首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
The endoplasmic reticulum (ER) of columella root cap cells has been postulated to play a role in gravity sensing. We have re-examined the ultrastructure of columella cells in tobacco (Nicotiana tabacum) root tips preserved by high-pressure freezing/freeze-substitution techniques to gain more precise information about the organization of the ER in such cells. The most notable findings are: the identification of a specialized form of ER, termed "nodal ER," which is found exclusively in columella cells; the demonstration that the bulk of the ER is organized in the form of a tubular network that is confined to a peripheral layer under the plasma membrane; and the discovery that this ER-rich peripheral region excludes Golgi stacks, vacuoles, and amyloplasts but not mitochondria. Nodal ER domains consist of an approximately 100-nm-diameter central rod composed of oblong subunits to which usually seven sheets of rough ER are attached along their margins. These domains form patches at the interface between the peripheral ER network and the ER-free central region of the cells, and they occupy defined positions within central and flanking columella cells. Over one-half of the nodal ER domains are located along the outer tangential walls of the flanking cells. Cytochalasin D and latrunculin A cause an increase in size and a decrease in numbers of nodal ER domains. We postulate that the nodal ER membranes locally modulate the gravisensing signals produced by the sedimenting amyloplasts, and that the confinement of all ER membranes to the cell periphery serves to enhance the sedimentability of the amyloplasts in the central region of columella cells.  相似文献   

3.
Membrane proteins of the endoplasmic reticulum (ER) may be localized to this organelle by mechanisms that involve retention, retrieval, or a combination of both. For luminal ER proteins, which contain a KDEL domain, and for type I transmembrane proteins carrying a dilysine motif, specific retrieval mechanisms have been identified. However, most ER membrane proteins do not contain easily identifiable retrieval motifs. ER localization information has been found in cytoplasmic, transmembrane, or luminal domains. In this study, we have identified ER localization domains within the three type I transmembrane proteins, ribophorin I (RI), ribophorin II (RII), and OST48. Together with DAD1, these membrane proteins form an oligomeric complex that has oligosaccharyltransferase (OST) activity. We have previously shown that ER retention information is independently contained within the transmembrane and the cytoplasmic domain of RII, and in the case of RI, a truncated form consisting of the luminal domain was retained in the ER. To determine whether other domains of RI carry additional retention information, we have generated chimeras by exchanging individual domains of the Tac antigen with the corresponding ones of RI. We demonstrate here that only the luminal domain of RI contains ER retention information. We also show that the dilysine motif in OST48 functions as an ER localization motif because OST48 in which the two lysine residues are replaced by serine (OST48ss) is no longer retained in the ER and is found instead also at the plasma membrane. OST48ss is, however, retained in the ER when coexpressed with RI, RII, or chimeras, which by themselves do not exit from the ER, indicating that they may form partial oligomeric complexes by interacting with the luminal domain of OST48. In the case of the Tac chimera containing only the luminal domain of RII, which by itself exits from the ER and is rapidly degraded, it is retained in the ER and becomes stabilized when coexpressed with OST48.  相似文献   

4.
A Schmitz  M Maintz  T Kehle    V Herzog 《The EMBO journal》1995,14(6):1091-1098
The signal for degradation of proteins in the endoplasmic reticulum (ER) is thought to be the exposure of internal domains which are buried when the protein has adopted its correct conformation and which are also exposed in assembly intermediates. This raises the question of why the intermediates are not degraded. We developed a system based on the peroxidase-catalyzed iodination of tyrosine residues which continuously monitors the exposure of internal domains of proinsulin. In CHO cells this system discriminated between assembly intermediates of wild type (wt) proinsulin and misfolded proinsulin, as shown by the exclusive iodination of a misfolded mutant which was finally degraded in the ER. Iodination in vitro showed that the assembly intermediates of wt proinsulin also exposed internal domains. This iodination was inhibited by the addition of the molecular chaperone Bip which was co-immunoprecipitated with proinsulin in CHO cells. The results obtained with the mutant proinsulin support the assumption that exposed internal domains represent the signal for degradation in the ER. Observations of wt proinsulin show that Bip masks internal domains of normal assembly intermediates during the entire assembly process, thereby suppressing their degradation. We propose that internal domains contain co-localized signals for Bip binding and for degradation.  相似文献   

5.
6.
The endoplasmic reticulum (ER) is a continuous membrane network in eukaryotic cells comprising the nuclear envelope, the rough ER, and the smooth ER. The ER has multiple critical functions and a characteristic structure. In this study, we identified a new protein of the ER, TMCC1 (transmembrane and coiled-coil domain family 1). The TMCC family consists of at least 3 putative proteins (TMCC1–3) that are conserved from nematode to human. We show that TMCC1 is an ER protein that is expressed in diverse human cell lines. TMCC1 contains 2 adjacent transmembrane domains near the C-terminus, in addition to coiled-coil domains. TMCC1 was targeted to the rough ER through the transmembrane domains, whereas the N-terminal region and C-terminal tail of TMCC1 were found to reside in the cytoplasm. Moreover, the cytosolic region of TMCC1 formed homo- or hetero-dimers or oligomers with other TMCC proteins and interacted with ribosomal proteins. Notably, overexpression of TMCC1 or its transmembrane domains caused defects in ER morphology. Our results suggest roles of TMCC1 in ER organization.  相似文献   

7.
PERK and IRE1 are type-I transmembrane protein kinases that reside in the endoplasmic reticulum (ER) and transmit stress signals in response to perturbation of protein folding. Here we show that the lumenal domains of these two proteins are functionally interchangeable in mediating an ER stress response and that, in unstressed cells, both lumenal domains form a stable complex with the ER chaperone BiP. Perturbation of protein folding promotes reversible dissociation of BiP from the lumenal domains of PERK and IRE1. Loss of BiP correlates with the formation of high-molecular-mass complexes of activated PERK or IRE1, and overexpression of BiP attenuates their activation. These findings are consistent with a model in which BiP represses signalling through PERK and IRE1 and protein misfolding relieves this repression by effecting the release of BiP from the PERK and IRE1 lumenal domains.  相似文献   

8.
ARMET is an endoplasmic reticulum (ER) stress-inducible protein that is required for maintaining cell viability under ER stress conditions. However, the exact molecular mechanisms by which ARMET protects cells are unknown. Here, we have analyzed the solution structure of ARMET. ARMET has an entirely α-helical structure, which is composed of two distinct domains. Positive charges are dispersed on the surfaces of both domains and across a linker structure. Trypsin digestion and 15N relaxation experiments indicate that the tumbling of the N-terminal and C-terminal domains is effectively independent. These results suggest that ARMET may hold a negatively charged molecule using the two positively charged domains.  相似文献   

9.
St Pierre P  Nabi IR 《Protoplasma》2012,249(Z1):S11-S18
The endoplasmic reticulum (ER) has been classically divided, based on electron microscopy analysis, into parallel ribosome-studded rough ER sheets and a tubular smooth ER network. Recent studies have identified molecular constituents of the ER, the reticulons and DP1, that drive ER tubule formation and whose expression determines expression of ER sheets and tubules and thereby rough and smooth ER. However, segregation of the ER into only two domains remains simplistic and multiple functionally distinct ER domains necessarily exist. In this review, we will discuss the sub-organization of the ER in different domains focusing on the localization and role of the gp78 ubiquitin ligase in the mitochondria-associated smooth ER and on the evidence for a quality control ERAD domain.  相似文献   

10.
The endoplasmic reticulum (ER) of plants is comprised of a three-dimensional network of continuous tubules and sheets that underlies the plasma membrane, courses through the cytoplasm, and links up with the nuclear envelope. Aside from discussing the dynamic properties of this versatile and adaptable organelle, the review highlights the structure and the functional properties of 16 types of morphologically defined ER membrane domains. Owing to their lablie or transient nature, several of these domains can only be visualized reliably through the use of ultrarapid freezing techniques. The ER domains discussed are: the lamin receptor domain; the nuclear pores; the nuclear envelope-ER gates, the microtubule nucleation domains; the protein and oil body-forming domains; the vacuole-forming ER; the actin-binding, the plasma membrane-anchoring and the vacuole and mitochondrion-attachment domains; the lipid recycling ER cisternae and the plasmodesmata. Preliminary evidence suggests that this list will have to be expanded in the near future. Understanding the assembly, the functional roles, and the developmental regulation of these domains has implications both for understanding cell structure and function, and for exploiting plants for agricultural and biotechnological purposes.  相似文献   

11.
The endoplasmic reticulum is a multifunctional organelle composed of functionally and morphologically distinct domains. These include the relatively planar nuclear envelope and the peripheral ER, a network of sheet-like cisternae interconnected with tubules that spread throughout the cytoplasm. The ER is highly dynamic and the shape of its domains as well as their relative content are in constant flux. The multiple forces driving these morphological changes depend on the interaction between the ER and microtubules, membrane fusion and fission events and the action of proteins capable of actively shaping membranes. The interplay between these forces is ultimately responsible for the dynamic morphology of the ER, which in turn is crucial for properly executing the varied functions of this organelle.  相似文献   

12.
Signals that can cause retention in the ER have been found in the cytoplasmic domain of individual subunits of multimeric receptors destined to the cell surface. To study how ER retention motifs are masked during assembly of oligomeric receptors, we analyzed the assembly and intracellular transport of the human high-affinity receptor for immunoglobulin E expressed in COS cells. The cytoplasmic domain of the alpha chain contains a dilysine ER retention signal, which becomes nonfunctional after assembly with the gamma chain, allowing transport out of the ER of the fully assembled receptor. Juxtaposition of the cytoplasmic domains of the alpha and gamma subunits during assembly is responsible for this loss of ER retention. Substitution of the gamma chain cytoplasmic domain with cytoplasmic domains of irrelevant proteins resulted in efficient transport out of the ER of the alpha chain, demonstrating that nonspecific steric hindrance by the cytoplasmic domain of the gamma chain accounts for the masking of the ER retention signal present in the cytoplasmic domain of the alpha chain. Such a mechanism allows the ER retention machinery to discriminate between assembled and nonassembled receptors, and thus participates in quality control at the level of the ER.  相似文献   

13.
The endoplasmic reticulum (ER) has been classically divided, based on electron microscopy analysis, into parallel ribosome-studded rough ER sheets and a tubular smooth ER network. Recent studies have identified molecular constituents of the ER, the reticulons and DP1, that drive ER tubule formation and whose expression determines expression of ER sheets and tubules and thereby rough and smooth ER. However, segregation of the ER into only two domains remains simplistic and multiple functionally distinct ER domains necessarily exist. In this review, we will discuss the sub-organization of the ER in different domains focusing on the localization and role of the gp78 ubiquitin ligase in the mitochondria-associated smooth ER and on the evidence for a quality control ERAD domain.  相似文献   

14.
The endoplasmic reticulum (ER) is a large, continuous membrane-bound organelle comprised of functionally and structurally distinct domains including the nuclear envelope, peripheral tubular ER, peripheral cisternae, and numerous membrane contact sites at the plasma membrane, mitochondria, Golgi, endosomes, and peroxisomes. These domains are required for multiple cellular processes, including synthesis of proteins and lipids, calcium level regulation, and exchange of macromolecules with various organelles at ER-membrane contact sites. The ER maintains its unique overall structure regardless of dynamics or transfer at ER-organelle contacts. In this review, we describe the numerous factors that contribute to the structure of the ER.The endoplasmic reticulum (ER) is a dynamic organelle responsible for many cellular functions, including the synthesis of proteins and lipids, and regulation of intracellular calcium levels. This review focuses on the distinct and complex morphology of the ER. The structure of the ER is complex because of the numerous distinct domains that exist within one continuous membrane bilayer. These domains are shaped by interactions with the cytoskeleton, by proteins that stabilize membrane shape, and by a homotypic fusion machinery that allows the ER membrane to maintain its continuity and identity. The ER also contains domains that contact the plasma membrane (PM) and other organelles including the Golgi, endosomes, mitochondria, lipid droplets, and peroxisomes. ER contact sites with other organelles and the PM are both abundant and dispersed throughout the cytoplasm, suggesting that they too could influence the overall architecture of the ER. As we will discuss here, ER shape and distribution are regulated by many intrinsic and extrinsic forces.  相似文献   

15.
Infection of cells with African swine fever virus (ASFV) can lead to the formation of zipper-like stacks of structural proteins attached to collapsed endoplasmic reticulum (ER) cisternae. We show that the collapse of ER cisternae observed during ASFV infection is dependent on the viral envelope protein, J13Lp. Expression of J13Lp alone in cells is sufficient to induce collapsed ER cisternae. Collapse was dependent on a cysteine residue in the N-terminal domain of J13Lp exposed to the ER lumen. Luminal collapse was also dependent on the expression of J13Lp within stacks of ER where antiparallel interactions between the cytoplasmic domains of J13Lp orientated N-terminal domains across ER cisternae. Cisternal collapse was then driven by disulphide bonds between N-terminal domains arranged in antiparallel arrays across the ER lumen. This provides a novel mechanism for biogenesis of modified stacks of ER present in cells infected with ASFV, and may also be relevant to cellular processes.  相似文献   

16.
We analyzed the structure of yeast endoplasmic reticulum (ER) during six sequential stages of budding by electron tomography to reveal a three-dimensional portrait of ER organization during inheritance at a nanometer resolution. We have determined the distribution, dimensions, and ribosome densities of structurally distinct but continuous ER domains during multiple stages of budding with and without the tubule-shaping proteins, reticulons (Rtns) and Yop1. In wild-type cells, the peripheral ER contains cytoplasmic cisternae, many tubules, and a large plasma membrane (PM)-associated ER domain that consists of both tubules and fenestrated cisternae. In the absence of Rtn/Yop1, all three domains lose membrane curvature, ER ribosome density changes, and the amount of PM-associated ER increases dramatically. Deletion of Rtns/Yop1 does not, however, prevent bloated ER tubules from being pulled from the mother cisterna into the bud and strongly suggests that Rtns/Yop1 stabilize/maintain rather than generate membrane curvature at all peripheral ER domains in yeast.  相似文献   

17.
The endoplasmic reticulum (ER) forms contacts with the plasma membrane. These contacts are known to function in non-vesicular lipid transport and signaling. Ist2 resides in specific domains of the ER in Saccharomyces cerevisiae where it binds phosphoinositide lipids at the cytosolic face of the plasma membrane. Here, we report that Ist2 recruits domains of the yeast ER to the plasma membrane. Ist2 determines the amount of cortical ER present and the distance between the ER and the plasma membrane. Deletion of IST2 resulted in an increased distance between ER and plasma membrane and allowed access of ribosomes to the space between the two membranes. Cells that overexpress Ist2 showed an association of the nucleus with the plasma membrane. The morphology of the ER and yeast growth were sensitive to the abundance of Ist2. Moreover, Ist2-dependent effects on cytosolic pH and genetic interactions link Ist2 to the activity of the H(+) pump Pma1 in the plasma membrane during cellular adaptation to the growth phase of the culture. Consistently we found a partial colocalization of Ist2-containing cortical ER and Pma1-containing domains of the plasma membrane. Hence Ist2 may be critically positioned in domains that couple functions of the ER and the plasma membrane.  相似文献   

18.
Structural organization of the endoplasmic reticulum   总被引:4,自引:0,他引:4       下载免费PDF全文
The endoplasmic reticulum (ER) is a continuous membrane system but consists of various domains that perform different functions. Structurally distinct domains of this organelle include the nuclear envelope (NE), the rough and smooth ER, and the regions that contact other organelles. The establishment of these domains and the targeting of proteins to them are understood to varying degrees. Despite its complexity, the ER is a dynamic structure. In mitosis it must be divided between daughter cells and domains must be re-established, and even in interphase it is constantly rearranged as tubules extend along the cytoskeleton. Throughout these rearrangements the ER maintains its basic structure. How this is accomplished remains mysterious, but some insight has been gained from in vitro systems.  相似文献   

19.
20.
We have identified two endoplasmic reticulum (ER)-associated Arabidopsis proteins, KMS1 and KMS2, which are conserved among most species. Fluorescent protein fusions of KMS1 localised to the ER in plant cells, and over-expression induced the formation of a membrane structure, identified as ER whorls by electron microscopy. Hydrophobicity analysis suggested that KMS1 and KMS2 are integral membrane proteins bearing six transmembrane domains. Membrane protein topology was assessed by a redox-based topology assay (ReTA) with redox-sensitive GFP and confirmed by a protease protection assay. A major loop domain between transmembrane domains 2 and 3, plus the N- and C-termini were found on the cytosolic side of the ER. A C-terminal di(tri)-lysine motif is involved in retrieval of KMS1 and deletion led to a reduction of the GFP-KMS1 signal in the ER. Over-expression of KMS1/KMS2 truncations perturbed ER and Golgi morphology and similar effects were also seen when KMS1/KMS2 were knocked-down by RNA interference. Microscopy and biochemical experiments suggested that expression of KMS1/KMS2 truncations inhibited ER to Golgi protein transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号