首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The marine bacterium Vibrio harveyi is a potential indicator organism for evaluating marine environmental pollution. The DnaK–DnaJ–GrpE chaperone machinery of V. harveyi has been studied as a model of response to stress conditions and compared to the Escherichia coli DnaK system. The genes encoding DnaK, DnaJ and GrpE of V. harveyi were cloned into expression vectors and grpE was sequenced. It was found that V. harveyi possesses a unique organization of the hsp gene cluster (grpE–gltP–dnaK–dnaJ), which is present exclusively in marine Vibrio species. In vivo experiments showed that suppression of the E. coli dnaK mutation by V. harveyi DnaK protein was weak or absent, while suppression of the dnaJ and grpE mutations by V. harveyi DnaJ and GrpE proteins was efficient. These results suggest higher species-specificity of the DnaK chaperone than the GrpE and DnaJ cochaperones. Proteins of the DnaK chaperone machinery of V. harveyi were purified to homogeneity and their efficient cooperation with the E. coli chaperones in the luciferase refolding reaction and in stimulation of DnaK ATPase activity was demonstrated. Compared to the E. coli system, the purified DnaK–DnaJ–GrpE system of V. harveyi exhibited about 20% lower chaperoning activity in the luciferase reactivation assay. ATPase activity of V. harveyi DnaK protein was at least twofold higher than that of the E. coli model DnaK but its stimulation by the cochaperones DnaJ and GrpE was significantly (10 times) weaker. These results indicate that, despite their high structural identity (approximately 80%) and similar mechanisms of action, the DnaK chaperones of closely related V. harveyi and E.coli bacteria differ functionally.  相似文献   

3.
Summary Heat shock proteins have been shown to be involved in many cellular processes in procaryotic and eucaryotic cells. Using an in vitro DNA replication assay, we show that DNA synthesis initiated at the chromosomal origin of replication of Escherichia coli (oriC) is considerably reduced in enzyme extracts isolated from cells bearing mutations in the dnaK and dnaJ genes, which code for heat shock proteins. Furthermore, unlike DNA synthesis in wild-type extracts, residual DNA synthesis in dnaK and dnaJ extracts is thermosensitive. Although thermosensitivity can be complemented by the addition of DnaK and DnaJ proteins, restoration of near wild-type replication levels requires supplementary quantities of purified DnaA protein. This key DNA synthesis initiator protein is shown to be adsorbed to DnaK affinity columns. These results suggest that at least one of the heat shock proteins, DnaK, exerts an effect on the initiation of DNA synthesis at the level of DnaA protein activity. However, our observation of normal oriC plasmid transformation ratios and concentrations in heat shock mutants at permissive temperatures would suggest that heat shock proteins play a role in DNA replication mainly at high temperatures or under other stressful growth conditions.  相似文献   

4.
5.
6.
7.
Summary A subset of Escherichia coli heat shock proteins, DnaK, DnaJ and GrpE were shown to be required for replication of mini-F plasmid. Strains of E. coli K12 carrying a missense mutation or deletion in the dnaK, dnaJ, or grpE gene were virtually unable to be transformed by mini-F DNA at the temperature (30° C) that permits cell growth. When excess amounts of the replication initiator protein (repE gene product) of mini-F were provided by means of a multicopy plasmid carrying repE, these mutant bacteria became capable of supporting mini-F replication under the same conditions. However, the copy number of a high copy number mini-F plasmid was reduced in these mutant bacteria as compared with the wild type in the presence of excess RepE protein. Furthermore, mini-F plasmid mutants that produce altered initiator protein and exhibit a very high copy number were able to replicate in strains deficient in any of the above heat shock proteins. These results indicate that the subset of heat shock proteins (DnaK, DnaJ and GrpE) play essential roles that help the functioning of the RepE initiator protein in mini-F DNA replication.  相似文献   

8.
The heat shock protein 70 (Hsp70/DnaK) gene of Bacillus licheniformis is 1,839 bp in length encoding a polypeptide of 612 amino acid residues. The deduced amino acid sequence of the gene shares high sequence identity with other Hsp70/DnaK proteins. The characteristic domains typical for Hsps/DnaKs are also well conserved in B. licheniformis DnaK (BlDnaK). BlDnaK was overexpressed in Escherichia coli using pQE expression system and the recombinant protein was purified to homogeneity by nickel-chelate chromatography. The optimal temperature for ATPase activity of the purified BlDnaK was 40°C in the presence of 100 mM KCl. The purified BlDnaK had a V max of 32.5 nmol Pi/min and a K M of 439 μM. In vivo, the dnaK gene allowed an E. coli dnaK756-ts mutant to grow at 44°C, suggesting that BlDnaK should be functional for survival of host cells under environmental changes especially higher temperature. We also described the use of circular dichroism to characterize the conformation change induced by ATP binding. Binding of ATP was not accompanied by a net change in secondary structure, but ATP together with Mg2+ and K+ ions had a greater enhancement in the stability of BlDnaK at stress temperatures. Simultaneous addition of DnaJ, GrpE, and NR-peptide (NRLLLTG) synergistically stimulates the ATPase activity of BlDnaK by 11.7-fold.  相似文献   

9.
10.
In the intracellular bacterium Brucella suis, the molecular chaperone DnaK was induced under heat-shock conditions and at low pH. Insertional inactivation of dnaK and dnaJ within the dnaK/J locus led to the conclusion that DnaK, but not DnaJ, was required for growth at 37°C in vitro. Viability of the dnaK null mutant was also greatly affected at low pH. Under conditions allowing intracellular multiplication, the infection of U937-derived phagocytes resulted in long-lasting DnaK induction in the wild-type bacteria. In infection experiments performed with both mutants at the reduced temperature of 30°C, the dnaK mutant of B. suis survived but failed to multiply within U937 cells, whereas the wild-type strain and the dnaJ mutant multiplied normally. Complementation of the dnaK mutant with the cloned dnaK gene restored growth at 37°C, increased resistance to acid pH, and increased intracellular multiplication. This is the first report of the effects of dnaK inactivation in a pathogenic species, and of the temperature-independent contribution of DnaK to intracellular multiplication of the pathogen B. suis.  相似文献   

11.
12.
Escherichia coli is widely employed to produce recombinant proteins because this microorganism is simple to manipulate, inexpensive to culture, and of short duration to produce a recombinant protein. However, contamination of molecular chaperone DnaK during purification of the recombinant protein is sometimes a problem, since DnaK sometimes has a negative effect on subsequent experiments. Previously, several efforts have been done to remove the DnaK contaminants by several sequential chromatography or washing with some expensive chemicals such as ATP. Here, we developed a simple and inexpensive method to express and purify recombinant proteins based on an E. coli dnaK-deletion mutant. The E. coli ΔdnaK52 mutant was infected by λDE3 phage to overexpress desired recombinant proteins under the control of T7 promoter. Using this host cell, recombinant hexa histidine-tag fused GrpE, which is well known as a co-chaperone for DnaK and to strongly interact with DnaK, was overexpressed and purified by one-step nickel affinity chromatography. As a result, highly purified recombinant GrpE was obtained without washing with ATP. The purified recombinant GrpE showed a folded secondary structure and a dimeric structure as previous findings. In vitro ATPase activity assay and luciferase-refolding activity assay demonstrated that the recombinant GrpE worked together with DnaK. Thus, this developed method would be rapid and useful for expression and purification of recombinant proteins which is difficult to remove DnaK contaminants.  相似文献   

13.
14.
Shewanella sp. Ac10 is a psychrotrophic bacterium isolated from the Antarctica that actively grows at such low temperatures as 0°C. Immunoblot analyses showed that a heat-shock protein DnaK is inducibly formed by the bacterium at 24°C, which is much lower than the temperatures causing heat shock in mesophiles such as Escherichia coli. We found that the Shewanella DnaK (SheDnaK) shows much higher ATPase activity at low temperatures than the DnaK of E. coli (EcoDnaK): a characteristic of a cold-active enzyme. The recombinant SheDnaK gene supported neither the growth of a dnaK-null mutant of E. coli at 43°C nor phage propagation at an even lower temperature, 30°C. However, the recombinant SheDnaK gene enabled the E. coli mutant to grow at 15°C. This is the first report of a DnaK supporting the growth of a dnaK-null mutant at low temperatures.  相似文献   

15.
16.
17.
The effect of mutations indnaK anddnaJ genes on the expression of two operons that are part of cysteine regulon was determined usingEscherichia coli strains harboringcysPTWA::lacZ andcysJIH::lacZ fusions. NulldnaJ, anddnaKdnaJ mutants were impaired in β-galactosidase expression from both fusions. Effecient complementation of this defect by wild-type alleles present on a low-copy number plasmid was achieved. The presence of the pMH224 plasmid coding for CysB* protein defective in DNA binding lowered β-galactosidase expression fromcysPTWA::lacZ fusion strain harboring wild-typednaKdnaJ alleles but did not diminish enzyme expression in ΔdnaJ and ΔdnaKdnaJ strains.  相似文献   

18.
The survival of lux-marked recombinants of Escherichia coli and Bacillus subtilis was studied in the rhizosphere of bean (Phaseolus vulgaris L.) and in bulk soil. The number of E. coli (pSB343) containing a complete lux operon did not differ significantly according to whether they were introduced into soil separately or together with a non-luminescent mutant Pseudomonas fluorescens R2fN. When genetically altered strains of E. coli and B. subtilis bearing a complete or an incomplete lux-reporter system were introduced into soil, the numbers of surviving cells were the same both in the rhizosphere and bulk soil. The insertion of lux genes into bacterial strains therefore does not affect their competitiveness and survival in the rhizosphere and bulk soil.The author is with the Department of Microbiology, University of Silesia, Jagielloska 28, 40-032 Katowice, Poland  相似文献   

19.
20.
Bacillus subtilis, likeEscherichia coli, possesses several sets of genes involved in the utilization of-glucosides. InE. coli, all these genes are cryptic, including the genes forming thebgl operon, thus leading to a Bgl phenotype. We screened forB. subtilis chromosomal DNA fragments capable of reverting the Bgl+ phenotype associated with anE. coli hns mutant to the Bgl wild-type phenotype. OneB. subtilis chromosomal fragment having this property was selected. It contained a putative Ribonucleic AntiTerminator binding site (RAT sequence) upstream from thebglP gene. Deletion studies as well as subcloning experiments allowed us to prove that the putativeB. subtilis bglP RAT sequence was responsible for the repression of theE. coli bgl operon. We propose that this repression results from the titration of the BglG antiterminator protein ofE. coli bgl operon by our putativeB. subtilis bglP RAT sequence. Thus, we report evidence for a new cross interaction between heterologous RAT-antiterminator protein pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号