首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study infers the higher-level cladistic relationships of linyphiid spiders from five genes (mitochondrial CO1, 16S; nuclear 28S, 18S, histone H3) and morphological data. In total, the character matrix includes 47 taxa: 35 linyphiids representing the currently used subfamilies of Linyphiidae (Stemonyphantinae, Mynogleninae, Erigoninae, and Linyphiinae (Micronetini plus Linyphiini)) and 12 outgroup species representing nine araneoid families (Pimoidae, Theridiidae, Nesticidae, Synotaxidae, Cyatholipidae, Mysmenidae, Theridiosomatidae, Tetragnathidae, and Araneidae). The morphological characters include those used in recent studies of linyphiid phylogenetics, covering both genitalic and somatic morphology. Different sequence alignments and analytical methods produce different cladistic hypotheses. Lack of congruence among different analyses is, in part, due to the shifting placement of Labulla , Pityohyphantes , Notholepthyphantes , and Pocobletus . Almost all combined analyses agree on the monophyly of linyphioids, Pimoidae, Linyphiidae, Erigoninae, Mynogleninae, as well as Stemonyphantes as a basal lineage within Linyphiidae. Our results suggest independent origins of the desmitracheate tracheal system in micronetines and erigonines, and that erigonines were primitively haplotracheate. Cephalothoracic glandular specializations of erigonines and mynoglenines apparently evolved independently. Subocular sulci of mynoglenines and lateral sulci (e.g. Bathyphantes ) evolved independently but glandular pores in the prosoma proliferated once. The contribution of different character partitions and their sensitivity to changes in traditional analytical parameters is explored and quantified.
 © The Willi Hennig Society 2009.  相似文献   

2.
Phylogenetic analysis of the Malacostraca (Crustacea)   总被引:13,自引:0,他引:13  
The Malacostraca comprises about 28 000 species with a broad disparity in morphology, anatomy, embryology, behaviour and ecology. The phylogenetic relationships of the major taxa are still under debate. Is the Leptostraca the sister group of the remaining Malacostraca, or is this taxon more closely related to other Crustacea? Does the Stomatopoda or the Bathynellacea represent the most basal taxon within the remaining taxa? Is the Peracarida monophyletic or are some peracarid taxa more closely related to other ‘caridoid’ taxa? Is the Thermosbaenacea part of the Peracarida or its sister group, and how much support is there for a taxon Amphipoda + Isopoda? To answer these questions a phylogenetic analysis of the Malacostraca combining different phylogenetic approaches was undertaken. In a first step, the monophyly of the Malacostraca including the Leptostraca is shown using the ‘Hennigian approach’. A computer cladistic analysis of the Malacostraca was carried out with NONA and PEE ‐WEE , based on 93 characters from morphology, anatomy and embryology. Nineteen higher malacostracan taxa are included in our analysis. Taxa whose representatives are exclusively fossils were not included. The Leptostraca was used as an operational out‐group. The present analysis supports the basal position of the Stomatopoda. Syncarida and Peracarida (including Thermosbaenacea) are supported as monophyletic, the Eucarida is not. Instead a sister‐group relationship is suggested between Euphausiacea and Peracarida (including Thermosbaenacea), with the Syncarida as the sister group to both taxa. Certain embryonic characters are interpreted as support for the monophyly of the Peracarida (without Thermosbaenacea) because convergences or reversals of these characters seem implausible. Within the Peracarida, the Mysidacea (Lophogastrida + Mysida) represents the sister group to the remaining taxa. A sister‐group relationship between Amphipoda and Isopoda is not supported.  相似文献   

3.
A cladistic study of Anllastrum, Angophora and Eucalyptus (Myrtaceae). Transformed cladistic; character compatibility; branch and bound, and Farris-Wagner methods gave similar solutions in a cladistic study of Arillastrum, Angophora and Eucalyptus. These analyses, based on morphological characters, indicate that Eucalyptus is a monophyletic group and that its sister taxon is Angophora.
Within Eucalyptus , subgenera Blakella and Corymbia are sister taxa to all other groups; subgenera Monocalyptus, Idiogenes and Gaubaea form a monophyletic group with subgenus Monocalyptus sister to subgenera Idiogenes and Gaubaea ; subgenera Symphyomyrtus and Telocalyptus together also form a monophyletic group and, with Eucalyptus similis (subgenus Eudesmia group 4), are sister to the Monocalyptus group. Eucalyptus subgenus Telocalyptus (4 species), Eucalyptus subgenus Idiogenes (1 species) and Eucalyptus subgenus Gaubaea (2 species) should not be recognized as subgenera and some individual species need further examination. Eucalyptus subgenus Eudesmia is a paraphyletic group.
Some characters are identified as parallelisms, e.g. axillary inflorescences, sepaline operculum, bristle glands, and clustered anthers. A more congruent interpretation of the single operculum of Eucalyptus subgenus Monocalyptus as at least partly petaline rather than solely sepaline in origin is suggested.
The area relationships for the taxa are concordant with those derived from geological and climatological information. New Caledonia is sister area to Australia, and within Australia southwestern Australia is sister area to south-eastern and north-eastern Australia.  相似文献   

4.
This phylogenetic analysis of 31 exemplar taxa treats the 12 families of Araneoidea (Anapidae, Araneidae, Cyatholipidae, Linyphiidae, Mysmenidae, Nesticidae, Pimoidae, Symphytognathidae, Synotaxidae, Tetragnathidae, Theridiidae, and Theridiosomatidae). The data set comprises 93 characters: 23 from male genitalia, 3 from female genitalia, 18 from cephalothorax morphology, 6 from abdomen morphology, 14 from limb morphology, 15 from the spinnerets, and 14 from web architecture and other behaviour. Criteria for tree choice were minimum length parsimony and parsimony under implied weights. The outgroup for Araneoidea is Deinopoidea (Deinopidae and Uloboridae). The preferred shortest tree specifies the relationships ((Uloboridae, Deinopidae) (Araneidae (Tetragnathidae ((Theridiosomatidae (Mysmenidae (Symphytognathidae, Anapidae))) ((Linyphiidae, Pimoidae) ((Theridiidae, Nesticidae) (Cyatholipidae, Synotaxidae))))))). The monophyly of Tetragnathidae (including metines and nephilines), the symphytognathoids, theridiid-nesticid lineage, and Synotaxidae are confirmed. Cyatholipidae are sister to Synotaxidae, not closely related to either the Araneidae or Linyphiidae, as previously suggested. Four new clades are proposed: the cyatholipoids (Cyatholipidae plus Synotaxidae), the 'spineless femur clade' (theridioid lineage plus cyatholipoids), the 'araneoid sheet web builders' (linyphioids plus the spineless femur clade), and the 'reduced piriform clade' (symphytognathoids plus araneoid sheet web builders). The results imply a coherent scenario for web evolution in which the monophyletic orb gives rise to the monophyletic araneoid sheet, which in turn gives rise to the gumfoot web of the theridiid-nesticid lineage. While the spinning complement of single pairs of glands does not change much over the evolution of the group, multiple sets of glands are dramatically reduced in number, implying that derived araneoids are incapable of spinning many silk fibers at the same time.  相似文献   

5.
Proseriate flatworms are common members of the interstitial benthic fauna worldwide, predominantly occupying marine environments. As minute animals, having relatively few characters useful for cladistic analysis, they have been difficult to present in a phylogenetic framework using morphology alone. Here we present a new morphological matrix consisting of 16 putatively homologous characters and two molecular data sets to investigate further this major group of free-living members of the Platyhelminthes. Complete 18S rDNA (representing 277 parsimony-informative characters) from 17 ingroup taxa and partial 28S rDNA spanning variable expansion regions D1 to D3 and D1 to D6 (representing 219 and 361 parsimony-informative characters, respectively) from 27 and 14 ingroup taxa, respectively, were determined and aligned as complementary data sets. Morphological and molecular data sets were analyzed separately and together to determine underlying phylogenetic patterns and to resolve conflict between published scenarios based on morphology alone. The monophyly of the Proseriata cannot be confirmed categorically with any of these data sets. However, the constituent taxa are confirmed as basal members of the Neoophora, and a sister group relationship with Tricladida is rejected. Similarly, the monophyly of one of the two subtaxa of the Proseriata, the Lithophora, could not be confirmed with molecules. Concerning intragroup relationships, we could reject one of the two phylogenetic trees formerly proposed, as well as the clade Otoplanidae + Coelogynoporidae. However, a clade Otoplanidae + Archimonocelididae + Monocelididae (to which the Monotoplanidae belong) was supported, and the position of the genus Calviria shifted from the Archimonocelididae to the Coelogynoporidae.  相似文献   

6.
 Sperm ultrastructure was studied in ten genera of the Porricondylinae (Cecidomyiidae). Sperm structure is remarkably simplified by the absence of the acrosome and the accessory tubules, as happens in all the cecidomyiid flies. All genera of the Porricondylinae show a peculiar 9+3 axonemal model except Diallactes, which retains the plesiomorphic condition of a 9+2 axoneme, and Winnertzia, which appears to have secondarily acquired a 9+0 model. A cladistic analysis of relevant sperm characters (based on the axonemal model, the number of mitochondrial derivatives and the size and structure of the centriolar adjunct) was performed to infer phylogenetic relationships among six tribes of the Porricondylinae. In this cladogram, the Porricondylini are the sister group to the Asynaptini, Heteropezini and Winnertzini and these four taxa form the sister group to the Dicerurini. The tribe Diallactini are regarded as the group with the most plesiomorphic characters within the family. Accepted: 15 March 1996  相似文献   

7.
水螨群总科阶元系统发育的支序分析 (蜱螨亚纲:水螨群)   总被引:1,自引:0,他引:1  
金道超 《昆虫学报》2000,43(3):309-317
对水螨群9总科进行了系统发育分析,支序分析选用了23个形态学特征和3个生物学特征。据分析结果所揭示的9总科间的系统发育关系和姐妹群关系,将水螨群9总科划分为5类:拟水螨类,含冥绒螨总科;始水螨类,含溪螨总科;真水螨类,含古水螨类和新水螨类;古水螨类,含水螨总科、盾水螨总科和皱喙螨总科;新水螨类,含刺触螨总科、腺水螨总科、湿螨总科和雄尾螨总科。类间姐妹群关系为:拟水螨类与始水螨类+真水螨类为姐妹群,始水螨类与真水螨类(古水螨类+新水螨类)为姐妹群,古水螨类与新水螨类为姐妹群。该文还就所提出的水螨群5类9总科的阶元排列建议与已有的观点进行了比较。  相似文献   

8.
No qualitative cladistic analysis has been performed previously for the subfamily classification of Pompilidae (Hymenoptera). In 1994 Shimizu proposed six subfamilies, but their validity and relationships remain inconclusive. The objective of this study was to perform a quantitative analysis of phylogenetic relationships of the Pompilidae, with emphasis on testing the validity of proposed subfamilies. Two cladistic analyses were performed based on morphological evidence. First, a maximum-parsimony analysis of Shimizu's original morphological data matrix (72 taxa by 54 characters) was conducted, with the data subjected to a heuristic search for the first time with phylogenetic software. The resulting strict-consensus cladogram yielded a monophyletic Ceropalinae that was sister group to a large polytomy containing members of the remaining five subfamilies. In a second analysis, several of Shimizu's characters were re-examined, and new characters and more taxa were added to the data set. Terminal taxa were coded as species rather than as generic abstractions, and 20 additional morphological characters were introduced. The analysis was based on 77 morphological characters derived from the adults of 84 taxa. This second analysis suggested that Notocyphinae sensu Shimizu (1994) was nested within Pompilinae and that Epipompilinae sensu Shimizu (1994) was nested within Ctenocerinae; neither should retain their status as a separate subfamily. Lastly, Chirodamus s .s., which historically has been a member of the Pepsinae, is placed within the Pompilinae with reservations rather than erecting a new subfamily. After these allowances were made, a strict consensus tree gave the following relationships: (Ceropalinae + (Pepsinae + (Ctenocerinae + Pompilinae))).  相似文献   

9.
This paper reviews progress in developmental biology and phylogenyof the Nemertea, a common but poorly studied spiralian taxonof considerable ecological and evolutionary significance. Analysesof reproductive biology (including calcium dynamics during fertilizationand oocyte maturation), larval morphology and development anddevelopmental genetics have significantly extended our knowledgeof spiralian developmental biology. Developmental genetics studieshave in addition provided characters useful for reconstructingmetazoan phylogeny. Reinvestigation of the cell lineage of Cerebratuluslacteus using fluorescent tracers revealed that endomesodermforms from the 4d cell as in other spiralians and that ectomesodermis derived from the 3a and 3b cells as in annelids, echiuransand molluscs. Studies examining blastomere specification showthat cell fates are established precociously in direct developersand later in indirect developers. Morphological characters usedto estimate the phylogenetic position of nemerteans are criticallyre-evaluated, and cladistic analyses of morphology reveal thatconflicting hypotheses of nemertean relationships result becauseof different provisional homology statements. Analyses thatinclude disputed homology statements (1, gliointerstitial cellsystem 2, coelomic circulatory system) suggest that nemerteansform the sister taxon to the coelomate spiralian taxa ratherthan the sister taxon to Platyhelminthes. Analyses of smallsubunit rRNA (18S rDNA) sequences alone or in combination withmorphological characters support the inclusion of the nemerteansin a spiralian coelomate clade nested within a more inclusivelophotrochozoan clade. Ongoing evaluation of nemertean relationshipswith mitochondrial gene rearrangements and other molecular charactersis discussed.  相似文献   

10.
Abstract  Using the Hennig 86 phylogenetic analysis program to analyse the taxa in genera related to Condeellum , the phylogenetic relationships among the species are schemed on the basis of potential synapomorphies of the adults, represented by 16 characters. The character evolution and the route of dispersal are also discussed. The cladistic biogeographic analysis is performed. The basal taxon Condeellum exhibits an Indo-Pacific distribution and the sister group Neocondeellum species exhibit a collective Oriental and Holarctic distribution. The distribution patterns and the vicariance events occurred in those areas are hypothesized.  相似文献   

11.
应用HENNIG86系统发生分析程序,选择出成虫的有代表性的16个共同衍征,分析了与康蚖属相关各属的各个种类,得出了该类群的相关系统树。同时对特征的演化以及其扩散途径等也进行了讨论。文中还应用Page 1993的COMPONENT程序进行了生物地理学的分析;得到种类—地区支序图。其中康蚖属表现为典型的印度—太平洋分布型,而其姐妹群新康蚖属则兼有东洋区和全北区的分布型。至于分布地区的相互关系和在这些地区的分衍替代事件的发生等问题也作了初步的假想。  相似文献   

12.
Although trogons (Aves, Trogonidae) are well characterized by the possession of heterodactyl feet, their phylogenetic relationships to other extant birds still are only poorly understood. Molecular studies did not show conclusive results and there are amazingly few comparative studies of the anatomy of trogons. Virtually the only hypothesis on trogon relationships that was supported with derived morphological characters is a sister group relationship to alcediniform birds (bee-eaters, kingfishers, and allies), which share a derived morphology of the columella (ear-ossicle) with trogons. However, in this study a very similar columella is reported for the oilbird (Steatornithidae) and additional previously unrecognized derived osteological characters are presented, which are shared by trogons and oilbirds. A numerical cladistic analysis of 28 morphological characters also resulted in monophyly of Trogonidae and Steatornithidae, although the corresponding node was not retained in a bootstrap analysis.  相似文献   

13.
中国慈姑属系统发育的研究   总被引:2,自引:0,他引:2  
本文研究了中国慈姑属植物间的系统发育关系。选取了12个与该属系统发育有较重要关系的特征,将8个已知分类群与外类群刺果泽泻属进行了比较。应用数量分支分析的Farris-Wagner方法,建立了中国慈姑属系统发育分支图。讨论了各分类群间的系统发育关系、该属起源和数量分支分析方法等问题。  相似文献   

14.
Phylogenetic relationships among members of the family Belidae (Curculionoidea) were reconstructed through cladistic analysis using 58 characters and 17 terminals. The characters were from larval morphology (30), adult morphology (25) and biology regarding larval host-plants and feeding habits (three). They were scored for exemplar taxa in 17 genera, representing different belid subfamilies and tribes, plus two outgroup taxa in Megalopodidae and Nemonychidae. The sampled genera included all those for which larval and adult information is available, and two known only from adults. New information on the larvae and biology of two oxycorynines is provided. These are the Chilean Oxycraspedus cribricollis , whose larvae live in decayed female strobili of the gymnosperm Araucaria araucana , and Hydnorobius hydnorae from Argentina, whose larvae, described and illustrated in the present paper, develop inside the flower and fruit bodies of Prosopanche americana (Hydnoraceae), a root-parasitic angiosperm. The relationships proposed by the single optimal cladogram resulting from simultaneous analysis of all taxa and characters are recovered by one of three optimal cladograms based on the larval data set alone. The cladogram justifies a revised classification of Belidae in two sister subfamilies: Belinae (with tribes Pachyurini, Agnesiotidini and Belini) and Oxycoryninae (with tribes Oxycorynini and Aglycyderini). It summarizes larval and adult synapomorphies defining the family Belidae, subfamilies and tribes. Based on the phylogenetic tree, the evolution of biological traits is traced. Larval development in vegetative organs of conifers is ancestral in Belidae. A shift to reproductive structures characterizes the Oxycorynini, a habit which was conserved while several shifts to distantly related host-plant groups occurred.  相似文献   

15.
A phylogenetic analysis of 123 morphological characters of basal waterfowl (Aves: Anseriformes) and other selected avian orders confirmed that the screamers (Anhimae: Anhitn-idae) are the sister-group of other waterfowl (Anseres), and that the magpie goose (Anseranatidae: Anseranas semipalmata) is the sister group of other modern waterfowl exclusive of screamers (Anatidae sensu stricto). The analysis also supports the traditional hypothesis of the gallinaceous birds (Galliformes) as the sister group of the Anseriformes. Presbyornis, a fossil from the early Eocene of Wyoming and averred by Olson & Feduccia as showing that the Anseriformes were derived from shorebirds (Charadriiformes), was found to represent the sister group of the Anatidae. Associated hypotheses by Olson & Feduccia concerning the implications of Presbyornis for the phylogenetic relationships of flamingos (Phoenicopteriformes), the position of the Anhimidae within the waterfowl, relationships among modern Anatidae, and a plausible evolutionary scenario for waterfowl also are rejected. Analyses revealed that cranial characters were critical to the establishment of the Galliformes as the sister group of the Anseriformes; exclusion of the Anhimidae, especially in combination with Anseranas, also undermined the support for this inference. Placement of Presbyornis as the sister group of the Anatidae casts doubt on the role suggested by Feduccia of ‘transitional shorebirds' in the origin of modern avian orders, and calls into question the concept of ‘fossil mosaics’. The phylogenetic hypothesis is used to reconstruct an evolutionary scenario for selected ecomorphological characters in the galliform-anseriform transition, to predict the most parsimonious states of these characters for Presbyornis, and to propose a phylogenetic classification of the higher-order taxa of waterfowl. This re-examination of Presbyornis also is used to exemplify the fundamental methodological shortcomings of the intuitive approach to the reconstruction of phylogenetic relationships.  相似文献   

16.
Plotopterids (Aves: Plotopteridae) are extinct wing-propelled diving birds which exhibit a strikingly similar wing morphology to penguins (Spheniscidae), but also share derived characters with 'pelecaniform' birds that are absent in penguins. The similarities between Plotopteridae and Spheniscidae have hitherto been attributed to convergence, and plotopterids were considered to be most closely related to the 'pelecaniform' Phalacrocoracidae (cormorants) and Anhingidae (anhingas). However, here I show that assignment of plotopterids to 'pelecaniform' birds does not necessarily preclude them from being the sister taxon of penguins. Cladistic analysis of 68 morphological characters resulted in sister group relationship between Plotopteridae and Spheniscidae, and the clade (Plotopteridae + Spheniscidae) was shown to be the sister taxon of the Suloidea, i.e. a clade including Sulidae (boobies and gannets), Phalacrocoracidae, and Anhingidae. Derived characters are discussed which support this novel hypothesis. Paedomorphosis probably accounts for the absence of derived characters in penguins that are shared by Plotopteridae and members of the Steganopodes. Plotopterids exemplify the importance of fossil birds for analyzing the phylogenetic relationships of modern taxa that exhibit a highly apomorphic morphology.  相似文献   

17.
The spider genus Weintrauboa new genus (Araneae, Pimoidae) is described to place two species of pimoids from Japan and adjacent islands that were formerly classified in the linyphiid genus Labulla . Weintrauboa contortipes (Karsch) new comb., the type species, and W. chikunii (Oi) new comb. are redescribed. Parsimony analysis of morphological characters provides robust support for the monophyly of the genus Weintrauboa and corroborates the monophyly of Pimoa , Pimoidae, and the clade Linyphiidae plus Pimoidae. New diagnoses for Pimoa and Pimoidae are provided.  © 2003 The Linnean Society of London, Zoological Journal of the Linnean Society , 2003, 139 , 261–281  相似文献   

18.
在已有比较形态学研究的基础上 ,本文选择了 1 9个性状 ,利用 PAUP程序 ,以支序分析探讨了小车蝗属昆虫的种间系统发育关系。结果红胫小车蝗 ( 1 )与黄胫小车蝗 ( 2 )的亲缘关系很近 ,是 1对姐妹群 ,亚洲小车蝗 ( 3)、黑条小车蝗 ( 4 )、红翅小车蝗( 5)、隆叉小车蝗 ( 6)这 4个种之间的相互关系比较近 ,它们的亲缘关系可表示为 :( ( ( 3,6) 4) 5) ,而台湾小车蝗 ( 7)与其它种类的亲缘关系均较远。  相似文献   

19.
为初步探讨园蛛总科内网型不同的蜘蛛间分子系统发生关系,测定了9种蜘蛛核18S rRNA基因的部分序列。联合GenBank中的2种蜘蛛18S rRNA基因序列数据,用NJ法、MP法和ML法重建分子系统树,结果表明:(1)织圆网的园蛛科和肖蛸科蜘蛛在园蛛总科中不是姊妹群;(2)不织圆网的球蛛科和皿蛛科也不是单系发生,证实了皿蛛片网和球蛛网独立起源的观点;(3)皿蛛科蜘蛛的分子系统发生地位与肖蛸科较近、而与园蛛科较远,这表明皿蛛科和园蛛科问雄性触肢结构的相似性很可能是类似而不是同源相似。  相似文献   

20.
Abstract.  The phylogeny of Iberian Aphodiini species was reconstructed based on morphology. Wing venation, mouthparts, male and female genitalia, and external morphology provided ninety-four characters scored for ninety-three Aphodiini species. Phylogenetic analyses were based on maximum parsimony and Bayesian inference criteria. Maximum parsimony consensus trees recovered Acrossus species as a sister group of the remaining Aphodiini, followed by two other branches, one including Neagolius , Plagiogonus , Ahermodontus and Ammoecius species, and the other including Oxyomus , Nimbus , Heptaulacus and Euheptaulacus species. The remaining studied taxa clustered in an unresolved group. Bayesian inference trees recovered Acrossus as the sister group of the remaining Iberian Aphodiini, followed by Colobopterus erraticus and the rest of the Iberian Aphodiini, but this latter branch was unresolved. The general lack of statistical support for the inferred phylogenetic relationships at terminal nodes using both maximum parsimony and Bayesian inference suggests that variation in morphological characters useful for phylogenetic inference in the present study is small, perhaps as a consequence of a radiation event occurring at the origin of the tribe. A probable evolutionary pattern for Aphodiini is proposed which infers six groups, namely Acrossian, Ammoecian, Oxyomian, Aphodian s.str., Colobopteran and Aphodian s.l. clades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号