首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organophosphorus pesticides (OPPs), widely known as persistent organic pollutants, are the most popular contaminants in agriculture products in developing countries. The determination of OPPs in complex matrices, such as food, environmental and biological samples, usually requires extensive sample pretreatment. This review focuses on the sorptive extraction techniques applied as sample pretreatment for OPPs in complex matrices, including solid-phase extraction (SPE) and solid-phase microextraction (SPME). These methods are evaluated and the applications of each technique are demonstrated extensively with many practical examples.  相似文献   

2.
A rapid screening method using microwave-assisted extraction (MAE) in combination with gas chromatography and mass spectrometry for the determination of 70 pesticide residues in soil was established. The pesticides included 27 organophosphorus pesticides (OPPs), 29 organochlorine pesticides (OCPs), nine pyrethroids, and five carbamates. Parameters that could affect the efficiency of extraction, such as temperature, time, and solvent, were investigated. The condition of the extraction, under which recoveries of all 70 pesticides ranged from 70% to 120%, was optimized with a 1:1 (V/V) mixture of acetone and hexane, a temperature of 100°C, and an extraction time of 10 min. All compounds studied could be recovered in good yields and with relative standard deviations (RSDs) lower than 20%. The linearity of the method for all the pesticides was greater than 0.99 over a concentration range of 0.1–5 μg/g. The detection limits varied from 0.5 to 211.25 ng/g. Interday and intraday precision analyses yielded RSDs of 1.2%–11.7% and 3.6%–15.1%, respectively. This method, which was as effective as Soxhlet extraction and accelerated solvent extraction (ASE), proved to be accurate and precise. When the proposed method was used to examine environmental samples, the obtained results were in good agreement with those obtained using Soxhlet extraction.  相似文献   

3.
Solid-phase microextraction (SPME) is under investigation for its usefulness in the determination of a widening variety of volatile and semivolatile analytes in biological fluids and materials. Semivolatiles are increasingly under study as analytical targets, and difficulties with small partition coefficients and long equilibration times have been identified. Amphetamines were selected as semivolatiles exhibiting these limitations and methods to optimize their determination were investigated. A 100- micro m polydimethylsiloxane (PDMS)-coated SPME fiber was used for the extraction of the amphetamines from human urine. Amphetamine determination was made using gas chromatography (GC) with flame-ionization detection (FID). Temperature, time and salt saturation were optimized to obtain consistent extraction. A simple procedure for the analysis of amphetamine (AMP) and methamphetamine (MA) in urine was developed and another for 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxy-N-methamphetamine (MDMA) and 3,4-methylenedioxy-N-ethylamphetamine (MDEA) using headspace solid-phase microextraction (HS-SPME) and GC-FID. Higher recoveries were obtained for amphetamine (19.5-47%) and methamphetamine (20-38.1%) than MDA (5.1-6.6%), MDMA (7-9.6%) and MDEA (5.4-9.6%).  相似文献   

4.
Solid-phase microextraction (SPME) has gained widespread acceptance for analyte-matrix separation and preconcentration. SPME is a simple, effective adsorption/desorption technique that eliminates the need for solvents or complicated apparatus for concentrating volatile or non-volatile compounds in liquid samples or headspace. SPME is compatible with analyte separation/detection by gas chromatography and high performance liquid chromatography and provides linear results for a wide range of concentrations of analytes. By controlling the polarity and thickness of the coating on the fiber, maintaining consistent sampling time, and adjusting several other extraction parameters, an analyst can ensure highly reliable results for low concentrations of analytes. This review provides updated information on SPME with chromatographic separation for the extraction and measurement of different analytes in biological fluids and materials. Firstly the background to the technique is given in terms of apparatus, fibers used, extraction conditions and derivatisation procedures. Then the different matrices, urine, blood, breast milk, hair and saliva are considered separately. Finally, the future potential of SPME for the analysis of biological samples in terms of the development of new devices and fiber chemistries as well as applications for in vivo studies are discussed.  相似文献   

5.
This review discusses the most recent developments and future challenges in the application of solid phase microextraction (SPME) for sampling of live biological samples. The emphasis is placed on applications of fiber SPME for analysis of volatile emissions and drugs in biological fluids. The method development section highlights the main parameters that need to be considered in the case of in vivo experiments: extraction techniques, selection of extraction phases, calibration procedures, determination of free concentrations, and automation.  相似文献   

6.
This review discusses the most recent developments and future challenges in the application of solid phase microextraction (SPME) for sampling of live biological samples. The emphasis is placed on applications of fiber SPME for analysis of volatile emissions and drugs in biological fluids. The method development section highlights the main parameters that need to be considered in the case of in vivo experiments: extraction techniques, selection of extraction phases, calibration procedures, determination of free concentrations, and automation.  相似文献   

7.
In the present work, solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) was developed for investigation of lung cancer volatile biomarkers. Headspace SPME conditions (fiber coating, extraction temperature and extraction time) and desorption conditions were optimized and applied to determination of volatiles in human blood. To find the biomarkers of lung cancer, investigation of volatile compounds in lung cancer blood and control was performed by using the present method. Concentrations of hexanal and heptanal in lung cancer blood were found to be much higher than those in control blood. The two molecules of hexanal and heptanal were regarded as biomarkers of lung cancer. By comparison of volatiles in breath and in blood, it is demonstrated that hexanal and heptanal in breath were originated from blood and screening of lung cancer by breath analysis be feasible. These results show that SPME/GC-MS is a simple, rapid and sensitive method very suitable for investigation of volatile disease markers in human blood.  相似文献   

8.
Modern extraction techniques, supercritical fluid extraction (SFE) and solid-phase microextraction (SPME) were used for isolation of four corticosteroids from biological matrices. SFE was applied for extraction from solid matrices--hydromatrix and pig muscle. The effects of various extraction conditions were studied. Good recoveries of corticosteroids from hydromatrix were obtained under moderate extraction conditions and without modification of carbon dioxide. On the contrary, the best recoveries from spiked pig muscle were obtained with modified carbon dioxide. SPME was used for extraction from liquid samples--water and urine. The eventuality of the use of this fast solvent-free technique in steroid analysis is demonstrated. Several extraction conditions were optimized. Extracted steroids were analyzed by HPLC-UV and a special SPME-HPLC interface was used for combination with SPME.  相似文献   

9.
Solid-phase extraction (SPE) procedures for pesticide residues in food and environment are reviewed and discussed. The use of these procedures, which include several approaches such as: matrix solid-phase dispersion (MSPD), solid-phase micro-extraction (SPME) and stir-bar sorptive extraction (SBSE), represents an opportunity to reduce analysis time, solvent consumption, and overall cost. SPE techniques differ from solvent extraction depending on the interactions between a sorbent and the pesticide. This interaction may be specific for a particular pesticide, as in the interaction with an immunosorbent, or non-specific, as in the way a number of different pesticides are adsorbed on apolar or polar materials. A variety of applications were classified according to the method applied: conventional SPE, SPME, hollow-fiber micro-extraction (HFME), MSPD and SBSE. Emphasis is placed on the multiresidue analysis of liquid and solid samples.  相似文献   

10.
Solid-phase extraction (SPE) procedures for pesticide residues in food and environment are reviewed and discussed. The use of these procedures, which include several approaches such as: matrix solid-phase dispersion (MSPD), solid-phase micro-extraction (SPME) and stir-bar sorptive extraction (SBSE), represents an opportunity to reduce analysis time, solvent consumption, and overall cost. SPE techniques differ from solvent extraction depending on the interactions between a sorbent and the pesticide. This interaction may be specific for a particular pesticide, as in the interaction with an immunosorbent, or non-specific, as in the way a number of different pesticides are adsorbed on apolar or polar materials. A variety of applications were classified according to the method applied: conventional SPE, SPME, hollow-fiber micro-extraction (HFME), MSPD and SBSE. Emphasis is placed on the multiresidue analysis of liquid and solid samples.  相似文献   

11.
Simultaneous determination of cyanide and volatile alkylnitriles such as acetonitrile, cis- and trans-crotononitrile, allylnitrile and butyronitrile at low ppb concentration on whole blood (rat and mice) by headspace solid-phase microextraction (HS-SPME) followed by gas chromatography (GC) with nitrogen phosphorus detection has been achieved for the first time. SPME extraction time and temperature were optimized using a star experimental design. Optimum conditions for cyanide extraction were chosen to analyze unspiked blood samples containing alkylnitriles as that analyte occurs at the lowest concentrations. For all analytes, the developed methodology yielded good quality parameters. In all cases, good reproducibility (relative standard deviation < or =12%), detection limits (<3ng mL(-1)) and quantification limits (<4 ng mL(-1)) were recorded.  相似文献   

12.
A simple and rapid method based on solid phase microextraction (SPME) via direct immersion followed by gas chromatography coupled with electron impact ionization/mass spectrometry (GC/EI-MS) was developed for the determination of strychnine in blood. Papaverine was used as internal standard (I.S.). Two types of fibre coating were tested, 100 microm polydimethylsiloxane and 65 microm Carbowax/Divinylbenzene, the latter giving higher recoveries of the compound. The main factors affecting the SPME process, such as sample dilution (1:10), adsorption and desorption times (20 and 10 min, respectively), carry-over effect (not observed), pH and salt addition (no modifications on pH or salt concentration) were optimized. The procedure was validated in terms of linearity (r(2)=0.9992 for concentrations ranging from 0.10 to 5.00 microg/mL), intra and interday precision (0.93 and 4.62%, respectively at 0.50 microg/mL; 3.33 and 8.06%, respectively at 2.50 microg/mL), sensitivity (6.83 and 8.91 ng/mL for LOD and LOQ, respectively) and extraction recovery (0.54 and 0.39% at 0.50 and 2.50 microg/mL, respectively). The developed procedure was found suitable for forensic investigations and was considered a good alternative to the liquid-liquid extraction methods normally used for the determination of this compound in biological media.  相似文献   

13.
Zhao Q  Twu P  Anderson JL 《Chirality》2012,24(3):201-208
Ionic liquids (ILs) have been widely used as reaction solvents in asymmetric synthesis due to their interesting physical and chemical properties. However, monitoring reactant-to-product conversion and the enantiopurity of formed stereoisomers often involves a tedious extraction step before chromatographic analysis. In this study, a rapid and sensitive sampling method using headspace solid-phase microextraction (SPME) coupled to chiral gas chromatography was developed for the "on-line" analysis of chiral molecules in the IL solvent. Three different SPME sorbent coatings, namely polydimethylsiloxane, polyacrylate, and a polymeric ionic liquid-based fiber, were examined in this study. The analytical performance of the developed method was evaluated in terms of reproducibility, slope of calibration curve, linear range, calibration linearity, and the determination of detection limits. The SPME method was successfully applied in the determination of enantiomeric excess from selected mixtures of chiral molecules. A preliminary study was performed using an "on-fiber" derivatization approach revealing that the stereoisomers extracted by the SPME fiber can be efficiently derivatized using a short "on-fiber" derivatization step. The developed SPME method eliminates the need of sequestering the reaction, separating the compounds of interest from the IL solvent, and the addition of a derivatizing reagent.  相似文献   

14.
A novel method for fast determination of fluoroacetamide, a kind of organic fluorine pesticide, in blood and urine samples was developed with acetamide as an internal standard using gas chromatography/mass spectrometry (GC/MS) after solid-phase microextraction (SPME) technique. The SPME was performed by immersing a PDMS fiber of 100 microm coating thickness in a sample solution for 25 min at 70 degrees C with (CH(3)CH(2))(4)NBr to improve the extraction efficiency. After a GC sample injection, the extracted fluoroacetamide was desorbed from the fiber for 4 min to perform the GC/MS detection with a HP-PLOT Q capillary column. The analytical conditions were optimized by examining systematically, the effects of experimental parameters on the ratio of characteristic ion peak areas of fluoroacetamide to acetamide. Under optimal conditions, the ratio was proportional to the concentration of fluoroacetamide ranging from 5.0 to 90 microg/ml with a detection limit of 1.0 microg/ml. The average recovery of fluoroacetamide in blood sample was 92.2%. The established method could be used for the fast and convenient measurement of fluoroacetamide in poisoned sample.  相似文献   

15.
Acetone is an important volatile disease marker. Due to its nature of activity and volatility, it is a difficult task to measure the concentration of acetone in biological samples with accuracy. In this paper, we developed a novel method for determination of trace amount acetone in human plasma by solid-phase microextraction technique with on-fiber derivatization. In this method, the poly(dimethylsiloxane)/divinylbenzene (PDMS/DVB) fiber was used and O-2,3,4,5,6-(pentafluorobenzyl) hydroxylamine hydrochloride (PFBHA) was first loaded on the fiber. Acetone in plasma sample was agitated into headspace and extracted by solid-phase microextraction (SPME) fiber and subsequently derivatized with PFBHA on the fiber. Acetone oxime was analyzed by gas chromatography-mass spectrometry (GC-MS). Quantitative analysis of acetone in plasma was carried out by using external standard method. The SPME conditions (extraction temperature and time) and the method validation were studied. The present method was tested by determination of acetone in diabetes plasma and normal plasma. Acetone concentration in diabetes plasma was found to be higher than 1.8mM, while in normal plasma was lower than 0.017 mM. The results show that the present method is a potential tool for diagnosis of diabetes.  相似文献   

16.
Analytical aspects concerning the heterocyclic aromatic amines (HAAs) determination in foods are reviewed. Sample pre-treatment procedures such as liquid-liquid extraction (LLE), supercritical fluid extraction, solid-phase extraction (SPE), solid-phase microextraction (SPME), and the mainly used LLE-SPE tandem extraction are discussed. The analytical methods used for the identification and quantification are HPLC, HPLC combined with single or tandem MS detection (HPLC-MS, HPLC-MS/MS), GC-MS and capillary electrophoresis. Advantages and figures of merit for each technique are discussed.  相似文献   

17.
This protocol for in vivo solid-phase microextraction (SPME) can be used to monitor and quantify intravenous concentrations of drugs and metabolites without the need to withdraw a blood sample for analysis. The SPME probe is inserted directly into a peripheral vein of a living animal through a standard medical catheter, and extraction occurs typically over 2-5 min. After extraction, the analytes are removed from the sorbent and analyzed by, for example, liquid chromatography-tandem mass spectrometry. It has been validated in comparison with conventional blood analysis, and we describe here the in vitro experiments typically conducted during method development. The new-generation biocompatible SPME probes are designed specifically for extraction of semi-volatiles and nonvolatiles directly from aqueous samples and can be steam sterilized. Sorbents are coated on fine-gauge surgical steel wire (200-μm diameter), which is more rugged and biocompatible than conventional fibers (100-μm fused silica fiber). They incorporate a binding agent that resists fouling by the biological matrix and does not cause an immune response in the experimental animal. The sorbents used (coating thickness of ~50 μm) are selected for their affinity for the types of small molecules of interest. The procedure is illustrated by the analysis of benzodiazepines with polypyrrole-coated wires inserted into peripheral blood vessels of beagles, although it can be adapted for use in smaller animals. The in vivo sampling can require as little as 1 min, in which case the entire procedure from sampling to instrumental analysis can take as little as 30 min.  相似文献   

18.
【背景】我国作为农业大国,对农药的大量使用是不可避免的,但是农药的超范围使用、超标及高检出率对于环境的污染与人体健康的威胁日趋严重。【目的】碱性磷酸酶(alkaline phosphatase,ALP)对有机磷农药具有积极的降解作用,因此,本文对鼠李糖乳杆菌(Lactobacillus rhamnosus) Z23(LGG Z23)所产碱性磷酸酶的提取条件进行优化,并研究其对有机磷农药的降解作用。【方法】使用单因素试验和正交试验优化ALP的提取条件;使用对硝基苯酚法测定酶活力;使用分级沉淀和层析法提纯ALP;使用乙酰胆碱酯酶抑制法测定ALP对有机磷农药的降解率。【结果】LGG Z23所产ALP的最优提取条件为:细胞破碎时间15 min,破碎功率450 W,料液比(质量体积比)1:6,提取液pH 10.0,此条件下酶活力为(4.95±0.26) U/mL,比优化前提高2.11倍;对6种有机磷农药的降解率效果为敌敌畏(95.79%±0.01%)>甲基对硫磷(90.69%±0.03%)>毒死蜱(88.90%±0.02%)>敌百虫(86.07%±0.03%)>马拉硫磷(85.31%±0.02%)>乐果(83.18%±0.03%),其中对敌敌畏和甲基对硫磷的降解效果最好,可达90%以上,并且降解作用差异显著(P<0.05)。【结论】本研究为LGG Z23所产ALP的应用研究提供了理论依据和实验数据。  相似文献   

19.
Organophosphorus hydrolase (OPH) is a bacterial enzyme that has been shown to degrade a wide range of neurotoxic organophosphate nerve agents. However, the effectiveness of degradation varies dramatically, ranging from highly efficient with paraoxon to relatively slow with methyl parathion. Sequential cycles of DNA shuffling and screening were used to fine-tune and enhance the activity of OPH towards poorly degraded substrates. Because of the inaccessibility of these pesticides across the cell membrane, OPH variants were displayed on the surface of Escherichia coli using the truncated ice nucleation protein in order to isolate novel enzymes with truly improved substrate specificities. A solid-phase top agar method based on the detection of the yellow product p-nitrophenol was developed for the rapid prescreening of potential variants with improved hydrolysis of methyl parathion. Two rounds of DNA shuffling and screening were carried out, and several improved variants were isolated. One variant in particular, 22A11, hydrolyzes methyl parathion 25-fold faster than does the wild type. Because of the success that we achieved with directed evolution of OPH for improved hydrolysis of methyl parathion, we believe that we can easily extend this method in creating other OPH variants with improved activity against poorly degraded pesticides such as diazinon and chlorpyrifos and nerve agents such as sarin and soman.  相似文献   

20.
A simple and reliable solid phase microextraction/gas chromatography–mass spectrometry (SPME/GC–MS) method was developed for the single-step determination of PCBs 126 and 153 in rat brain and serum, using liquid/liquid and solid phase extraction (SPE) as reference techniques. The multi-factor categorical experimental design used to study simultaneously the main parameters and their interactions affecting the efficiency of the method, showed that the use of an 85 μm PA exposed at 100 °C for 40 min was the optimum sampling condition for both PCBs. SPME was then validated by studying its linear dynamic (over two orders of magnitude), limits of detection (brain: 2 ng/g, serum: 0.2 ng/g) and analytical precision that was within 9% for SPME in both brain and serum. Finally, the method was used to determine the brain and blood target dose in mothers and pups after oral exposure of the mothers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号