首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The emerging limbs and twigs of the East Asian mtDNA tree   总被引:33,自引:0,他引:33  
We determine the phylogenetic backbone of the East Asian mtDNA tree by using published complete mtDNA sequences and assessing both coding and control region variation in 69 Han individuals from southern China. This approach assists in the interpretation of published mtDNA data on East Asians based on either control region sequencing or restriction fragment length polymorphism (RFLP) typing. Our results confirm that the East Asian mtDNA pool is locally region-specific and completely covered by the two superhaplogroups M and N. The phylogenetic partitioning based on complete mtDNA sequences corroborates existing RFLP-based classification of Asian mtDNA types and supports the distinction between northern and southern populations. We describe new haplogroups M7, M8, M9, N9, and R9 and demonstrate by way of example that hierarchically subdividing the major branches of the mtDNA tree aids in recognizing the settlement processes of any particular region in appropriate time scale. This is illustrated by the characteristically southern distribution of haplogroup M7 in East Asia, whereas its daughter-groups, M7a and M7b2, specific for Japanese and Korean populations, testify to a presumably (pre-)Jomon contribution to the modern mtDNA pool of Japan.  相似文献   

2.
王晓庆  王传超  邓琼英  李辉 《遗传》2013,35(2):168-174
文章对我国广西仫佬族91个无关男性个体Y-STR、Y-SNP、mtDNA HVS-Ⅰ和mtDNA-SNP等进行检测分型, 探索仫佬族的分子遗传结构。结果显示:Y染色体单倍群O1a1-P203和O2a1*-M95在仫佬族中为高频单倍群, 利用Y-STR构建的N-J树中仫佬族与侗族聚类, 说明在父系遗传上仫佬族与侗族遗传关系较近; mtDNA中F1a、M*、B4a、B5a等4类单倍群高频出现, 体现出仫佬族在母系遗传方面具有典型的东亚南方群体特征。17个Y-STR位点和mtDNA HVS-Ⅰ具有丰富的遗传多态性, 在群体遗传学和法医学方面具有应用前景。  相似文献   

3.
The mtDNA variation of 411 individuals from 10 aboriginal Siberian populations was analyzed in an effort to delineate the relationships between Siberian and Native American populations. All mtDNAs were characterized by PCR amplification and restriction analysis, and a subset of them was characterized by control region sequencing. The resulting data were then compiled with previous mtDNA data from Native Americans and Asians and were used for phylogenetic analyses and sequence divergence estimations. Aboriginal Siberian populations exhibited mtDNAs from three (A, C, and D) of the four haplogroups observed in Native Americans. However, none of the Siberian populations showed mtDNAs from the fourth haplogroup, group B. The presence of group B deletion haplotypes in East Asian and Native American populations but their absence in Siberians raises the possibility that haplogroup B could represent a migratory event distinct from the one(s) which brought group A, C, and D mtDNAs to the Americas. Our findings support the hypothesis that the first humans to move from Siberia to the Americas carried with them a limited number of founding mtDNAs and that the initial migration occurred between 17,000-34,000 years before present.  相似文献   

4.
Mitochondrial DNAs (mtDNAs) of 54 Tibetans residing at altitudes ranging from 3,000–4,500 m were amplified by polymerase chain reaction (PCR), examined by high-resolution restriction endonuclease analysis, and compared with those previously described in 10 other Asian and Siberian populations. This comparison revealed that more than 50% of Asian mtDNAs belong to a unique mtDNA lineage which is found only among Mongoloids, suggesting that this lineage most likely originated in Asia at an early stage of the human colonization of that continent. Within the Tibetan mtDNAs, sets of additional linked polymorphic sites defined seven minor lineages of related mtDNA haplotypes (haplogroups). The frequency and distribution of these haplogroups in modern Asian populations are supportive of previous genetic evidence that Tibetans, although located in southern Asia, share common ancestral origins with northern Mongoloid populations. This analysis of Tibetan mtDNAs also suggests that mtDNA mutations are unlikely to play a major role in the adaptation of Tibetans to high altitudes. © 1994 Wiley-Liss, Inc.  相似文献   

5.
An unequal contribution of male and female lineages from parental populations to admixed ones is not uncommon in the American continents, as a consequence of directional gene flow from European men into African and Hispanic Americans in the past several centuries. However, little is known about sex-biased admixture in East Asia, where substantial migrations are recorded. Tibeto-Burman (TB) populations were historically derived from ancient tribes of northwestern China and subsequently moved to the south, where they admixed with the southern natives during the past 2600 years. They are currently extensively distributed in China and Southeast Asia. In this study, we analyze the variations of 965 Y chromosomes and 754 mtDNAs in >20 TB populations from China. By examining the haplotype group distributions of Y-chromosome and mtDNA markers and their principal components, we show that the genetic structure of the extant southern Tibeto-Burman (STB) populations were primarily formed by two parental groups: northern immigrants and native southerners. Furthermore, the admixture has a bias between male and female lineages, with a stronger influence of northern immigrants on the male lineages (approximately 62%) and with the southern natives contributing more extensively to the female lineages (approximately 56%) in the extant STBs. This is the first genetic evidence revealing sex-biased admixture in STB populations, which has genetic, historical, and anthropological implications.  相似文献   

6.
The southwestern and Central Asian corridor has played a pivotal role in the history of humankind, witnessing numerous waves of migration of different peoples at different times. To evaluate the effects of these population movements on the current genetic landscape of the Iranian plateau, the Indus Valley, and Central Asia, we have analyzed 910 mitochondrial DNAs (mtDNAs) from 23 populations of the region. This study has allowed a refinement of the phylogenetic relationships of some lineages and the identification of new haplogroups in the southwestern and Central Asian mtDNA tree. Both lineage geographical distribution and spatial analysis of molecular variance showed that populations located west of the Indus Valley mainly harbor mtDNAs of western Eurasian origin, whereas those inhabiting the Indo-Gangetic region and Central Asia present substantial proportions of lineages that can be allocated to three different genetic components of western Eurasian, eastern Eurasian, and south Asian origin. In addition to the overall composite picture of lineage clusters of different origin, we observed a number of deep-rooting lineages, whose relative clustering and coalescent ages suggest an autochthonous origin in the southwestern Asian corridor during the Pleistocene. The comparison with Y-chromosome data revealed a highly complex genetic and demographic history of the region, which includes sexually asymmetrical mating patterns, founder effects, and female-specific traces of the East African slave trade.  相似文献   

7.
Zheng HX  Yan S  Qin ZD  Wang Y  Tan JZ  Li H  Jin L 《PloS one》2011,6(10):e25835
It is a major question in archaeology and anthropology whether human populations started to grow primarily after the advent of agriculture, i.e., the Neolithic time, especially in East Asia, which was one of the centers of ancient agricultural civilization. To answer this question requires an accurate estimation of the time of lineage expansion as well as that of population expansion in a population sample without ascertainment bias. In this study, we analyzed all available mtDNA genomes of East Asians ascertained by random sampling, a total of 367 complete mtDNA sequences generated by the 1000 Genome Project, including 249 Chinese (CHB, CHD, and CHS) and 118 Japanese (JPT). We found that major mtDNA lineages underwent expansions, all of which, except for two JPT-specific lineages, including D4, D4b2b, D4a, D4j, D5a2a, A, N9a, F1a1'4, F2, B4, B4a, G2a1 and M7b1'2'4, occurred before 10 kya, i.e., before the Neolithic time (symbolized by Dadiwan Culture at 7.9 kya) in East Asia. Consistent to this observation, the further analysis showed that the population expansion in East Asia started at 13 kya and lasted until 4 kya. The results suggest that the population growth in East Asia constituted a need for the introduction of agriculture and might be one of the driving forces that led to the further development of agriculture.  相似文献   

8.
The mtDNAs of 76 individuals representing the aboriginal populations of South Siberia, the Tuvinians and Buryats, were subjected to restriction fragment length polymorphism (RFLP) analysis and control region hypervariable segment I (HVS-I) sequencing, and the resulting data were combined with those available for other Siberian and East Asian populations and subjected to statistical and phylogenetic analysis. This analysis showed that the majority of the Tuvinian and Buryat mtDNAs (94.4% and 92.5%, respectively) belong to haplogroups A, B, C, D, E, F, and M*, which are characteristic of Mongoloid populations. Furthermore, the Tuvinians and Buryats harbor four Asian- and Native American-specific haplogroups (A-D) with frequencies (72.2% and 55%, respectively) exceeding those reported previously for Mongolians, Chinese, and Tibetans. They represent, therefore, the populations that are most closely related to New World indigenous groups. Despite their geographical proximity, the Tuvinians and Buryats shared no HVS-I sequences in common, although individually they shared such sequences with a variety of other Siberian and East Asian populations. In addition, phylogenetic and principal component analyses data of mtDNA sequences show that the Tuvinians clustered more closely with Turkic-speaking Yakuts, whereas the Mongolic-speaking Buryats clustered closer to Korean populations. Furthermore, HVS-I sequences, comprising one-fourth of the Buryat lineages and characterized by the only C-to-T transition at nucleotide position 16223, were identified as different RFLP haplotypes (B, C, D, E, M*, and H). This finding appears to indicate the putative ancestral state of the 16223T HVS-I sequences to Mongoloid macrohaplogroup M, at least. Finally, the results of nucleotide diversity analysis in East Asian and Siberian populations suggest that Central and East Asia were the source areas from which the genetically heterogeneous Tuvinians and Buryats first emerged.  相似文献   

9.
An up-to-date view of the worldwide mitochondrial DNA (mtDNA) phylogeny together with an evaluation of the conservation of each site is a reliable tool for detecting errors in mtDNA studies and assessing the functional importance of alleged pathogenic mutations. However, most of the published studies on mitochondrial diseases make very little use of the phylogenetic knowledge that is currently available. This drawback has two inadvertent consequences: first, there is no sufficient a posteriori quality assessment of complete mtDNA sequencing efforts; and second, no feedback is provided for the general mtDNA database when apparently new mtDNA lineages are discovered. We demonstrate, by way of example, these issues by reanalysing three mtDNA sequencing attempts, two from Europe and another one from East Asia. To further validate our phylogenetic deductions, we completely sequenced two mtDNAs from healthy subjects that nearly match the mtDNAs of two patients, whose sequences gave problematic results.  相似文献   

10.
China has numerous native domestic goat breeds, but so far there has been no extensive study on genetic diversity, population demographic history, and origin of Chinese goats. Here, we examined the genetic diversity and phylogeographic structure of Chinese domestic goats by determining a 481-bp fragment of the first hypervariable region of mitochondrial DNA (mtDNA) control region from 368 individuals representing 18 indigenous breeds. Phylogenetic analyses revealed that there were four mtDNA lineages (A-D) identified in Chinese goats, in which lineage A was predominant, lineage B was moderate, and lineages C and D were at low frequency. These results further support the multiple maternal origins of domestic goats. The pattern of genetic variation in goat mtDNA sequences indicated that the two larger lineages A and B had undergone population expansion events. In a combined analysis of previously reported sequences and our sequences belonging to lineage B, we detected two subclades, in which one was unique to eastern Asia and another was shared between eastern and southern Asia. A larger genetic variation in eastern Asia than southern Asia and the pattern of phylogeographic variation in lineage B suggest that at least one subclade of lineage B originated from eastern Asia. There was no significant geographical structuring in Chinese goat populations, which suggested that there existed strong gene flow among goat populations caused by extensive transportation of goats in history.  相似文献   

11.
Mitochondrial DNA variation in Nicobarese Islanders.   总被引:4,自引:0,他引:4  
The aboriginal populations living in the Nicobar Islands are hypothesized to be descendants of people who were part of early human dispersals into Southeast Asia. However, analyses of ethnographic histories, languages, morphometric data, and protein polymorphisms have not yet resolved which worldwide populations are most closely related to the Nicobarese. Thus, to explore the origins and affinities of the Nicobar Islanders, we analyzed mitochondrial DNA (mtDNA) hypervariable region 1 sequence data from 33 Nicobarese Islanders and compared their mtDNA haplotypes to those of neighboring East Asians, mainland and island Southeast Asians, Indians, Australian aborigines, Pacific Islanders, and Africans. Unique Nicobarese mtDNA haplotypes, including five Nicobarese mtDNA haplotypes linked to the COII/tRNA(Lys) 9-bp deletion, are most closely related to mtDNA haplotypes from mainland Southeast Asian Mon-Kmer-speaking populations (e.g., Cambodians). Thus, the dispersal of southern Chinese into mainland Southeast Asia may have included a westward expansion and colonization of the islands of the Andaman Sea.  相似文献   

12.
The intergenic COII/tRNA(Lys) 9-bp deletion in human mtDNA, which is found at varying frequencies in Asia, Southeast Asia, Polynesia, and the New World, was also found in 81 of 919 sub-Saharan Africans. Using mtDNA control-region sequence data from a subset of 41 individuals with the deletion, we identified 22 unique mtDNA types associated with the deletion in Africa. A comparison of the unique mtDNA types from sub-Saharan Africans and Asians with the 9-bp deletion revealed that sub-Saharan Africans and Asians have sequence profiles that differ in the locations and frequencies of variant sites. Both phylogenetic and mismatch-distribution analysis suggest that 9-bp deletion arose independently in sub-Saharan Africa and Asia and that the deletion has arisen more than once in Africa. Within Africa, the deletion was not found among Khoisan peoples and was rare to absent in western and southwestern African populations, but it did occur in Pygmy and Negroid populations from central Africa and in Malawi and southern African Bantu-speakers. The distribution of the 9-bp deletion in Africa suggests that the deletion could have arisen in central Africa and was then introduced to southern Africa via the recent "Bantu expansion."  相似文献   

13.
To elucidate the human colonization process of northern Asia and human dispersals to the Americas, a diverse subset of 71 mitochondrial DNA (mtDNA) lineages was chosen for complete genome sequencing from the collection of 1,432 control-region sequences sampled from 18 autochthonous populations of northern, central, eastern, and southwestern Asia. On the basis of complete mtDNA sequencing, we have revised the classification of haplogroups A, D2, G1, M7, and I; identified six new subhaplogroups (I4, N1e, G1c, M7d, M7e, and J1b2a); and fully characterized haplogroups N1a and G1b, which were previously described only by the first hypervariable segment (HVS1) sequencing and coding-region restriction-fragment-length polymorphism analysis. Our findings indicate that the southern Siberian mtDNA pool harbors several lineages associated with the Late Upper Paleolithic and/or early Neolithic dispersals from both eastern Asia and southwestern Asia/southern Caucasus. Moreover, the phylogeography of the D2 lineages suggests that southern Siberia is likely to be a geographical source for the last postglacial maximum spread of this subhaplogroup to northern Siberia and that the expansion of the D2b branch occurred in Beringia ~7,000 years ago. In general, a detailed analysis of mtDNA gene pools of northern Asians provides the additional evidence to rule out the existence of a northern Asian route for the initial human colonization of Asia.  相似文献   

14.
The now-emerging mitochondrial DNA (mtDNA) population genomics provides information for reconstructing a well-resolved mtDNA phylogeny and for discerning the phylogenetic status of the subcontinentally specific haplogroups. Although several major East Asian mtDNA haplogroups have been identified in studies elsewhere, some of the most basal haplogroups, as well as numerous minor subhaplogroups, were not yet determined or fully characterized. To fill the lacunae, we selected 48 mtDNAs from >2,000 samples across China for complete sequencing that cover virtually all (sub)haplogroups discernible to date in East Asia. This East Asian mtDNA phylogeny can henceforth serve as a solid basis for phylogeographic analyses of mtDNAs, as well as for studies of mitochondrial diseases in East and Southeast Asia.  相似文献   

15.
Yao YG  Salas A  Bravi CM  Bandelt HJ 《Human genetics》2006,119(5):505-515
In a number of recent studies, we summarized the obvious errors and shortcomings that can be spotted in many (if not most) mitochondrial DNA (mtDNA) data sets published in medical genetics. We have reanalyzed here the complete mtDNA genome data published in various recent reports of East Asian families with hearing impairment, using a phylogenetic approach, in order to demonstrate the persistence of lab-specific mistakes in mtDNA genome sequencing in cases where those caveats were (deliberately) neglected. A phylogenetic reappraisal of complete mtDNAs with mutation A1555G (or G11778A) indeed supports the suggested lack of association between haplogroup background and phenotypic presentation of these mutations in East Asians. In contrast, the claimed pathogenicity of mutation T1095C in Chinese families with hearing impairment seems unsupported, basically because this mutation is rather basal in the mtDNA phylogeny, being specific to haplogroup M11 in East Asia. The roles of other haplogroup specific or associated variants, such as A827G, T961C, T1005C, in East Asian subjects with aminoglycoside-induced and non-syndromic hearing loss are also unclear in view of the known mtDNA phylogeny.  相似文献   

16.
Native Americans have been divided into three linguistic groups: the reasonably well-defined Eskaleut and Nadene of northern North America and the highly heterogeneous Amerind of North, Central, and South America. The heterogeneity of the Amerinds has been proposed to be the result of either multiple independent migrations or a single ancient migration with extensive in situ radiation. To investigate the origin and interrelationship of the American Indians, we examined the mitochondrial DNA (mtDNA) variation in 87 Amerinds (Pima, Maya, and Ticuna of North, Central, and South America, respectively), 80 Nadene (Dogrib and Tlingit of northwest North America and Navajo of the southwest North America), and 153 Asians from 7 diverse populations. American Indian mtDNAs were found to be directly descended from five founding Asian mtDNAs and to cluster into four lineages, each characterized by a different rare Asian mtDNA marker. Lineage A is defined by a HaeIII site gain at np 663, lineage B by a 9-bp deletion between the COII and tRNA(Lys) genes, lineage C by a HincII site loss at np 13259, and lineage D by an AluI site loss at np 5176. The North, Central, and South America Amerinds were found to harbor all four lineages, demonstrating that the Amerinds originated from a common ancestral genetic stock. The genetic variation of three of the four Amerind lineages (A, C, and D) was similar with a mean value of 0.084%, whereas the sequence variation in the fourth lineage (B) was much lower, raising the possibility of an independent arrival. By contrast, the Nadene mtDNAs were predominantly from lineage A, with 27% of them having a Nadene-specific RsaI site loss at np 16329. The accumulated Nadene variation was only 0.021%. These results demonstrate that the Amerind mtDNAs arose from one or maybe two Asian migrations that were distinct from the migration of the Nadene and that the Amerind populations are about four times older than the Nadene.  相似文献   

17.
《遗传学报》2021,48(10):899-907
Southern East Asia, including Guangxi and Fujian provinces in China, is home to diverse ethnic groups, languages, and cultures. Previous studies suggest a high complexity regarding population dynamics and the history of southern East Asians. However, large-scale genetic studies on ancient populations in this region are hindered by limited sample preservation. Here, using highly efficient DNA capture techniques, we obtain 48 complete mitochondrial genomes of individuals from Guangxi and Fujian in China and reconstruct their maternal genetic history over the past 12,000 years. We find a strong connection between southern East Asians dating to ~12,000–6000 years ago and present-day Southeast Asians. In addition, stronger genetic affinities to northern East Asians are observed in historical southern East Asians than Neolithic southern East Asians, suggesting increased interactions between northern and southern East Asians over time. Overall, we reveal dynamic connections between ancient southern East Asians and populations located in surrounding regions, as well as a shift in maternal genetic structure within the populations over time.  相似文献   

18.
A Neolithic domestication of taurine cattle in the Fertile Crescent from local aurochsen (Bos primigenius) is generally accepted, but a genetic contribution from European aurochsen has been proposed. Here we performed a survey of a large number of taurine cattle mitochondrial DNA (mtDNA) control regions from numerous European breeds confirming the overall clustering within haplogroups (T1, T2 and T3) of Near Eastern ancestry, but also identifying eight mtDNAs (1.3%) that did not fit in haplogroup T. Sequencing of the entire mitochondrial genome showed that four mtDNAs formed a novel branch (haplogroup R) which, after the deep bifurcation that gave rise to the taurine and zebuine lineages, constitutes the earliest known split in the mtDNA phylogeny of B. primigenius. The remaining four mtDNAs were members of the recently discovered haplogroup Q. Phylogeographic data indicate that R mtDNAs were derived from female European aurochsen, possibly in the Italian Peninsula, and sporadically included in domestic herds. In contrast, the available data suggest that Q mtDNAs and T subclades were involved in the same Neolithic event of domestication in the Near East. Thus, the existence of novel (and rare) taurine haplogroups highlights a multifaceted genetic legacy from distinct B. primigenius populations. Taking into account that the maternally transmitted mtDNA tends to underestimate the extent of gene flow from European aurochsen, the detection of the R mtDNAs in autochthonous breeds, some of which are endangered, identifies an unexpected reservoir of genetic variation that should be carefully preserved.  相似文献   

19.
Nucleotide sequences of the major noncoding (D-loop) region of human mtDNA from five East Asian populations including mainland Japanese, Ainu, Ryukyuans, Koreans, and Chinese were analyzed. On the basis of a comparison of 482-bp sequences in 293 East Asians, 207 different sequence types were observed. Of these, 189 were unique to their respective populations, whereas 18 were shared between two or three populations. Among the shared types, eight were found in common between the mainland Japanese and Koreans, which is the largest number in the comparison. The intergenic COII/tRNA(Lys) 9-bp deletion was observed in every East Asian population with varying frequencies. The D-loop sequence variation suggests that the deletion event occurred only once in the ancestry of East Asians. Phylogenetic analysis revealed that East Asian lineages were classified into at least 18 monophyletic clusters, though lineages from the five populations were completely intermingled in the phylogenetic tree. However, we assigned 14 of the 18 clusters for their specificity on the basis of the population from which the maximum number of individuals in each cluster was derived. Of note is the finding that 50% of the mainland Japanese had continental specificity in which Chinese or Koreans were dominant, while < 20% of either Ryukyuans or Ainu possessed continental specificity. Phylogenetic analysis of the entire human population revealed the closest genetic affinity between the mainland Japanese and Koreans. Thus, the results of this study are compatible with the hybridization model on the origin of modern Japanese. It is suggested that approximately 65% of the gene pool in mainland Japanese was derived from the continental gene flow after the Yayoi Age.  相似文献   

20.
Mitochondrial DNA (mtDNA) variability was studied in a sample of 179 individuals representing the Czech population of Western Bohemia. Sequencing of two hypervariable segments, HVS I and HVS II, in combination with screening of coding-region haplogroup-specific RFLP markers revealed that most Czech mtDNAs belong to the common West Eurasian mitochondrial haplogroups (H, pre-V HV*, J, T, U, N1, W, and X). However, about 3% of Czech mtDNAs encompass East Eurasian lineages (A, N9a, D4, M*). A comparative analysis with published data showed that different Slavonic populations in Central and Eastern Europe contain small but marked amounts of East Eurasian mtDNAs. We suggest that the presence of East Eurasian mtDNA haplotypes is not an original feature of the gene pool of the proto-Slavs but rather may be mostly a consequence of admixture with Central Asian nomadic tribes, who migrated into Central and Eastern Europe in the early Middle Ages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号