首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tamoxifen, a pioneering selective estrogen receptor modulator (SERM), has long been a therapeutic choice for all stages of estrogen receptor (ER)-positive breast cancer. The clinical application of long-term adjuvant antihormone therapy for the breast cancer has significantly improved breast cancer survival. However, acquired resistance to SERM remains a significant challenge in breast cancer treatment. The evolution of acquired resistance to SERMs treatment was primarily discovered using MCF-7 tumors transplanted in athymic mice to mimic years of adjuvant treatment in patients. Acquired resistance to tamoxifen is unique because the growth of resistant tumors is dependent on SERMs. It appears that acquired resistance to SERM is initially able to utilize either E2 or a SERM as the growth stimulus in the SERM-resistant breast tumors. Mechanistic studies reveal that SERMs continuously suppress nuclear ER-target genes even during resistance, whereas they function as agonists to activate multiple membrane-associated molecules to promote cell growth. Laboratory observations in vivo further show that three phases of acquired SERM-resistance exists, depending on the length of SERMs exposure. Tumors with Phase I resistance are stimulated by both SERMs and estrogen. Tumors with Phase II resistance are stimulated by SERMs, but are inhibited by estrogen due to apoptosis. The laboratory models suggest a new treatment strategy, in which limited-duration, low-dose estrogen can be used to purge Phase II-resistant breast cancer cells. This discovery provides an invaluable insight into the evolution of drug resistance to SERMs, and this knowledge is now being used to justify clinical trials of estrogen therapy following long-term antihormone therapy. All of these results suggest that cell populations that have acquired resistance are in constant evolution depending upon selection pressure. The limited availability of growth stimuli in any new environment enhances population plasticity in the trial and error search for survival.  相似文献   

2.
Raloxifene, a selective estrogen receptor modulator (SERM), reduces fracture risk at least in part by improving the mechanical properties of bone in a cell- and estrogen receptor-independent manner. In this study, we determined that raloxifene directly interacts with the bone tissue. Through the use of multiple and complementary biophysical techniques including nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR), we show that raloxifene interacts specifically with the organic component or the organic/mineral composite, and not with hydroxyapatite. Structure–activity studies reveal that the basic side chain of raloxifene is an instrumental determinant in the interaction with bone. Thus, truncation of portions of the side chain reduces bone binding and also diminishes the increase in mechanical properties. Our results support a model wherein the piperidine interacts with bone matrix through electrostatic interactions with the piperidine nitrogen and through hydrophobic interactions (van der Waals) with the aliphatic groups in the side chain and the benzothiophene core. Furthermore, in silico prediction of the potential binding sites on the surface of collagen revealed the presence of a groove with sufficient space to accommodate raloxifene analogs. The hydroxyl groups on the benzothiophene nucleus, which are necessary for binding of SERMs to the estrogen receptor, are not required for binding to the bone surface, but mediate a more robust binding of the compound to the bone powder. In conclusion, we report herein a novel property of raloxifene analogs that allows them to interact with the bone tissue through potential contacts with the organic matrix and in particular collagen.  相似文献   

3.
4.
Selective estrogen receptor modulators (SERMs) show differential effects upon ERalpha activation function 1 (AF-1). Tamoxifen allows strong ERalpha AF-1 activity, whereas raloxifene allows less and ICI 182,780 (ICI) allows none. Here, we show that blockade of corepressor histone de-acetylase (HDAC) activity reverses the differential inhibitory effect of SERMs upon AF-1 activity in MCF-7 cells. This suggests that differential SERM repression of AF-1 involves HDAC-dependent corepressors. Consistent with this, ICI and raloxifene are more potent than tamoxifen in promoting ERalpha-dependent sequestration of progesterone receptor-associated corepressors. Moreover, ICI and raloxifene are more efficient than tamoxifen in promoting ERalpha binding to the corepressor N-CoR in vivo and in vitro. An ERalpha mutation (537X) that increases N-CoR binding in the presence of all SERMs blocks AF-1 activity. An ERalpha mutation (L379R) that decreases N-CoR binding increases AF-1 activity in the presence of ICI and raloxifene and reverses the effect of the 537X mutation. The 537X and L379R mutations also alter the ligand preference of ERalpha action at AP-1 sites and C3 complement, an action that also involves AF-1. Together, our results suggest that differential SERM effects on corepressor binding can explain differences in SERM effects on ERalpha activity. We propose a model for differential effects of SERMs on N-CoR binding.  相似文献   

5.
Ligand-selective interdomain conformations of estrogen receptor-alpha   总被引:1,自引:0,他引:1  
Selective estrogen receptor modulators (SERMs) inhibit estrogen activation of the estrogen receptor (ER) in some tissues but activate ER in other tissues. These tissue-selective actions suggest that SERMs may be identified with tissue specificities that would improve the safety of breast cancer and hormone replacement therapies. The identification of an improved SERM would be aided by understanding the effects of each SERM on the structure and interactions of ER. To date, the inability to obtain structures of the full-length ER has limited our structural characterization of SERM action to their antiestrogenic effects on the isolated ER ligand binding domain. We studied the effects of estradiol and the clinically useful SERMs 4-hydroxytamoxifen and fulvestrant on the conformation of the full-length ERalpha dimer complex by comparing, in living human breast cancer cells, the amounts of energy transfer between fluorophores attached to different domains of ERalpha. Estradiol, 4-hydroxytamoxifen, and fulvestrant all promoted the rapid formation of ERalpha dimers with equivalent interaction kinetics. The amino- and carboxyl-terminal ERalpha domains both contain activation functions differentially affected by these ligands, but the positions of only the carboxyl termini differed upon binding with estradiol, 4-hydroxytamoxifen, or fulvestrant. The association of a specific ERalpha dimer conformation with the binding of ligands of different clinical effect will assist the identification of a SERM with optimal tissue-selective estrogenic and antiestrogenic activities. These studies also provide a roadmap for dissecting important structural and kinetic details for any protein complex from the quantitative analysis of energy transfer.  相似文献   

6.
雌激素替代疗法(estrogen replacement therapy,ERT)是治疗绝经后综合征的首选治疗方案,但是长期应用导致子宫内膜增生、乳腺癌等。选择性雌激素受体调节剂主要通过ER亚型、共调节子、靶启动子、雌激素受体相关受体等机制实现其组织选择性,在发挥骨骼、心血管保护作用的同时,减少了对乳腺及生殖系统的副作用。目前,选择性雌激素受体调节剂的种类、作用的组织特异性及其临床应用在医学界引起广泛关注,具有广阔的发展前景。  相似文献   

7.
Estrogen deprivation is one of the major factors responsible for many age-related processes including poor wound healing in postmenopausal women. However, the reported side-effects of estrogen replacement therapy (ERT) have precluded broad clinical administration. Therefore, selective estrogen receptor modulators (SERMs) have been developed to overcome the detrimental side effects of ERT on breast and/or uterine tissues. The use of natural products isolated from plants (e.g., soy) may represent a promising source of biologically active compounds (e.g., genistein) as efficient alternatives to conventional treatment. Genistein as natural SERM has the unique ability to selectively act as agonist or antagonist in a tissue-specific manner, i.e., it improves skin repair and simultaneously exerts anti-cancer and chemopreventive properties. Hence, we present here a wound healing phases-based review of the most studied naturally occurring SERM.  相似文献   

8.
9.
10.
Selective estrogen receptor modulators (SERMs) represent a growing class of compounds that act as either estrogen receptor gonists or ntagonists in tissue-selective manner. SERMs with the appropriate selectivity profile offer the opportunity to dissociate the favorable bone and cardio-vascular effects of estrogen from its unfavorable stimulatory effects on the breast and uterus. The triphenylethylene drug tamoxifen proved to be invaluable to treat and protect against breast cancer and bone loss, probably reduces cardiovascular risk, but had side effects on uterus similar to natural estrogens. The tamoxifen derivate toremifene is also used to treat breast cancer, but has less effect on bone. The non-steroidal benzothiophene derivate, raloxifene, is the best SERM available thus far. It has the potential to prevent breast cancer (like tamoxifen), but has better profile in its actions on bone and cardiovascular system (produces a rapid reduction of serum cholesterol, decreases fibrinogen and lipoprotein, improves the vascular epithelial function, attenuates vascular intimal thickening, etc.). It does not increase the incidence of endometrial cancer. Compounds of this class are the first step in developing the perfect hormone replacement and other multitargeted therapy. This review summarizes the recent important knowledge about SERMs.  相似文献   

11.
o-Quinone forming estrogens and selective estrogen receptor modulators (SERMs) have been associated with carcinogenesis. LY2066948, a novel SERM in development by Eli Lilly for the treatment of uterine fibroids and myomas, has structural similarity to the equine estrogen equilenin present in hormone replacement formulations; both contain a naphthol group susceptible to oxidative metabolism to o-quinones. LY2066948 was synthesized and assayed for antiestrogenic activity, and in cell culture was confirmed to be a more potent antiestrogen than the prototypical SERM, 4-hydroxytamoxifen. Oxidation of LY2066948 with 2-iodoxybenzoic acid gave an o-quinone (t(1/2)=3.9 ± 0.1h) which like 4-hydroxyequilenin-o-quinone (t(1/2)=2.5 ± 0.2 h) was observed to be exceptionally long-lived with the potential to cause cytotoxicity and/or genotoxicity. In model reactions with tyrosinase, the catechol metabolites of LY2066948 and equilenin were products; interestingly, in the presence of ascorbate to inhibit autoxidation, these catechols were formed quantitatively. Tyrosinase incubations in the presence of GSH gave the expected GSH conjugates resulting from trapping of the o-quinones, which were characterized by LC-MS/MS. Incubations of LY2066948 or equilenin with rat liver microsomes also gave detectable o-quinone trapped GSH conjugates; however, as observed with other SERMs, oxidative metabolism of LY2066948 mainly occurred on the amino side chain to yield the N-dealkylated metabolite. CYP1B1 is believed to be responsible for extra-hepatic generation of genotoxic estrogen quinones and o-quinone GSH conjugates were detected in equilenin incubations. However, in corresponding incubations with CYP1B1 supersomes, no o-quinone GSH conjugates of LY2066948 were detected. These studies suggest that although the naphthol group is susceptible to oxidative metabolism to long-lived o-quinones, the formation of these quinones by cytochrome P450 can be attenuated by the chemistry of the remainder of the molecule as in the case of LY2066948.  相似文献   

12.
Aromatase inhibitors (AIs) are becoming the endocrine treatment of first choice for postmenopausal women with hormone receptor-positive breast cancer and are under investigation for use in breast cancer prevention. AIs reduce circulating estrogen to barely detectable concentrations. It is possible that such a low concentration will be deleterious to the vascular system since estrogen receptors are known to be in the cell walls of blood vessels and estrogen is thought to be important in maintaining blood vessel integrity. Because most women who present with primary breast cancer are cured by surgery and systemic therapy and the major cause of female death is vascular disease, it is particularly important to investigate the vascular side effects of AIs in current breast cancer adjuvant and prevention trials. In order to set the vascular toxicities of AIs reported in the current adjuvant trials into context, here we compare them with the toxicities seen during treatment with hormone replacement therapy (HRT) and selective estrogen receptor modulators (SERMs). Clinical trial evidence indicates that HRT increases risk of coronary heart disease (CHD) whereas SERMs and AIs (to date) appear to be neutral. Cerebrovascular disease and venous thromboembotic events are increased by HRT and SERMs but appear to be unaffected by treatment with AIs. Cognitive function is also considered here since it may also have a vascular component and is potentially a serious potential side effect/benefit of AIs. Recent studies indicate that HRT has a small detrimental effect on cognitive function and is associated with a doubling of the incidence of dementia. A comprehensive study of the SERM, raloxifene, on cognitive function showed no significant effect. There are no definitive reported studies investigating tamoxifen and none for AIs on cognitive function, although there is one in progress in the context of the IBIS II prevention trial which compares anastrozole to placebo in women at high risk. At present concerns about deleterious vascular side effects are confined to HRT and SERMs. However, we have few long-term data using AIs for the treatment and prevention of breast cancer.  相似文献   

13.
14.
Bazedoxifene (BZA), a new selective estrogen receptor modulator (SERM) was recently approved in Europe for the prevention and treatment of postmenopausal osteoporosis. Combination therapy using BZA and conjugated estrogens (CE) is currently in late stage development representing a new paradigm for the treatment of menopausal symptoms and prevention of osteoporosis. A GeneChip microarray study was designed to compare gene expression profiles of BZA to that of other SERMs, raloxifene (RAL) and lasofoxifene (LAS). In addition, we compared the gene expression profiles of the three SERMs in combination with CE, a mixture of 10 most abundant estrogens present in Premarin. According to the hierarchical clustering heat map analysis, gene clusters that specifically responded to CE treatments or SERM treatments were identified and gene lists sorted based on a set of cutoff filters. A group of genes differentially regulated by CE were also identified to be antagonized by BZA when comparing CE with the BZA + CE treatment. All three SERMs showed significant antagonistic effect against CE-stimulated cell proliferation, based on the MCF-7 cell proliferation assay and GeneChip data, with the order of antagonist activity being BZA > RAL > LAS. These results indicate that SERMs in combination with CE exhibit differential pharmacology, and therefore, combinations of other SERMs and estrogen preparations may not yield the same effects that are observed in clinic by pairing BZA with CE.  相似文献   

15.
We examined in vivo effects of selective estrogen receptor modulators (SERMs) 4-OH-tamoxifen (Tam), GW 5638 (GW) and EM-800 (EM) on myometrial gene expression. The uteri of ovariectomized ewes were infused with 10−7 M of one SERM via indwelling catheters for 24 h preceding hysterectomy. Half of the ewes in each SERM group received an intramuscular injection of 50 μg 17β-estradiol (E2) 18 h prior to hysterectomy. Northern blot analysis and in situ hybridization demonstrated that E2 increased estrogen receptor (ER), progesterone receptor (PR) and cyclophilin (CYC) gene expression in the cells of both inner layer of myometrium (IM) and outer layer of myometrium (OM) as well as glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene expression in OM. Tam also increased ER mRNA levels in OM. EM appeared to increase ER gene expression, but antagonized E2’s up-regulation of PR and CYC gene expression in both IM and OM. Tam and GW also antagonized E2 up-regulation of PR gene expression in OM but not IM. No SERM affected GAPDH gene expression with or without E2. Immunohistochemistry indicated that E2 increased nuclear ER and PR protein levels in both IM and OM. EM was unique in up-regulating ER protein levels, opposite to its effects in endometrial cells. All SERMs tested antagonized this increase in PR immunostaining preferentially in OM compared to the IM layer. These results illustrate gene and cell layer-specific effects of SERMs in sheep myometrium.  相似文献   

16.
17.
Selective estrogen receptor modulators (SERMs) have the potential to treat estrogen sensitive diseases such as uterine leiomyoma and endometriosis, which are prevalent in reproductive age women. However, SERMs also increase the risk of developing ovarian cysts in this population, a phenomenon that is not seen in postmenopausal women. It is believed that current SERMs partially block estradiol's ability to downregulate gonadotropin-releasing hormone (GnRH) secretion from the hypothalamus thereby interfering with estradiol's negative feedback, leading to increased ovarian stimulation by gonadotropins, and cyst formation. It has been postulated that a SERM with poor brain exposure would have less negative effect on the HPO axis, therefore reducing the risk of developing ovarian cysts. In order to test this hypothesis, we identified an early marker of SERM-dependent ovarian effects: upregulation of Cyp17a1 mRNA. SERMs known to cause ovarian cysts upregulate Cyp17a1 after only 4 days of dosing and suppression of the HPO axis prevented this regulation, indicating that ovarian expression of Cyp17a1 was secondary to SERM's effect on the brain. We then characterized three SERMs with similar binding affinity and antagonist effects on the uterus for their relative brain/plasma exposure and ovarian effects. We found that the degree of brain exposure correlated very well with Cyp17a1 expression.  相似文献   

18.
Tamoxifen has not only proved to be a valuable treatment for estrogen receptor (ER)-positive breast cancer, but is also a pioneering medicine for chemoprevention in high-risk pre- and postmenopausal women. Insights into the pharmacology and toxicology of tamoxifen have led to the recognition of selective ER modulators (SERMs) with estrogen-like actions in maintaining bone density and in lowering circulating cholesterol, but antiestrogenic actions in the breast. Raloxifene, a related SERM, is now available to treat osteoporosis and is also being tested as a preventive for breast cancer and coronary heart disease. Emerging knowledge about the action of SERMs will provide clues for the design of mechanism-based medicines.  相似文献   

19.
Tibolone, selective estrogen receptor modulators (SERMs) like tamoxifen and raloxifene, and estrogen (±progestogen) treatments prevent bone loss in postmenopausal women. They exert their effects on bone via the estrogen receptor (ER) and the increase in bone mass is due to resorption inhibition. The effect of SERMs on bone mineral density is less than that with the other treatments, but the SERM raloxifene still has a positive effect on vertebral fractures. In contrast to tibolone and estrogens (±progestogen), SERMs do not treat climacteric complaints, whilst estrogen plus progestogen treatments cause a high incidence of bleeding. Estrogen plus progestogen combinations have compromising effects on the breast. Tibolone and SERMs do not stimulate the breast or endometrium. Unlike SERMs, tibolone does not posses antagonistic biological effects via the ER in these tissues. Estrogenic stimulation in these tissues is prevented by local metabolism and inhibition of steroid metabolizing enzymes by tibolone and its metabolites. SERMs and estrogen (±progestogen) treatments increase the risk of venous thromboembolism (VTE), whilst estrogen (±progestogen) combinations have unwanted effects on cardiovascular events. So far, no detrimental effects of tibolone have been observed with respect to VTE or cardiovascular events. The clinical profile of tibolone therefore has advantages over those of other treatment modalities. It is also clear that tibolone is a unique compound with a specific mode of action and that it belongs to a separate class of compounds that can best be described as selective, tissue estrogenic activity regulators (STEARs).  相似文献   

20.
To investigate the differential short-term effects of selective estrogen receptor (ER) modulators (SERMs) on uterus, we treated adult ovariectomized rats with a novel SERM, ospemifene (Osp), two previously established SERMs (tamoxifen and raloxifene (Ral)) and estradiol. The expression of two estrogen-regulated early response genes c-fos and vascular endothelial growth factor (VEGF), and DNA synthesis were analysed at 1-24 h after treatment of ovariectomized rats. Induction of c-fos mRNA by each of the SERMs showed a biphasic pattern with peaks at 3 and 20 h, respectively. The maximum level of VEGF mRNA was observed at 1 h after raloxifene and 6 h after tamoxifen or ospemifene treatment. Maximum levels of the c-fos and VEGF mRNA after raloxifene treatment were higher than those seen after treatments with E2 or a corresponding dose of tamoxifen or ospemifene. DNA synthesis was significantly increased by ospemifene, tamoxifen and raloxifene both in luminal and glandular epithelium. The stimulation was transient, peaking at 16 h. In comparison, the maximum level observed at 16 h after E2 treatment sustained at least until 24 h. DNA synthesis in stromal cells was increased by the SERMs but not by E2 at 24 h. When treated together with E2, the SERMs were able to antagonise E2-stimulated DNA synthesis at 16 h. Our results demonstrate that the initial response of uterus to ospemifene, raloxifene and tamoxifen includes activation of early response genes and even transient stimulation of DNA synthesis in spite of their different long-term effects. However, the early stimulatory events may be mediated by different mechanisms leading to diverging pathways in various tissue compartments and development of differential SERM-specific long-term responses of uterus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号