmic reticulum (ER) is located within the N-terminus of these pumps. Because of the difficulties in identifying the presence of constructs at the plasma membrane we have used a trans-Golgi network (TGN) marker to evaluate whether chimeric proteins are retained by the ER or have lost their retention/retrieval sequences and are able to enter the wider endomembrane system and reach the TGN. In this study, attempts to locate this retention/retrieval sequence demonstrate that the retention sequences are located not in the N-terminus, as previously suggested, but in the largely transmembranous C-terminal domain of SERCA. Further attempts to identify the precise retention/retrieval motif using SERCA1/PMCA3 chimeras were unsuccessful. This may be due to the fact that introducing SERCA1 sequences into the C-terminal PMCA3 sequence and vice versa disrupts the organization of the closely packed transmembrane helices leading to retention of such constructs by the quality control mechanisms of the ER. An alternative explanation is that SERCAs have targeting motifs that are non-linear, being made up of several segments of sequence to form a patch that interacts with the retrieval machinery.  相似文献   

12.
Abstract

A number of studies using chimeric constructs made by fusing endoplasmic/sarcoplasmic reticulum calcium pump (SERCA) sequences with those of the plasma membrane located calcium pump (PMCA) have suggested that the retention/retrieval signal responsible for maintaining SERCA in the endoplasmic reticulum (ER) is located within the N-terminus of these pumps. Because of the difficulties in identifying the presence of constructs at the plasma membrane we have used a trans-Golgi network (TGN) marker to evaluate whether chimeric proteins are retained by the ER or have lost their retention/retrieval sequences and are able to enter the wider endomembrane system and reach the TGN. In this study, attempts to locate this retention/retrieval sequence demonstrate that the retention sequences are located not in the N-terminus, as previously suggested, but in the largely transmembranous C-terminal domain of SERCA. Further attempts to identify the precise retention/retrieval motif using SERCA1/PMCA3 chimeras were unsuccessful. This may be due to the fact that introducing SERCA1 sequences into the C-terminal PMCA3 sequence and vice versa disrupts the organization of the closely packed transmembrane helices leading to retention of such constructs by the quality control mechanisms of the ER. An alternative explanation is that SERCAs have targeting motifs that are non-linear, being made up of several segments of sequence to form a patch that interacts with the retrieval machinery.  相似文献   

13.
Hepatitis C virus proteins are synthesized as a polyprotein cleaved by a signal peptidase and viral proteases. The behaviour of internal signal sequences at the C-terminus of the transmembrane domains of hepatitis C virus envelope proteins E1 and E2 is essential for the topology of downstream polypeptides. We determined the topology of these transmembrane domains before and after signal sequence cleavage by tagging E1 and E2 with epitopes and by analysing their accessibility in selectively permeabilized cells. We showed that, after cleavage by signal peptidase in the endoplasmic reticulum, the C-terminal orientation of these transmembrane domains changed from luminal to cytosolic. The dynamic behaviour of these transmembrane domains is unique and it is linked to their multifunctionality. By reorienting their C-terminus toward the cytosol and being part of a transmembrane domain, the signal sequences at the C-terminus of E1 and E2 contribute to new functions: (i) membrane anchoring; (ii) E1E2 heterodimerization; and (iii) endoplasmic reticulum retention.  相似文献   

14.
Nascent chains are known to be targeted to the endoplasmic reticulum membrane either by a signal recognition particle (SRP)-dependent co-translational or by an SRP-independent post-translational translocation route depending on signal sequences. Using a set of model and cellular proteins carrying an N-terminal signal anchor sequence of controlled hydrophobicity and yeast mutant strains defective in SRP or Sec62 function, the hydrophobicity-dependent targeting efficiency and targeting pathway preference were systematically evaluated. Our results suggest that an SRP-dependent co-translational and an SRP-independent post-translational translocation are not mutually exclusive for signal anchor proteins and that moderately hydrophobic ones require both SRP and Sec62 for proper targeting and translocation to the endoplasmic reticulum. Further, defect in Sec62 selectively reduced signal sequences inserted in an Nin-Cout (type II) membrane topology, implying an undiscovered role of Sec62 in regulating the orientation of the signal sequence in an early stage of translocation.  相似文献   

15.
Uncleaved signal-anchor sequences of membrane proteins inserted into the endoplasmic reticulum initiate the translocation of either the amino-terminal or the carboxyl-terminal polypeptide segment across the bilayer. Which topology is acquired is not determined by the apolar segment of the signal but rather by the hydrophilic sequences flanking it. To study the role of charged residues in determining the membrane topology, the insertion of mutants of the asialoglycoprotein receptor H1, a single-spanning protein with a cytoplasmic amino terminus, was analyzed in transfected COS-7 cells. When the charged amino acids flanking the hydrophobic signal were mutated to residues of opposite charge, half the polypeptides inserted with the inverted orientation. When, in addition, the amino-terminal domain of the mutant protein was truncated, approximately 90% of the polypeptides acquired the inverted topology. The transmembrane orientation appears to be primarily determined by the charges flanking the signal sequence but is modulated by the domains to be translocated.  相似文献   

16.
The topology of multispanning membrane proteins in the mammalian endoplasmic reticulum is thought to be dictated primarily by the first hydrophobic sequence. We analyzed the in vivo insertion of a series of chimeric model proteins containing two conflicting signal sequences, i.e., an NH(2)-terminal and an internal signal, each of which normally directs translocation of its COOH-terminal end. When the signals were separated by more than 60 residues, linear insertion with the second signal acting as a stop-transfer sequence was observed. With shorter spacers, an increasing fraction of proteins inserted with a translocated COOH terminus as dictated by the second signal. Whether this resulted from membrane targeting via the second signal was tested by measuring the targeting efficiency of NH(2)-terminal signals followed by polypeptides of different lengths. The results show that targeting is mediated predominantly by the first signal in a protein. Most importantly, we discovered that glycosylation within the spacer sequence affects protein orientation. This indicates that the nascent polypeptide can reorient within the translocation machinery, a process that is blocked by glycosylation. Thus, topogenesis of membrane proteins is a dynamic process in which topogenic information of closely spaced signal and transmembrane sequences is integrated.  相似文献   

17.
The N-terminal signal anchor of cytochrome P-450 2C1 mediates retention in the endoplasmic reticulum (ER) membrane of several reporter proteins. The same sequence fused to the C terminus of the extracellular domain of the epidermal growth factor receptor permits transport of the chimeric protein to the plasma membrane. In the N-terminal position, the ER retention function of this signal depends on the polarity of the hydrophobic domain and the sequence KQS in the short hydrophilic linker immediately following the transmembrane domain. To determine what properties are required for the ER retention function of the signal anchor in a position other than the N terminus, the effect of mutations in the linker and hydrophobic domains on subcellular localization in COS1 cells of chimeric proteins with the P-450 signal anchor in an internal or C-terminal position was analyzed. For the C-terminal position, the signal anchor was fused to the end of the luminal domain of epidermal growth factor receptor, and green fluorescent protein was additionally fused at the C terminus of the signal anchor for the internal position. In these chimeras, the ER retention function of the signal anchor was rescued by deletion of three leucines at the C-terminal side of its hydrophobic domain; however, deletion of three valines from the N-terminal side did not affect transport to the cell surface. ER retention of the C-terminal deletion mutants was eliminated by substitution of alanines for glutamine and serine in the linker sequence. These data are consistent with a model in which the position of the linker sequence at the membrane surface, which is critical for ER retention, is dependent on the transmembrane domain.  相似文献   

18.
19.
Resident proteins of the endoplasmic reticulum lumen are continuously retrieved from an early Golgi compartment by a receptor-mediated mechanism. The sorting or retention sequence on the endoplasmic reticulum proteins is located at the C-terminus and was initially shown to be the tetrapeptide KDEL in mammalian cells and HDEL in Saccharomyces cerevisiae. The carboxylesterases are a large family of enzymes primarily localized to the lumen of the endoplasmic reticulum. Retention sequences in these proteins have been difficult to identify due to atypical and heterogeneous C-terminal sequences. Utilizing the polymerase chain reaction with degenerate primers, we have identified and characterized the C-termini of four members of the carboxylesterase family from rat liver. Three of the carboxylesterases sequences contained C-terminal sequences (HVEL, HNEL or HTEL) resembling the yeast sorting signal which were reported to be non-functional in mammalian cells. A fourth carboxylesterase contained a distinct C-terminal sequence, TEHT. A full-length esterase cDNA clone, terminating in the sequence HVEL, was isolated and was used to assess the retention capabilities of the various esterase C-terminal sequences. This esterase was retained in COS-1 cells, but was secreted when its C-terminal tetrapeptide, HVEL, was deleted. Addition of C-terminal sequences containing HNEL and HTEL resulted in efficient retention. However, the C-terminal sequence containing TEHT was not a functional retention signal. Both HDEL, the authentic yeast retention signal, and KDEL were efficient retention sequences for the esterase. These studies show that some members of the rat liver carboxylesterase family contain novel C-terminal retention sequences that resemble the yeast signal. At least one member of the family does not contain a C-terminal retention signal and probably represents a secretory form.  相似文献   

20.
Hydrophobic stop-transfer sequences generally serve to halt the translocation of polypeptide chains across the endoplasmic reticulum membrane and become integrated as transmembrane α-helices. Using engineered glycosylation sites as topology reporters, we show that the length of the nascent chain between a hydrophobic segment and the carboxy terminus of the protein can affect stop-transfer efficiency. We also show that glycosylation sites located close to a protein's C terminus are modified in two distinct kinetic phases, one fast and one slow. Our findings suggest that membrane integration of a hydrophobic segment is not simply a question of thermodynamic equilibrium, but can be influenced by details of the translocation mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号