首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spotback skate Atlantoraja castelnaui (Arhynchobatidae) is a large and threatened skate species subjected to fishing pressure, endemic to the Southwest Atlantic that occurs from Rio de Janeiro, Brazil, to San Jorge Gulf, Argentina. The age, growth, age at maturity and the maximum intrinsic rate of population increase rmax of A. castelnaui were studied using 152 specimens collected from off Uruguay and north Argentina (35°–42° S), between June 2013 and February 2020. Vertebrae from 143 individuals were used for ageing (females: n = 83, size range 404–1300 mm total length, TL; males: n = 60, size range 400–1270 mm TL). Maximum ages determined for females and males were 30 and 28 years, respectively. To fit growth models, non-linear and Bayesian estimation approaches were considered. For the first approach, a set of four candidate growth (size-at-age) models were fitted: three-parameter von Bertalanffy, two-parameter von Bertalanffy with fixed L0, Gompertz and Logistic. In the second approach, von Bertalanffy, Gompertz and Logistic were fitted. For non-linear estimation, model selection indicated that the entire set of candidate growth models were supported by the data. The von Bertalanffy was selected as the best model for Bayesian estimation. There were no differences in growth between sexes. For the sexes combined, the von Bertalanffy growth model by Bayesian method was considered the most adequate to describe the growth of A. castelnaui (growth mean parameters ± S.D. : L = 1210.29 ± 40.68 mm; k = 0.12 ± 0.01 years−1; L0 = 179.20 ± 11.62 mm). The age at maturity was estimated at 16.21 and 14.04 years for females and males, respectively. The maximum intrinsic rate of population increase rmax was estimated as 0.252 years−1. Life-history traits and rmax provided in the present study suggest that this species has a relatively low productivity and may be vulnerable to an intense fishing pressure.  相似文献   

2.
Captive Asian elephants Elephas maximus , used as work animals, constitute up to 22–30% of remaining Asian elephants. Myanmar has the largest captive population worldwide (∼6000), maintained at this level for over a century. We used published demographic data to assess the viability of this captive population. We tested how this population can be self-sustained, how many elephants must be supplemented from the wild to maintain it, and what consequences live capture may have for Myanmar's wild population. Our results demonstrate that the current captive population is not self-sustaining because mortality is too high and birth rates are too low. Our models also suggest ∼100 elephants year−1 have been captured in the wild to supplement the captive population. Such supplementation cannot be supported by a wild population of fewer than 4000 elephants. Given the most recent expert estimate of ∼2000 wild elephants remaining in Myanmar, a harvest of 100 elephants year−1 could result in extinction of the wild population in 31 years. Continued live capture threatens the survival of wild and captive populations and must stop. In addition, captive breeding should be increased. These measures are essential to slow the decline and extinction of all of Myanmar's elephants.  相似文献   

3.
A fundamental assumption underlying the importance of genetic risks within conservation biology is that inbreeding increases the extinction probability of populations. Although inbreeding has been shown to have a detrimental impact on individual fitness, its contribution to extinction is still poorly understood. We have studied the consequences of different levels of prior inbreeding for the persistence of small populations using Drosophila melanogaster as a model organism. To this end, we determined the extinction rate of small vial populations differing in the level of inbreeding under both optimal and stress conditions, i.e. high temperature stress and ethanol stress. We show that inbred populations have a significantly higher short‐term probability of extinction than non‐inbred populations, even for low levels of inbreeding, and that the extinction probability increases with increasing inbreeding levels. In addition, we observed that the effects of inbreeding become greatly enhanced under stressful environmental conditions. More importantly, our results show that the impact of environmental stress becomes significantly greater for higher inbreeding levels, demonstrating explicitly that inbreeding and environmental stress are not independent but can act synergistically. These effects seem long lasting as the impact of prior inbreeding was still qualitatively the same after the inbred populations had been expanded to appreciable numbers and maintained as such for approximately 50 generations. Our observations have significant consequences for conservation biology.  相似文献   

4.
1. Endangered native populations of stream salmonids in Japan face three major threats: (i) negative interactions with introduced hatchery‐reared fish, (ii) fragmentation of habitat by impassable dams and (iii) recreational angling. 2. To prevent imminent extinction of many local populations, we evaluated these threats and possible conservation actions for red‐spotted masu salmon (Oncorhynchus masou ishikawae) and white‐spotted charr (Salvelinus leucomaenis japonicus) in the Fuji River system in central Japan. 3. Red‐spotted masu salmon and white‐spotted charr occupied only 0.73 and 2.4% of suitable thermal habitats, respectively, with masu salmon typically occupying habitats closer to human population centres. 4. Population viability analysis resulted in a 100‐year probability of extinction of 78.1% for masu salmon and 48.1% for charr. However, extinction risk of both species was predicted to be <5% if the carrying capacity increased from 141 to 303 for masu salmon and from 94 to 125 for charr, by allowing fish passage at the lower end of the habitat, and if annual adult survival rate increased by 0.04. Adult survival rate was the principal factor associated with population persistence. 5. To conserve isolated populations of stream‐dwelling salmonids, we recommend (i) assessing the distribution of remnant native and non‐native fish populations, (ii) that fishing regulations are modified to improve adult survival and population persistence and (iii) that fragmented reaches be reconnected to adjacent habitat, for example by removing or modifying artificial barriers to increase the carrying capacity of the isolated populations. Reconnection of fragmented reaches should, however, be avoided if it results in non‐native fish invading isolated populations.  相似文献   

5.
6.
Australian mammals have suffered an exceptionally high rate of decline and extinction over the last two hundred years. Body mass is linked to extinction risk in Australian mammals, but the nature of this association is controversial. A widely held view is that species of intermediate body mass (between 35 and 5500 g, the ‘critical weight range’, CWR) have declined most severely. However, the existence of the CWR has been disputed. In this paper we clarify the relationship of decline status and body mass in Australian marsupials. We show that the form of this relationship differs for ground‐living versus arboreal species, and for species from low versus high rainfall areas. Among ground‐living species and those from low‐rainfall areas, declines were strongly size‐selective and concentrated on species within the CWR. For the remaining species, decline was only weakly related to body mass with no evidence of heightened risk for species of intermediate size. We conclude that for terrestrial species in low rainfall areas, species within the CWR are most at risk of decline and extinction.  相似文献   

7.
8.
Stochastic population theory makes clear predictions about the effects of reproductive potential and carrying capacity on characteristic time-scales of extinction. At the same time, the effects of habitat size and quality on reproduction and regulation have been hotly debated. To trace the causal relationships among these factors, we looked at the effects of habitat size and quality on extinction time in experimental populations of Daphnia magna. Replicate model systems representative of a broad-spectrum consumer foraging on a continuously supplied resource were established under crossed treatments of habitat size (two levels) and habitat quality (three levels) and monitored until eventual extinction of all populations. Using statistically derived estimates of key parameters, we related experimental treatments to persistence time through their effect on carrying capacity and the population growth rate. We found that carrying capacity and the intrinsic rate of increase were each influenced similarly by habitat size and quality, and that carrying capacity and the intrinsic rate of increase were in turn both correlated with time to population extinction. We expected habitat quality to have a greater influence on extinction. However, owing to an unexpected effect of habitat size on reproductive potential, habitat size and quality were similarly important for population persistence. These results support the idea that improving the population growth rate or carrying capacity will reduce extinction risk and demonstrate that both are possible by improving habitat quality or increasing habitat size.  相似文献   

9.
Brontispa longissima is a serious pest of the coconut palm Cocos nucifera, presumed to have originated in Papua New Guinea and Indonesia. It recently invaded Southeast and East Asia, where outbreaks have been reported. Mitochondrial DNA analysis reveals two cryptic species in B. longissima: one is distributed over a wide area including Asia and the Pacific region (the Asian clade) and the other in a limited area in the Pacific region (the Pacific clade). Recent invasions and outbreaks have been reported only from the area where the Asian clade has been found, suggesting that this clade has become a pest in Asia. To infer if the Asian clade has the ability to establish, spread and outbreak in novel habitats more effectively than the Pacific clade, we compared life‐history traits between the two populations of different clades. The net reproduction rate (R0) was 130.0 and 94.0, the mean length of a generation (T) was 57.7 and 54.7 days, and the intrinsic rate of natural increase (r) was 0.084 and 0.083 per day for the population from Ishigaki Island, Japan (ISH) (the Asian clade) and for the population from Papua New Guinea (PNG) (the Pacific clade), respectively. Although the difference in r was little, the simulated population growth showed that the ISH population can be 1.6 times larger than that of the PNG after ten generations. The rapid population growth of the Asian clade would be partly responsible for its establishment, spread and frequent outbreaks in Asia.  相似文献   

10.
11.
12.
Although the causes of population extinction are well understood, the speed at which populations decline to extinction is not. A testable, counter-intuitive prediction of stochastic population theory is that, on average, for any interior interval of the domain of biologically attainable population sizes, the expected duration of increase equals the expected duration of decline. Here we report the first empirical tests of this hypothesis. Using data from two experiments in which replicate populations of Daphnia magna were observed to go extinct under different experimental conditions, we failed to reject the null hypothesis of no difference between the growth and decline phases in populations under constant conditions and conditions with modest environmental variability, but find strong evidence to reject equal first passage time in highly variable environments. These results confirm the prediction of equal passage times entailed by diffusion models of population dynamics, supporting continued application in both population theory and conservation decision making under the restricted conditions where the approximation can be expected to hold.  相似文献   

13.
14.
15.
Previous studies have found lower levels ofgenetic variation in lake than streampopulations of brook trout (Salvelinusfontinalis). We test the generality of thisobservation by examining whether brook troutgenetic variation at 10 allozyme loci differedwithin and among 9 pairs of lake and adjacentstream populations. With one exception, wefound that lake populations had lowerheterozygosity than their adjacent streampopulations. Although the lakes in this studyare small and some have had documented fishmortality events, no association was foundbetween lake size characteristics and thedegree of difference in heterozygosity betweenlakes and their adjacent stream populations. There were, however, negative associationsbetween metrics of fishing mortality and thedifference in heterozygosity between lakes andtheir adjacent stream populations. Thegreater the estimated fishing pressure onlake-dwelling trout, the greater the reductionin heterozygosity in those populationsrelative to their adjacent stream populations. We interpret our findings to suggest thatintensive fishing pressure can significantlyreduce genetic variation. Managers shouldtherefore prevent human-induced mortality atany indication of a large natural mortalityevent to allow populations to increase in sizeas rapidly as possible following a decline.  相似文献   

16.
The Cellular Energy Allocation (CEA) methodology wasdeveloped as biomarker technique to assess the effectof toxic stress on the energy budget of testorganisms. This short-term assay is based on thebiochemical assessment of changes in the energyreserves (total carbohydrate, protein and lipidcontent) and the energy consumption (electrontransport activity). The CEA methodology was evaluatedusing Daphnia magna juveniles exposed for 96hto sublethal lindane and mercury chlorideconcentrations. The ecological relevance of the CEAassay was assessed by comparing the sub-organismalresponse with population level parameters (obtainedfrom 21 day life table experiments) such as theintrinsic rate of natural increase (rm) and themean total offspring per female. Two differentmethodologies were used to assess the effect levels:the no (lowest) observed effect level (NOAECs-LOAECs)approach and the regression-based approach. Bothtoxicants caused a significant decrease in the netenergy budget of D. magna, with a LowestObserved (Adverse) Effect Concentration (LOAEC) of0.18 mg/l and 5.6 µg/l for lindane andHgCl2,respectively. Changes in the lipid content of theorganisms were detected at toxicant concentrationslower than those affecting the total carbohydrate andprotein content. Toxicant specific effects wereobserved on the electron transport activity.Comparison of the CEA results with those of thepopulation level tests revealed that for mercury theCEA based LOAEC was a three times lower than thatbased on rm and the total brood size(18 µg/l). For lindane the CEA based LOAEC was twotimes lower than the LOAEC based on rm(0.32 mg/l) but was higher than that based on thetotal number of offspring produced (0.1 mg/l).Using the regression-based approach, EC10 valueswere calculated using three parameter sigmoid orlogistic models. Comparison between the CEA andrm based EC10 values demonstrates that forboth chemicals similar effect concentrations areobtained: the CEA-based EC10 (0.20 mg/l) forlindane is 1.5 times higher than the rm-basedEC10 threshold (0.13 mg/l), while for mercury thebiomarker-based EC10 value (9 µg/l) was 1.4times lower than the population-based EC10 value(12.5 µg/l).From these results, we suggest that the short-term CEAassay may be useful for predicting long-term effectsat the population level. The consequences of theobserved effects on the energy budget of the testorganism are discussed in the context of the effectsemerging at the population and community level.  相似文献   

17.

Aim

Despite the complexity of population dynamics, most studies concerning current changes in bird populations reduce the trajectory of population change to a linear trend. This may hide more complex patterns reflecting responses of bird populations to changing anthropogenic pressures. Here, we address this complexity by means of multivariate analysis and attribute different components of bird population dynamics to different potential drivers.

Location

Czech Republic.

Methods

We used data on population trajectories (1982–2019) of 111 common breeding bird species, decomposed them into independent components by means of the principal component analysis (PCA), and related these components to multiple potential drivers comprising climate, land use change and species' life histories.

Results

The first two ordination axes explained substantial proportion of variability of population dynamics (42.0 and 12.5% of variation in PC1 and PC2 respectively). The first axis captured linear population trend. Species with increasing populations were characterized mostly by long lifespan and warmer climatic niches. The effect of habitat was less pronounced but still significant, with negative trends being typical for farmland birds, while positive trends characterized birds of deciduous forests. The second axis captured the contrast between hump-shaped and U-shaped population trajectories and was even more strongly associated with species traits. Species migrating longer distances and species with narrower temperature niches revealed hump-shaped population trends, so that their populations mostly increased before 2000 and then declined. These patterns are supported by the trends of total abundances of respective ecological groups.

Main Conclusion

Although habitat transformation apparently drives population trajectories in some species groups, climate change and associated species traits represent crucial drivers of complex population dynamics of central European birds. Decomposing population dynamics into separate components brings unique insights into non-trivial patterns of population change and their drivers, and may potentially indicate changes in the regime of anthropogenic effects on biodiversity.  相似文献   

18.
Effects of environmental variation on extinction and establishment   总被引:1,自引:1,他引:1  
Theoretical models predict that increasing environmental variation increases the probability of extinction, decreases the probability of establishment, and influences the distribution of times to extinction or establishment. We conducted an experiment with 281 independent populations of Daphnia magna under controlled laboratory conditions to test these predictions. Consistent with the theory, the fraction of populations going extinct increased and the fraction of populations establishing self‐sustaining populations decreased under higher levels of environmental variation compared with controls. Time to extinction decreased under higher levels of environmental variation, but we found no effect on time to establishment. These results are consistent with theoretical predictions from models of extinction. They therefore support the use of stochastic population models to predict the fates of introductions of non‐indigenous species or native endangered species based on historic fluctuations and/or expected future conditions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号