首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rat brain contains two receptor systems for corticosterone (CORT): the glucocorticoid (GR) and corticosterone or mineralocorticoid-like (CR) receptor sites. We have studied the localization of these receptors by in vitro autoradiography and by in vitro cytosol binding assays in microdissected brain areas. In vitro autoradiography revealed that CR receptor sites are almost entirely restricted to the septal-hippocampal complex, whereas the presence of GR extends throughout the brain. Highest levels of GR are present in the lateral septum, hippocampal, cortical and thalamic regions and the paraventricular nucleus. In vitro determination of binding of 3H-labelled steroids to CR and GR in cytosol of "punched out" brain tissue revealed a similar neuroanatomical distribution as observed with the autoradiographic analysis. In addition, it was found that CORT binds to CR (KD approximately 0.5 nM) with 5-10-fold higher affinity than to GR (KD approximately 2.5-5 nM).  相似文献   

2.
W Sutanto  E R de Kloet 《Life sciences》1988,43(19):1537-1543
In vitro cytosol binding assays have shown the properties of binding of a novel steroid, ZK91587 (15 beta, 16 beta-methylene-mexrenone) in the brain of rats. Scatchard and Woolf analyses of the binding data reveal the binding of [3H] ZK91587 to the total hippocampal corticosteroid receptor sites with high affinity (Kd 1.9 nM), and low capacity (Bmax 17.3 fmol/mg protein). When 100-fold excess RU28362 was included simultaneously with [3H] ZK91587, the labelled steroid binds with the same affinity (Kd 1.8 nM) and capacity (Bmax 15.5 fmol/mg protein). Relative binding affinities (RBA) of various steroids for the Type I or Type II corticosteroid receptor in these animals are: Type I: ZK91587 = corticosterone (B) greater than cortisol (F); Type II: B greater than F much greater than ZK91587. In the binding kinetic study, ZK91587 has a high association rate of binding in the rat (20.0 x 10(7) M-1 min-1). The steroid dissociates following a one slope pattern (t 1/2 30 h), indicating, the present data demonstrate that in the rat hippocampus, ZK91587 binds specifically to the Type I (corticosterone-preferring/mineralocorticoid-like) receptor.  相似文献   

3.
The potential role of excitatory amino acids in the regulation of brain corticosteroid receptors was examined using systemic administration of kainic acid. Administration of kainic acid (5, 10, and 15 mg/kg) to 24-h adrenalectomized rats that were killed 3 h later produced large, dose-related decreases in glucocorticoid receptors (GR) in hippocampus (23-63%), frontal cortex (22-76%), and striatum (41-49%). Kainic acid did not decrease hypothalamic GR. Hippocampal mineralocorticoid receptors (MR) were also markedly decreased (50-71%) by kainic acid. Significant decreases in corticosteroid receptors could be detected as soon as 1 h after kainic acid (10 mg/kg) administration. Decreases in hippocampal, cortical, and hypothalamic GR as well as hippocampal MR were observed 24 h after administration of kainic acid (10 mg/kg) to adrenalectomized rats. Kainic acid (10 mg/kg) also significantly decreased hippocampal GR and MR as well as GR in the other three brain regions when administered to adrenal-intact rats that were subsequently adrenalectomized and killed 48 h after drug administration. The kainic acid-induced decreases in hippocampal GR and MR binding were due to decreases in the maximum number of binding sites (Bmax) with no change in the apparent affinity (KD). Kainic acid when added in vitro did not displace the GR and MR radioligands from their respective receptors. These studies demonstrate that excitatory amino acids play a prominent role in the regulation of hippocampal corticosteroid receptors. In addition, the data indicate that noncorticosterone factors are involved in corticosteroid receptor plasticity.  相似文献   

4.
The binding of 3H-naltrexone, an opiate receptor antagonist, to membranes of discrete brain regions and spinal cord of 10 week old spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats was determined. The brain regions examined were hypothalamus, amygdala, hippocampus, corpus striatum, pons and medulla, midbrain and cortex. 3H-Naltrexone bound to membranes of brain regions and spinal cord at a single high affinity site with an apparent dissociation constant value of 3 nM. The highest density of 3H-naltrexone binding sites were in hippocampus and lowest in the cerebral cortex. The receptor density (Bmax value) and apparent dissociation constant (Kd value) values of 3H-naltrexone to bind to opiate receptors on the membranes of amygdala, hippocampus, corpus striatum, pons and medulla, midbrain, cortex and spinal cord of WKY and SHR rats did not differ. The Bmax value of 3H-naltrexone binding to membranes of hypothalamus of SHR rats was 518% higher than WKY rats but the Kd values in the two strains did not differ. It is concluded that SHR rats have higher density of opiate receptors labeled with 3H-naltrexone in the hypothalamus only, in comparison with WKY rats, and that such a difference in the density of opiate receptors may be related to the elevated blood pressure in SHR rats.  相似文献   

5.
Mineralocorticoid activity of glycyrrhetinic acid (GR) was studied in vivo (electrical potential difference in rat rectum) and in vitro (brush border Mg2+-HCO3- ATPase in rat small intestine, kidney cytosol binding of GR with and without RU-28362, anti-glucocorticoid compound) in order to clarify the mechanism of mineralocorticoid-like activity of GR. Scatchard analysis of [3H]aldosterone showed that Kd of higher affinity site (type I) 6.0 X 10(-9) M, Bmax 1.0 X 10(-14) mol/mg protein, and Kd of lower affinity site (type II) 1.6 X 10(-7) M, Bmax 7.5 X 10(-14) mol/mg protein. GR competed for [3H]aldosterone binding sites in kidney cytosol at the concentration of 10(4) times as that of unlabeled aldosterone. RU-28362 displaced aldosterone binding curve, whereas GR binding kinetic was not affected by this compound. Adrenalectomy caused a significant fall in brush border Mg2+-HCO3- ATPase activity (75% reduction compared with the initial level) which was not restored by GR administration. Electrical potential differences in the adrenalecomized rats were significantly lower than those in the control rats, which did not increase after GR administration.  相似文献   

6.
Potential age-related differences in the response of Fischer 344 rats to subchronic treatment with diisopropylfluorophosphate (DFP) were evaluated in terms of brain cholinesterase (ChE) inhibition and muscarinic receptor sites. Male 3- and 24-month old rats were sc injected with sublethal doses of DFP (first dose 1.6, subsequent doses 1.1 mg/kg on alternate days) for 2 weeks and killed 48 hrs after the last treatment. In the cerebral cortex, hippocampus and striatum of control rats a significant age-related reduction of ChE and of maximum number of 3H-QNB binding sites (Bmax) was observed. The administration of DFP to senescent rats resulted in more pronounced and longer lasting syndrome of cholinergic stimulation, with marked body weight loss and 60% mortality. The percentage inhibition of brain ChE induced by DFP (over 80% in all regions) did not differ between young and senescent rats. As expected, in young rats DFP caused a significant decrease of Bmax (without apparent changes in affinity), which in the cerebral cortex reached about 40%. In the surviving senescent rats, the percentage decrease of Bmax due to DFP with respect to age-matched controls was very similar to that of young animals, especially in the cerebral cortex. Thus, there is great variability in the response of aged rats to DFP treatment, from total failure of adaptive mechanisms resulting in death to considerable muscarinic receptor plasticity. The data support the view that the ability of central neurotransmitter systems to compensate for pathological or xenobiotic induced insult is an essential part of the aging process.  相似文献   

7.
Characterization and Regulation of Insulin Receptors in Rat Brain   总被引:9,自引:7,他引:2  
An in vitro receptor binding assay, using filtration to separate bound from free [125I]insulin, was developed and used to characterize insulin receptors on membranes isolated from specific areas of rat brain. The kinetic and equilibrium binding properties of central receptors were similar to those of hepatic receptors. The binding profiles in all tissues were complex and were consistent with binding in multiple steps or to multiple sites. Similar binding properties were found among receptors in olfactory tubercle/bulb, cerebral cortex, hippocampus, striatum, hypothalamus, and cerebellum. High affinity [125I]insulin binding sites (KD = 3-11 nM) were distributed evenly between membranes isolated from P1 and P2 fractions of these brain areas, with the exception of the olfactory tubercle in which binding to P2 membranes was four-fold greater (Bmax = 150 fmol/mg protein). One difference between insulin receptors in brain and peripheral target tissues, however, was observed. Following exposure to 0.17 microM insulin for 3 h at 37 degrees C, the number of specific [125I]insulin binding sites on adipocytes decreased by 40%, while the number of binding sites on minces of cerebral cortex/olfactory tubercle remained constant. The results suggest that although the binding characteristics of central and peripheral insulin receptors are similar, these receptors do not appear to be regulated in the same manner.  相似文献   

8.
X J Wang  S G Fan  M F Ren  J S Han 《Life sciences》1989,45(2):117-123
Radio receptor assay (RRA) was adopted to analyse the influence of CCK-8 on 3H-etorphine binding to opiate receptors in rat brain synaptosomal membranes (P2). In the competition experiment CCK-8 (1pM to 1 microM) suppressed the binding of 3H-etorphine. This effect was completely reversed by proglumide at 1 microM. Rosenthal analysis for saturation revealed two populations of 3H-etorphine binding sites. CCK-8 (1pM to 1 microM) inhibited 3H-etorphine binding to the high affinity sites by an increase in Kd (up to +235%) and decrease in Bmax (up to -80%) without significant changes in the Kd and Bmax of the low affinity sites. This effect of CCK-8 (10nM) was also completely reversed by proglumide at 1 microM. Unsulfated CCK-8 (100pM to 1 microM) produced only a slight increase in Kd of the high affinity sites (+64%) without affecting Bmax. The results suggest that CCK-8 might be capable of suppressing the high affinity opioid binding sites via the activation of CCK receptor.  相似文献   

9.
Saturable [3H]-8OHDPAT binding to 5HT-1A receptors in membranes prepared from hippocampus and frontal cerebral cortex of alcohol-preferring P rats and of alcohol-nonpreferring NP rats has been compared. The Bmax values or densities of recognition sites for 5HT-1A receptors in both brain areas of the P rats are 39 and 131 percent, respectively, higher than those in the NP rats. The corresponding KD values are 38 and 44 percent lower in the P rats than in the NP rats, indicating higher affinities of the recognition sites for the 5HT-1A receptors in hippocampus and cerebral cortex of the P rats. These findings indicate either an enrichment of 5HT-1A receptor density during selective breeding for alcohol preference or an upregulation of 5HT-1A receptors developed as an adaptation to lower presynaptic concentrations of 5HT found in these brain areas of P rats as compared with the NP rats.  相似文献   

10.
Equilibrium binding of [3H]dihydromorphine was assayed in brain regions of young and aged male F344 rats. Young rats had significantly higher receptor densities than old rats in the frontal poles, anterior cortex, and striatum. In the frontal poles, the decline in receptor concentration with age was accompanied by a significant increase in the apparent affinity of dihydromorphine for receptors, which may be compensatory for the decrease in Bmax. This pattern of receptor alterations is different than that previously observed in aged female rats. Therefore, processes which underlie synaptic alterations with age may be different in males and females.  相似文献   

11.
M Ferrini  A F De Nicola 《Life sciences》1991,48(26):2593-2601
The effects of 1-4 days of estradiol (E2) treatment on type I and type II glucocorticoid receptors (GCR) were determined in cytosolic fractions from brain regions of ovariectomized rats. Four days after E2 administration, type I GCR increased in septum, amygdala, hypothalamus and hippocampus, but decreased in the anterior pituitary. Type II GCR increased in septum and hypothalamus only. For both receptor types, changes occurred earlier in septum (1 day) than in the other regions. The E2 increment was due to an increase in Bmax, without changes in Kd. The up-regulation of type II GCR by E2 was also confirmed immunocytochemically in four nuclei of the septal area. In a parallel study, E2 receptors were determined in nuclear and cytosol fractions from the same regions analyzed for GCR. In rats receiving E2, estrogen receptors decreased in cytosol and increased in nuclei from septum, amygdala, hypothalamus and anterior pituitary, but did not change in hippocampus. The results suggest that GCR in certain neuroendocrine regions are regulated by E2, without taking into account whether the areas involved contain high (anterior pituitary), moderate (septum, hypothalamus, amygdala) or low (hippocampus) levels of E2 receptors. Our model may shed light on sex differences in GCR and on E2 regulation of glucocorticoid action in brain and the pituitary.  相似文献   

12.
T V Dam  R Quirion 《Peptides》1986,7(5):855-864
[3H]Substance P ([3H]SP) was used to characterize substance P (SP) receptor binding sites in guinea pig brain using membrane preparations and in vitro receptor autoradiography. Curvilinear Scatchard analysis shows that [3H]SP binds to a high affinity site (Kd = 0.5 nM) with a Bmax of 16.4 fmol/mg protein and a low affinity site (Kd = 29.6 nM) with a Bmax of 189.1 fmol/mg protein. Monovalent cations generally inhibit [3H]SP binding while divalent cations substantially increased it. The ligand selectivity pattern is generally similar to the one observed in rat brain membrane preparation with SP being more potent than SP fragments and other tachykinins. However, the potency of various nucleotides is different with GMP-PNP greater than GDP greater than GTP. The autoradiographic distribution of [3H]SP binding sites shows that high amounts of sites are present in the hippocampus, striatum, olfactory bulb, central nucleus of the amygdala, certain thalamic nuclei and superior colliculus. The cortex is moderately enriched in [3H]SP binding sites while the substantia nigra contains only very low amounts of sites. Thus, the autoradiographic distribution of SP binding sites is fairly similar in both rat and guinea pig brain.  相似文献   

13.
14.
[3H]Zacopride displayed regional saturable specific binding to homogenates of human brain tissues, as defined by the inclusion of BRL43694 [endo-N-(9-methyl-9-azabicyclo[3.3.1]non-3-yl)-1-methylindazole-3- carboxamide] in the incubation media. Scatchard analysis of the saturation data obtained from amygdaloid and hippocampal tissues identified the binding as being of high affinity and to a homogeneous population of binding sites (KD = 2.64 +/- 0.75 and 2.93 +/- 0.41 nmol/L and Bmax = 55 +/- 7 and 44 +/- 9 fmol/mg of protein in the amygdala and hippocampus, respectively). 5-Hydroxytryptamine 3 (5-HT3) receptor agonists and antagonists competed for the [3H]zacopride binding site, competing with up to 40% of total binding with a similar rank order of affinity in both tissues; agents acting on various other neurotransmitter receptors failed to inhibit binding. Kinetic data revealed a fast association that was fully reversible (k+1 = 6.61 X 10(5) and 7.65 X 10(5)/mol/L/s and k-1 = 3.68 X 10(-3) and 3.45 X 10(-3)/s in the amygdala and hippocampus, respectively). It is concluded that [3H]zacopride selectively labels with high affinity 5-HT3 recognition sites in human amygdala and hippocampus and, if these binding domains represent 5-HT3 receptors, may provide the opportunity for 5-HT3 receptor antagonists to modify 5-HT function in the human brain.  相似文献   

15.
Selective changes of receptor binding in brain regions of aged rats   总被引:4,自引:0,他引:4  
Binding to several receptors was compared in brain regions of 3 and 21-23 month-old rats. In crude membrane preparations of aged rats the number of dopamine antagonist receptors in striatum was much reduced (-53%). beta-Noradrenergic receptors (cortex) and benzodiazepine receptors (hippocampus and cerebellum) were less but significantly reduced and serotonergic receptors, alpha 1 noradrenergic receptors (both in cortex) and dopamine agonist receptors (striatum) were unchanged. For each receptor binding the KD values were the same in young and old animals. GABA receptor binding (hippocampus and cerebellum) evaluated at only one 3H-GABA concentration (8 nM) was similar in both groups when expressed per protein content but significantly reduced in aged rats when expressed per tissue wet weight because of the partial purification of the synaptic membranes used for 3H-GABA binding. In our experimental conditions age-related changes of specific binding sites in the central nervous system were selective for some receptors studied and did not seem to be due to general non-specific modification of brain tissue composition.  相似文献   

16.
W G Luttge  M E Rupp 《Steroids》1989,53(1-2):59-76
Adult female mice were adrenalectomized and ovariectomized and the concentration of Type I and Type II receptors in whole brain, kidney, and liver cytosol determined at various time thereafter by incubation with [3H]aldosterone (+ RU 26988 to prevent binding to Type II receptors) or [3H]dexamethasone, respectively. Type I receptor binding in brain was found to undergo a dramatic biphasic up-regulation, with levels six times that of intact levels by 24 h post-surgery and a doubling again by 4-8 days post-surgery. By 16 days, however, Type I specific binding had returned to intact levels. Similar, but less dramatic fluctuations were seen in kidney and liver, whereas much smaller fluctuations were seen for Type II receptors in all three tissues. In a follow-up study with Scatchard analyses we observed a similar transient up- and down-regulation in maximal binding for Type I, and to a lesser extent Type II receptors in all three tissues. As expected, the apparent binding affinity for both receptors increased after surgical removal of competing endogenous steroids. Radioimmunoassays revealed that plasma concentrations of corticosterone were reduced to near undetectable levels by 24 h post-surgery. A direct comparison of male and female mice revealed no sex-related differences in Type I receptor binding capacity fluctuations in brain cytosol after adrenalectomy-gonadectomy. Lastly, treatment with exogenous aldosterone or corticosterone was found to prevent adrenalectomy-gonadectomy-induced up-regulation of Type I and, to a lesser extent, Type II receptors in brain. Somewhat surprisingly, the potency of these two adrenocorticosteroids appeared to be very similar for both receptor types.  相似文献   

17.
The binding of [3H] DAMGO, a highly selective ligand for mu-opiate receptors, to membranes of discrete brain regions and spinal cord of 10 week old spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats was determined. The brain regions examined were hypothalamus, amygdala, hippocampus, corpus striatum, pons and medulla, midbrain and cortex. [3H] DAMGO bound to membranes of brain regions and spinal cord at a single high affinity site. The receptor density (Bmax value) and apparent dissociation constant (Kd value) of [3H] DAMGO to bind to membranes of hippocampus, corpus striatum, pons and medulla, cortex and spinal cord of WKY and SHR rats did not differ. The Bmax value of [3H] DAMGO in membranes of hypothalamus and midbrain of SHR rats was significantly higher than in WKY rats but the Kd values in the two strains did not differ. On the other hand, the Bmax value of [3H] DAMGO in membranes of amygdala of SHR rats was lower than that of WKY rats but the Kd values in the two strains were similar. It is concluded that SHR rats have higher density of mu-opiate receptors in hypothalamus and midbrain but lower density in amygdala in comparison with WKY rats, and that such differences in the distribution of mu-opiate receptors may be related to the elevated blood pressure in SHR rats.  相似文献   

18.
In studies from several laboratories evidence has been adduced that renal Type I (mineralocorticoid) receptors and hippocampal "corticosterone-preferring" high affinity glucocorticoid receptors have similar high affinity for both aldosterone and corticosterone. In all these studies the evidence for renal mineralocorticoid receptors is indirect, inasmuch as the high concentrations of transcortin (CBG) in renal cytosol make studies with [3H]corticosterone as a probe difficult to interpret, given its high affinity for CBG. We here report direct binding studies, with [3H]aldosterone and [3H]corticosterone as probes, on hippocampal and renal cytosols from adrenalectomized rats, in which tracer was excluded from Type II dexamethasone binding glucocorticoid receptors with excess RU26988, and from CBG by excess cortisol 17 beta acid. In addition, we have compared the binding of [3H]aldosterone and [3H]corticosterone in renal cytosols from 10-day old rats, in which CBG levels in plasma and kidney are extremely low. Under conditions where neither tracer binds to type II sites or CBG, they label an equal number of sites (kidney 30-50 fmol/mg protein, hippocampus approximately 200 fmol/mg protein) with equal, high affinity (Kd 4 degrees C 0.3-0.5 nM). Thus direct tracer binding studies support the identity of renal Type I mineralocorticoid receptors and hippocampal Type I (high affinity, corticosterone preferring) glucocorticoid receptors.  相似文献   

19.
J C Reubi 《Life sciences》1985,36(19):1829-1836
Cyclic octapeptide analogues of somatostatin (SS) like SMS 201-995 [H-(D) Phe-Cys-Phe-(D) Trp-Lys-Thr-Cys-Thr(ol)] or its Tyr3-derivative 204-090, displaced [125I-Tyr11]-SS 100% from pancreatic membranes but only 62-75% from brain membranes; the remaining sites were displaced by SS. These data indicate that some mini-somatostatins bind to a subpopulation of SS receptors in rat brain. The iodinated Tyr3-derivative (125I-204-090) can be considered a selective radioligand for one rat brain SS receptor subpopulation: It shows saturable and high affinity binding (KD = 0.29 nM; Bmax = 350 fmoles/mg protein) to rat cortex. The pharmacological properties of 125I-204-090 binding sites are similar to those of [125I-Tyr11]-SS sites. Distribution of these sites correspond to SS receptor-rich areas such as cortex, hippocampus, striatum, pituitary, pancreatic beta-cell. SS as well as SMS 201-995 bind to these sites with high affinity. The stability and high specific vs non-specific binding ratio makes 204-090 a radioligand of choice to measure this SS receptor subpopulation in CNS but also the SS receptors in pituitary and pancreas.  相似文献   

20.
Kim HS  Hwang SL  Oh S 《Neurochemical research》2000,25(8):1149-1154
We investigated the influence of centrally administered ginsenoside on the regulation of mRNA levels of the family of NMDA receptor subtypes (NR1, NR2A, NR2B, NR2C) by in situ hybridization histochemistry in the rat brain. The ginsenosides Rc and Rg1, the major components of ginseng saponin, differentially modulate NMDA receptor subunit mRNA levels in rat brain following prolonged i.c.v.-infusion. Ginsenosides Rc or Rg1 (10 g/10 l/hr for 7 days) was infused through preimplanted cannulae connected to osmotic mini-pumps. The level of NR1 mRNA is significantly increased in temporal cortex, caudate putamen, hippocampus, and granule layer of cerebellum in Rg1-infused rats as compared to control group. The level of NR2A mRNA is elevated in the frontal cortex. In contrast, it was decreased in CA1 area of hippocampus in Rg1-infused rats. However, there was no significant change of NR1 and NR2A mRNA levels in Rc-infused rats. The level of NR2B mRNA is elevated in cortex, caudate putamen, and thalamus in both Rc- and Rg-infused rats. In contrast, NR2B level is decreased in CA3 in Rg1-infused rats. The level of NR2C mRNA is increased in the granule layer of cerebellum in only Rg1 but not Rc infused rats. These results show that structure difference of ginsenoside may diversely affect the modulation of expression of NMDA receptor subunit mRNA after infusion into cerebroventricle in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号