首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Specific activities of the hepatic microsomal enzymes 3-hydroxy-3-methylglutaryl CoA (HMG CoA) reductase and cholesterol 7alpha-hydroxylase were studied in rats fed sterols and bile acids. The administration of bile acids (taurocholate, taurodeoxycholate, taurochenodeoxycholate) at a level of 1% of the diet for 1 wk reduced the activity of HMG CoA reductase. Taurocholate and taurodeoxycholate, but not taurochenodeoxycholate, inhibited cholesterol 7alpha-hydroxylase. Dietary sitosterol produced increases in the specific activity of HMG CoA reductase (3.6-fold) and cholesterol 7alpha-hydroxylase (1.4-fold), and biliary cholesterol concentrations in this group more than doubled. Compared with controls fed the stock diet, the simultaneous administration of sitosterol and taurochenodeoxycholate resulted in a 60% decrease of HMG CoA reductase activity and no change in cholesterol 7alpha-hydroxylase activity or biliary cholesterol concentration. Rats fed sitosterol plus taurocholate had nearly normal HMG CoA reductase activity, but cholesterol 7alpha-hydroxylase was inhibited and biliary cholesterol remained high. Bile acid secretion rates and biliary bile acid composition were similar in controls and sterol-fed animals. In all groups receiving bile acids, biliary secretion of bile acids was nearly doubled and bile acid composition was shifted in the direction of the administered bile acid. It is concluded that the composition of the bile acid pool influences the hepatic concentrations of the rate-controlling enzymes of bile acid synthesis.  相似文献   

2.
We previously showed that preincubation of a 10,000 g supernatant (S(10)) from rat liver for 20 min at 37 degrees C dramatically increased the subsequent incorporation of [(14)C]acetate into sterols. No activation was seen with [(14)C]mevalonate as substrate. In the present studies we have examined the effect of preincubation on HMG CoA reductase. When microsomes were isolated from S(10) by calcium precipitation, preincubation of S(10) increased the specific activity of HMG CoA reductase threefold. No activation of HMG CoA reductase was observed in microsomes isolated by ultracentrifugation. Activation was cyclic AMP-sensitive. When cyclic AMP (0.001-1.0 mM) and MgATP (1 mM) were present during the preincubation period, there was little or no activation of HMG CoA reductase activity or of sterol synthesis from acetate. MgATP alone did not prevent activation. Neither cyclic AMP nor MgATP was inhibitory when present only during the assay of sterol synthesis. We propose that the in vitro activation represents the reversal of a physiologic cyclic AMP-mediated mechanism for the control of hepatic HMG CoA reductase. That a phosphoprotein phosphatase may catalyze the activation was supported by the observation that sodium fluoride, an inhibitor of phosphoprotein phosphatases, inhibited the activation. These results suggest that hormone-induced changes in the cellular level of cyclic AMP may regulate the activity of HMG CoA reductase and the rate of hepatic cholesterol synthesis.  相似文献   

3.
In vivo studies have shown abnormalities in cholesterol and bile acid metabolism in primary hyperlipoproteinemia (HLP). The aim of the present investigation was to determine if the increased production of cholesterol in HLP type IV can be attributed to a correspondingly high level of the hepatic 3-hydroxy-3-methylglutaryl (HMG) CoA reductase activity and if the low cholic acid: chenodeoxycholic acid synthesis ratio in HLP type II is due to some hydroxylase deficiency. Liver biopsies from 26 normolipidemic and 25 hyperlipidemic (10 type IIa, 6 type IIb, and 9 type IV) patients undergoing elective cholecystectomy were assayed for HMG CoA reductase activity, 12 alpha-hydroxylase activity, and 25-hydroxylase activity. The HMG CoA reductase activity was normal in HLP type IIa and type IIb and was increased about twice HLP type IV (P less than 0.001). The 12 alpha- and 25-hydroxylase activities were normal in all groups of patients. The results are compatible with a normal cholesterol synthesis in the liver in HLP type II. A reduced 12 alpha- or 25-hydroxylase activity cannot explain the low production of cholic acid relative to chenodeoxycholic acid in this type of HLP. The elevated HMG CoA reductase activity found in the liver of type IV patients may, however, be part of the explanation for the elevated synthesis of cholesterol often seen in these patients.  相似文献   

4.
The specific activity (concentration) of microsomal HMG CoA reductase of intestinal crypt cells was studied in rats fed sterols and bile acids, either singly or in combination. It was found that the basal activity of the reductase was not suppressed by the administration of relatively large amounts of bile acid (taurocholate or taurochenodeoxycholate). Bile acids reduced the specific activity of the reductase only in rats in which the activity of the enzyme had first been enhanced by biliary diversion or by sitosterol feeding. In addition, bile acid feeding abolished the diurnal elevation of reductase activity that normally occurs between midnight and 2 a.m. In no case did bile acids reduce enzyme activity below basal levels. A pronounced (60%) reduction of intestinal HMG CoA reductase activity was observed in rats fed cholesterol and bile acid in combination. This reduction in activity could not be ascribed to an increase in intestinal bile acid flux but was associated with an increase in sterol concentration within the intestinal crypt cells. These results indicate that dietary sterols and bile acids both play a role in the regulation of intestinal HMG CoA reductase.  相似文献   

5.
Hepatic free cholesterol levels are influenced by cholesterol synthesis and ester formation, which, in turn, might regulate cholesterol secretion into bile and plasma. We manipulated the rates of hepatic cholesterol synthesis and esterification and measured biliary and very low density lipoprotein (VLDL) cholesterol secretion, and bile acid synthesis. Mevalonate decreased HMG CoA reductase by 80%, increased acyl coenzyme A: cholesterol acyltransferase (ACAT) by 60% and increased [3H]oleate incorporation into microsomal and VLDL cholesteryl esters by 174% and 122%, respectively. Microsomal and biliary free cholesterol remained constant at the expense of increased microsomal and VLDL cholesteryl ester content. Mevalonate did not change bile acid synthesis. 25-OH cholesterol decreased HMG-CoA reductase by 39%, increased ACAT by 24%, but did not effect 7 alpha-hydroxylase. 25-OH cholesterol increased [3H]oleate in microsomal and VLDL cholesterol esters by 71% and 120%. Biliary cholesterol decreased by 40% and VLDL cholesteryl esters increased by 83%. A small and unsustained decrease in bile acid synthesis (14CO2 release) occurred after 25-OH cholesterol. After orotic acid feeding, HMG-CoA reductase increased 352%, and [3H]oleate in microsomal and VLDL cholesteryl esters decreased by 43% and 89%. Orotic acid decreased all VLDL components including free cholesterol (68%) and cholesteryl esters (55%), and increased biliary cholesterol by 160%. No change in bile acid synthesis occurred. Hepatic cholesterol synthesis and esterification appear to regulate a cholesterol pool available for both biliary and VLDL secretion. Changing cholesterol synthesis and esterification did not alter bile acid synthesis, suggesting that either this common bile/VLDL secretory pool is functionally distinct from the cholesterol pool used for bile salt synthesis, or that free cholesterol availability in this precursor pool is not a major determinant of bile acid synthesis.  相似文献   

6.
Dietary lecithin can stimulate bile formation and biliary lipid secretion, particularly cholesterol output in bile. Studies also suggested that the lecithin-rich diet might modify hepatic cholesterol homeostasis and lipoprotein metabolism. Therefore, we examined hepatic activities of 3-hydroxy-3 methylglutaryl coenzyme A reductase "HMG -CoA reductase", cholesterol 7 alpha-hydroxylase and acyl-CoA: cholesterol acyltransferase "ACAT" as well as plasma lipids and lipoprotein composition in rats fed diets enriched with 20% of soybean lecithin during 14 days. We also evaluated the content of hepatic canalicular membrane proteins involved in lipid transport to the bile (all P-glycoproteins as detected by the C 219 antibody and the sister of P-glycoprotein "spgp" or bile acid export pump) by Western blotting. As predicted, lecithin diet modified hepatic cholesterol homeostasis. The activity of hepatic HMG-CoA reductase and cholesterol 7 alpha-hydroxylase was enhanced by 30 and 12% respectively, while microsomal ACAT activity showed a dramatic decrease of 75%. As previously reported from ACAT inhibition, the plasma level and size of very low-density lipoprotein (VLDL) were significantly decreased and bile acid pool size and biliary lipid output were significantly increased. The canalicular membrane content of lipid transporters was not significantly affected by dietary lecithin. The current data on inhibition of ACAT activity and related metabolic effects by lecithin mimic the previously reported effects following drug-induced inhibition of ACAT activity, suggesting potential beneficial effects of dietary lecithin supplementation in vascular disease.  相似文献   

7.
1. The rat and rabbit are amongst the animal models most widely used in the study of human atherosclerosis, a disease state correlating with disturbances in cholesterol metabolism. 2. In order to relate the key regulatory enzymes of cholesterol synthesis, esterification and catabolism in the rat and rabbit to their differing degree of susceptibility to atherosclerosis, enzyme levels and their properties were determined in liver and intestine of both species. 3. Hepatic HMG CoA reductase and cholesterol 7 alpha-hydroxylase levels were significantly higher in the rat than in the rabbit, while intestinal HMG CoA reductase activity in the two species was comparable. Conversely, the capacity to esterify cholesterol as measured by ACAT activities was considerably greater in both sites in the rabbit compared to the rat. 4. The data suggest that differences in the key regulatory enzymes of cholesterol metabolism in both liver and intestine may reflect different methods of cholesterol utilization in the two species.  相似文献   

8.
The isoprenoid metabolic pathway is mainly regulated at the level of conversion of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) to mevalonate, catalyzed by HMG CoA reductase. As estrogens are known to influence cholesterol metabolism, we have explored the potential regulation of the HMG CoA reductase gene promoter by estrogens. The promoter contains an estrogen-responsive element-like sequence at position -93 (termed Red-ERE), which differs from the ERE consensus by one mismatch in each half of the palindrome. A Red-ERE oligonucleotide specifically bound estrogen receptor in vitro and conferred receptor-dependent estrogen responsiveness to a heterologous promoter in all cell lines tested. However, expression of a reporter driven by the rat HMG CoA reductase promoter was induced by estrogen treatment after transient transfection into the breast cancer cell line MCF-7 cells but not in hepatic cell lines expressing estrogen receptor. Estrogen induction in MCF-7 cells was dependent on the Red-ERE and was strongly inhibited by the antiestrogen ICI 164,384. A functional cAMP-responsive element is located immediately upstream of the Red-ERE, but cAMP and estrogens inhibit each other in terms of transactivation of the promoter. Similarly, induction by estrogens was inhibited by micromolar concentrations of cholesterol, likely acting via changes in occupancy of the sterol-responsive element located 70 bp upstream of the Red-ERE. Thus, within its natural context, Red-ERE is able to mediate hormonal regulation of the HMG CoA reductase gene in tissues that respond to estrogens with enhanced cell proliferation, while it is not operative in liver cells. We postulate that this tissue-specific regulation of HMG CoA reductase by estrogens could partially explain the protective effect of estrogens against heart disease.  相似文献   

9.
M Rudling  B Angelin 《FASEB journal》2001,15(8):1350-1356
Growth hormone (GH) has pleiotropic effects on cholesterol and lipoprotein metabolism. Pituitary GH is important for the normal regulation of hepatic LDL receptors (LDLR), for the enzymatic activity of bile acid regulatory cholesterol 7alpha-hydroxylase (C7alphaOH), and for the maintenance of resistance to dietary cholesterol. The present study aimed to determine whether GH has beneficial effects on plasma lipids and hepatic cholesterol metabolism in mice devoid of LDLR. Compared with wild-type controls, LDLR-deficient mice had approximately 250% elevated plasma total cholesterol and approximately 50% increased hepatic cholesterol levels; hepatic HMG CoA reductase activity was reduced by 70%, whereas C7alphaOH activity was increased by 40%. In LDLR mice, GH infusion reduced plasma cholesterol and triglycerides up to 40%, whereas HMG CoA reductase and C7alphaOH activities were stimulated by approximately 50% and 110% respectively. GH also stimulated HMG CoA reductase and C7alphaOH activities in control mice, whereas hepatic LDLR and plasma lipoproteins were unchanged. The effects of cholestyramine and atorvastatin on C7alphaOH in LDLR-deficient mice were potentiated by GH, and this was associated with a further reduction in plasma cholesterol. GH treatment reduces plasma cholesterol and triglycerides and stimulates C7alphaOH activity in mice devoid of LDLR, particularly in combination with resin or statin treatment. The potential of GH therapy in patients with homozygous familial hypercholesterolemia should be evaluated.  相似文献   

10.
Decreased activities of both 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) synthase and HMG CoA reductase are observed in the presence of sterol in the Chinese hamster ovary (CHO) fibroblast. In three different genotypes of CHO cell mutants resistant to 25-hydroxycholesterol both enzyme activities exhibit a decreased response to 25-hydroxycholesterol compared to wild-type cells. Permanently repressed levels of both HMG CoA synthase and HMG CoA reductase activities are observed in another CHO mutant, phenotypically a mevalonate auxotroph. Mevinolin, a competitive inhibitor of HMG CoA reductase, has no effect on HMG CoA synthase activity measured in vitro. Incubation of CHO cells with sublethal concentrations of mevinolin produces an inhibition of the conversion of [14C]acetate to cholesterol and results in elevated levels of both HMG CoA synthase and HMG CoA reductase activities. Studies of CHO cells in sterol-free medium supplemented with cycloheximide indicate that continuous protein synthesis is not required for the maximal expression of HMG CoA synthase activity and provide an explanation for the lack of temporal similarity between HMG CoA synthase and reductase activities after derepression. These results support the hypothesis of a common mode of regulation for HMG CoA synthase and HMG CoA reductase activities in CHO fibroblasts.  相似文献   

11.
12.
13.
S Azhar  Y D Chen  G M Reaven 《Biochemistry》1984,23(20):4533-4538
These studies were done to examine the effect of gonadotropin on rat luteal 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase activity (the rate-limiting step in cholesterol biosynthesis) in ovaries of pregnant mare's serum gonadotropin (PMSG)-human chorionic gonadotropin (hCG) primed rats. Administration of hCG stimulated HMG CoA reductase activity in a time- and dose-dependent manner: significant increases were noted within 4 h, with maximum effects (30-40-fold increases) seen 24 h after hCG (25 IU) administration. This effect was specific in that only LH, of several hormones tested, was as effective as hCG in stimulating HMG CoA reductase activity, and no change in the activity of either liver microsomal HMG CoA reductase or luteal microsomal NADPH-cytochrome c reductase was seen after hCG. The gonadotropin-induced increase in HMG CoA reductase activity seemed to be due to a net increase in enzyme activity, not to a change in the phosphorylated/dephosphorylated state of the enzyme. Pretreatment of animals with aminoglutethimide, an inhibitor of the conversion of cholesterol to steroid (pregnenolone), prevented the hCG-induced rise in HMG CoA reductase activity, whereas treatment with 4-aminopyrazolo[3,4-d]pyrimidine (4-APP), which depletes cellular cholesterol content, led to striking increases in enzyme activity. However, the combined effects of 4-APP and hCG were additive, suggesting that the stimulating effect of hCG on HMG CoA reductase activity is not entirely due to a depletion of cellular sterol content of luteinized ovaries. Similarly, cholesteryl ester and cholesterol syntheses as measured by [14C]acetate conversion were also increased by hCG and 4-APP treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
EGF stimulates adrenal steroidogenesis in ewes and in ovine adrenal slices. In vitro, The stimulation is blocked by the cholesterol synthesis inhibitors compactin and AY 9944. EGF stimulates the incorporation of [14C]acetate into cholesterol. EGF increases the activity of the rate limiting enzyme in cholesterol biosynthesis, HMG CoA reductase. EGF has no effect on the levels of any intermediates involved in the conversion of pregnenolone to cortisol, although ACTH produced changes consistent with 17 alpha-hydroxylase activation. We propose that EGF increases adrenal cortisol synthesis in vitro by a stimulation of cholesterol precursor biosynthesis mediated through activation of HMG CoA reductase.  相似文献   

15.
Hepatic bile acid synthesis is thought to be under negative feedback control by bile salts in the enterohepatic circulation, acting at the level of cholesterol 7 alpha-hydroxylase (C7 alpha H), the initial and rate-limiting step in the bile acid biosynthetic pathway. Bile salts also suppress the activity of the rate-limiting enzyme for cholesterol synthesis, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA-R). The mechanisms of these regulatory effects are poorly understood, and one or both may be indirect. Previous data suggest that the hydrophilic-hydrophobic balance of bile salts, a major determinant of their cholesterol solubilizing properties, also determines their potency as regulators of bile acid and cholesterol synthesis. To further evaluate the relationship between the physicochemical and regulatory properties of bile acids, we altered the composition of the bile salt pool of rats by feeding one or more of seven different bile acids (1% w/w for 14 days). We then determined the mean hydrophilic-hydrophobic balance (hydrophobicity index) of the bile salts in bile, and correlated this with the specific activities of C7 alpha H and HMG-CoA-R, and of acyl-CoA:cholesterol acyltransferase (ACAT), a third hepatic microsomal enzyme which regulates cholesterol esterification. In all instances following bile acid feeding, conjugates of the fed bile acid(s) became the predominant bile salts in bile. Highly significant negative linear correlations (each P less than 0.0001) were found between the hydrophobicity indices of biliary bile salts and the activities of C7 alpha H (r = 0.79) or HMG-CoA-R (r = 0.63). By contrast, no significant correlation could be demonstrated between ACAT activity and the hydrophobicity index of biliary bile salts. The correlation between activities of HMG-CoA-R and C7 alpha H was also highly significant (r = 0.81; P less than 0.0001). No significant correlation existed between ACAT and either HMG-CoA-R or C7 alpha H. Microsomal free cholesterol was not consistently altered by bile acid feeding. Thus, the potency of circulating bile salts as suppressors of the enzymes regulating bile acid and cholesterol synthesis increases with increasing hydrophobicity. The hydrophobic-hydrophilic balance of the bile salt pool may play an important role in the regulation of cholesterol and bile acid synthesis.  相似文献   

16.
Previous studies have demonstrated that the in vitro activation of microsomal hepatic hydroxymethylglutaryl (HMG) CoA reductase by dephosphorylation is inhibited by HMG CoA or NADPH, the substrates of HMG CoA reductase (13). In the present study the effect of three competitive inhibitors of HMG CoA reductase on the activation of HMG CoA reductase was investigated. Adenosine-2'-monophospho-5'-diphosphoribose, a competitive inhibitor for the NADPH binding site, blocked the phosphatase-mediated activation of HMG CoA reductase. By contrast, neither compactin nor mevinolin, competitive inhibitors for the HMG CoA binding site, altered the activation of HMG CoA reductase. Moreover, the HMG CoA-mediated inhibition of the activation of HMG CoA reductase was not blocked even by very high concentrations of either compactin or mevinolin. These observations suggest that HMG CoA can bind to two sites on HMG CoA reductase. One site of HMG CoA binding serves as a catalytic site and is competitively blocked by compactin or mevinolin, and the second binding site is an allosteric site to which only HMG CoA is capable of binding. The binding of HMG CoA to this second site inhibits the activation of HMG CoA reductase by phosphatases.  相似文献   

17.
Acetoacetyl CoA thiolase and 3-hydroxy-3-methylglutaryl (HMG) CoA synthase were found almost entirely in the cytosol of Saccharomyces cerevisiae, whereas HMG CoA reductase was found almost entirely in mitochondria and further located in the matrix. Formation of all three enzymes was inhibited by cycloheximide, but not by chloramphenicol, indicating that they were synthesized in the cytosol. In anaerobically growing cells the levels of acetoacetyl CoA thiolase and HMG CoA synthase were decreased by ergosterol, whereas HMG CoA reductase levels were affected only slightly, suggesting that in yeast the enzymes responsible for synthesis of HMG CoA were regulated by ergosterol. Aerobically growing cells were essentially impermeable to ergosterol and cholesterol, whereas those growing anaerobically and requiring sterols were readily permeable. Mutants blocked in ergosterol formation were also permeable to sterols under aerobic conditions.  相似文献   

18.
The purpose of this study was to characterize the lipoprotein profile and cholesterol metabolism in Yoshida rats, a strain of inbred genetically hyperlipemic animals. For comparison, Brown Norway rats were used as control animals. Plasma cholesterol and triglycerides were higher in Yoshida as compared to Brown Norway, the elevation of cholesterol being due to a rise in HDL fraction. Triglyceride distribution among lipoproteins showed an increase in VLDL fraction. Hyperlipemia was not related to diabetes, hypothyroidism or nephropathy. Plasma triglycerides production was increased in Yoshida rats, while lipoprotein and hepatic lipases were similar in the two groups. Hypercholesterolemia was associated with a defect of lipoprotein receptor activity and with elevated HMG-CoA reductase and cholesterol 7 alpha - hydroxylase; conversely ACAT activity was lower in Yoshida as compared to Brown Norway rats. Sterol fecal excretion was comparable in the two groups and hypercholesterolemia in Yoshida rats was not associated to an increase of cholesterol saturation of the bile. We suggest that lipoprotein overproduction is the main cause for hyperlipidemia in this strain of rats.  相似文献   

19.
Rat fibroblasts degraded human low density lipoprotein (LDL) very slowly, one-tenth to one-fortieth the rates observed in human fibroblasts. In rat cells, human LDL caused only very small increases in cell cholesterol content and acylCoA:cholesterol acyltransferase (ACAT) activity and caused only small decreases in beta-hydroxy-beta-methylglutaryl CoA (HMG CoA) reductase activity; in human cells, however, human LDL induced very large changes in all three of these parameters, as expected. The binding of human LDL to rat fibroblasts was not reduced by previous incubation with human LDL or with 25-hydroxycholesterol. Thus, in rat fibroblasts there appear to be few, if any, regulated high-affinity receptors that recognize human LDL. Rat LDL fractions (d 1.02-1.05 g/ml), in contrast, were degraded more rapidly than human LDL by rat fibroblasts, caused a significant increase in cell cholesterol content, an increase in ACAT activity, and a significant decrease in HMG CoA reductase activity. Moreover, the degradation of this rat LDL fraction by rat fibroblasts as a function of concentration was biphasic, i.e., there appeared to be a high-affinity component of degradation. Thus, it appears that rat fibroblasts do have a receptor for homologous lipoproteins. However, because both apoprotein B and apoprotein E are present in these rat lipoprotein fractions, the observed effects may relate to recognition of either or both of these apoproteins. The metabolism and metabolic effects of the conventionally defined high density lipoprotein (HDL) fraction of the rat by rat or human fibroblasts resembled those of human LDL in human fibroblasts. It is suggested that rat HDL may, because of its apo E content and higher concentration in rat plasma relative to that of LDL, play an important role in cholesterol homeostasis in vivo.  相似文献   

20.
Recent studies have shown that epidermal cholesterol synthesis is regulated by HMG CoA reductase activity and that this activity is modulated by changes in the cutaneous permeability barrier. Here, we quantitated HMG CoA reductase activity after acute and chronic barrier disruption in the upper and lower layers of murine epidermis. In unperturbed epidermis, 13 and 87% of enzyme activity localized to the upper and lower epidermis, respectively, with the majority of activity in the stratum basale. Acute barrier disruption with either acetone or sodium dodecylsulfate provoked an increase in HMG CoA reductase activity (54% and 30%) in the lower layers, but only a small change in the upper layers. However, the activation state of the enzyme was increased 50% in the upper epidermis. Correction of barrier function by occlusion with an impermeable Latex wrap prevented the increase both in enzyme activity and activation state. After chronic barrier disruption; i.e., essential fatty acid deficient (EFAD) diet, HMG CoA reductase activity was increased in the upper epidermis (161%); a change prevented by occlusion. These results show: (1) that HMG CoA reductase activity is present in both the upper and lower cell layers; (2) that acute insults to barrier integrity stimulate enzyme activity in both the upper and lower epidermis; and (3) that chronic insults provoke an increase in enzyme activity in the upper layers. These studies provide further insights into the linkage of the permeability barrier with epidermal cholesterol metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号