首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pulmonary surfactant (PS), a mixture of phospholipids and proteins secreted by alveolar type II cells, functions to reduce the surface tension in the lungs of all air-breathing vertebrates. Here we examine the control of PS during lung development in a homeothermic egg-laying vertebrate. In mammals, glucocorticoids and autonomic neurotransmitters contribute to the maturation of the surfactant system. We examined whether dexamethasone, epinephrine, and carbamylcholine hydrochloride (agonist for acetylcholine) increased the amount of PS secreted from cultured type II cells of the developing chicken lung. In particular, we wanted to establish whether dexamethasone would increase PS secretion through a process involving lung fibroblasts. We isolated and cocultured type II cells and lung fibroblasts from chickens after 16, 18, and 20 days of incubation and from hatchlings (day 21). Epinephrine stimulated phosphatidylcholine (PC) secretion at all stages, whereas dexamethasone stimulated secretion of PC at days 16 and 18. Carbamylcholine hydrochloride had no effect at any stage. This is the first study to establish the existence of similar cellular pathways regulating the development of surfactant in chickens and eutherian mammals, despite the vastly different birthing strategies and lung structure and function.  相似文献   

2.
Pulmonary surfactant (PS) is a complex mixture of phospholipids, neutral lipids and proteins that lines the inner surface of the lung. Here, it modulates surface tension thereby increasing lung compliance and preventing the transudation of fluid. In mammals, the PS system develops towards the end of gestation, characterized by an increase in the saturation of phospholipids in lung washings and the appearance of surfactant proteins in amniotic fluid. Birth, the transition from in utero to the external environment, is a rapid process. At this time, the PS system is important in opening and clearing the lung of fluid in order to initiate pulmonary ventilation. In oviparous vertebrates, escape from an egg can be a long and exhausting process. The young commence pulmonary ventilation and hatching by 'pipping' through the eggshell, where they remain for some time, presumably clearing their lungs. This paper relates changes in the development of the pulmonary surfactant system within the non-mammalian amniotes in response to birth strategy, lung morphology and phylogeny in order to determine the conservatism of this developmental process. Total phospholipid (PL), disaturated phospholipid (DSP) and cholesterol (Chol) were quantified from lung washings of embryonic and hatchling chickens, bearded dragons (oviparous), sleepy lizards (viviparous), snapping turtles and green sea turtles throughout the final stages of incubation and gestation. In all cases, the pattern of development of the pulmonary surfactant lipids was consistent with that of mammals. PL and DSP increased throughout the latter stages of development and Chol was differentially regulated from the PLs. Maximal secretion of both PL and DSP occurred at 'pipping' in oviparous reptiles, coincident with the onset of airbreathing. Similarly, the amount of DSP relative to total PL was maximal immediately after the initiation of airbreathing in chickens. The relative timing of the appearance of the lipids differed between groups. In the oviparous lizard, surfactant lipids were released over a relatively shorter time than that of the sleepy lizard, turtles, birds and mammals. Thus, despite temporal differences and vastly different lung morphologies, birth strategies and phylogenies, the overall development and maturation of the PS system is highly conserved amongst the amniotes.  相似文献   

3.
Pulmonary surfactant is a complex lipid-protein mixture whose main function is to reduce the surface tension at the air-liquid interface of alveoli to minimize the work of breathing. The exact mechanism by which surfactant monolayers and multilayers are formed and how they lower surface tension to very low values during lateral compression remains uncertain. We used time-of-flight secondary ion mass spectrometry to study the lateral organization of lipids and peptide in surfactant preparations ranging in complexity. We show that we can successfully determine the location of phospholipids, cholesterol and a peptide in surfactant Langmuir-Blodgett films and we can determine the effect of cholesterol and peptide addition. A thorough understanding of the lateral organization of PS interfacial films will aid in our understanding of the role of each component as well as different lipid-lipid and lipid-protein interactions. This may further our understanding of pulmonary surfactant function.  相似文献   

4.
The role of the phospholipid environment in modulating the activity of the rat brain synaptic plasma membrane (SPM) Ca2(+)-ATPase was investigated by its reconstitution into different phospholipids. Retention of activity of the solubilized Ca2(+)-ATPase depended on addition of exogenous phospholipids. As the cholate concentration used for solubilization of native SPM increased, a larger excess of exogeneous phospholipids, relative to membrane protein, had to be added to maintain optimal activity. Highest ATP-dependent Ca2+ transport activity was obtained when reconstitution was carried out in calf brain phospholipids (BPLs) followed by soybean phospholipids (SPLs) and the lowest in egg PC; reconstitution at a 40:1 weight ratio of exogenous phospholipids to native SPM protein resulted in ATP-dependent Ca2+ transport of 40.0 +/- 4.16, 23.4 +/- 8.48, and 11.54 +/- 2.31 nmol of Ca2+ (mg of protein)-1 (5 min)-1, respectively. Partial substitution of egg PC with BPLs led to an increase in the activity of the reconstituted Ca2+ pump. The highest ATP-dependent Ca2+ uptake was obtained when ratios of 15:25 or 10:30 egg PC to BPLs were used. Testing the individual phospholipids participating in the BPL mixture showed that addition of PS to egg PC led to a consistent increase in Ca2+ pump activity. Substitution of 50% of the PC with PS resulted in a 3.8-fold higher ATP-dependent Ca2+ uptake than that obtained in egg PC alone. No other phospholipid tested--PE, SM, or PI--had a similar effect. Increasing the proportion of PS within the BPL mixture above its original content led to a gradual decrease in the reconstituted SPM Ca2+ pump activity. Enrichment of asolectin with PS led first to increased Ca2+ pump activity; then, as the proportion of PS increased, Ca2+ transport of the reconstituted pump decreased. An increased proportion of PE, SM, or PI within the BPLs or asolectin, above their original contents, resulted in decreased Ca2+ transport. These results indicate that optimal SPM Ca2+ pump activity requires the combined presence of a critical amount of PC and PS within the reconstituted membrane.  相似文献   

5.
1. Glycogen was identified ultrastructurally in undifferentiated type-II cells of the lung of the day 16 chick embryo. 2. By 4 days after hatching, glycogen in type-II cells could not be observed, although lungs were actively secreting surfactant. 3. Biochemical measurements of pulmonary glycogen revealed a depletion during days 14-20 of incubation, corroborating ultrastructural data. 4. Using lung slices, 14C-glucose was incorporated in vitro into pulmonary surfactant phospholipids at a high rate in day 14 embryos, and a significantly lower rate on day 19. 5. Hypophysectomy resulted in sub-normal initial accumulation of pulmonary glycogen on day 14 of development, but did not alter the depletion pattern after day 16. 6. Thus, glycogen stores may contribute to avian embryonic pulmonary surfactant, and accumulation of early stores may be under hormonal control.  相似文献   

6.
7.
The influence of immobilization stress on the lipid composition of alveolar surfactant and lungs in rats immobilized for 12 and 24 hours, the effects of phospholipase A2, and lipid transfer activity in alveolar surfactant were investigated. The results indicate that alveolar surfactant phospholipids underwent more significant alterations compared to lung phospholipids. Furthermore, phospholipase A2 and lipid transfer activity were reduced in alveolar surfactant of immobilized rats. The reported data suggest that the lower lipid transfer activity might be responsible for the reduced phospholipids in the surfactant system.  相似文献   

8.
1. Data presented here demonstrate that polyunsaturated fatty acids in the phospholipids of rainbow trout tissues are compartmentalized differently than in mammalian tissues. 2. We have determined the distribution of omega-3 (n-3) and omega-6 (n-6) fatty acids in the alkyl-, alk-1-enyl-, and diacyl- subclasses of phosphatidylcholines (PC), phosphatidyl-ethanolamines (PE), phosphatidylinositols (PI), and phosphatidylserines (PS) from gill, kidney and spleen of rainbow trout. 3. Alkyl-linked PC and alk-1-enyl-linked PE were the most abundant ether-containing phospholipids, amounting to 10-15% of each class; no ether-linked PI or PS was detected. 4. C20:4 n-6 was found in high concentrations only in PI; the n-3 fatty acids were found in highest concentration in the ether-linked phospholipids as compared with the diacyl subclasses and C20:5 n-3 was especially prevalent in 1-O-alk-1'-enyl-2-acyl-sn-glycero-3-phosphoethanolamine and C22:6 n-3 was prevalent in PS.  相似文献   

9.
本研究通过分析肺表面活性物质(pulmonary surfactant,PS)组成和含量探讨高原鼢鼠(Myospalax baileyi)和高原鼠兔(Ochotona curzoniae)的低氧适应机制.高原鼢鼠和高原鼠兔各36只,捕捉于海拔3 600 m左右的青海省海南州贵德县拉脊山地区,36只Sprague-Daw...  相似文献   

10.
We examined the effect of monolayer culture on surfactant phospholipids and proteins of type II cells isolated from human adult and fetal lung. Type II cells were prepared from cultured explants of fetal lung (16-24 weeks gestation) and from adult surgical specimens. Cells were maintained for up to 6 days on plastic tissue culture dishes. Although incorporation of [methyl-3H]choline into phosphatidylcholine (PC) by fetal cells was similar on day 1 and day 5 of culture, saturation of PC fell from 35 to 26%. In addition, there was decreased distribution of labeled acetate into PC, whereas distribution into other phospholipids increased or did not change. The decrease in saturation of newly synthesized PC was not altered by triiodothyronine (T3) and dexamethasone treatment or by culture as mixed type II cell/fibroblast monolayers. The content of surfactant protein SP-A (28-36 kDa) in fetal cells, as measured by ELISA and immunofluorescence microscopy, rose during the first day and then fell to undetectable levels by the fifth. Synthesis of SP-A, as measured by [35S]methionine labeling and immunoprecipitation, was detectable on day 1 but not thereafter. Levels of mRNAs for SP-A and for the two lipophilic surfactant proteins SP-B (18 kDa) and SP-C (5 kDa) fell with half-times of maximally 24 h. In contrast, total protein synthesis measured by [35S]methionine incorporation increased and then plateaued. In adult cells, the content of SP-A and its mRNA decreased during culture, with time-courses similar to those for fetal cells. We conclude that in monolayer culture on plastic culture dishes, human type II cells lose their ability to synthesize both phospholipids and proteins of surfactant. The control of type II cell differentiation under these conditions appears to be at a pretranslational level.  相似文献   

11.
The role of hyaluronan in the pulmonary alveolus   总被引:6,自引:0,他引:6  
The duplex nature of the lining of the pulmonary alveolus has long been appreciated. It appears that surfactant is present at the interface with air where it prevents the collapse of the alveolus by lowering surface tension and that the surfactant rests on an aqueous subphase. This subphase has enough structure to form a smooth, continuous surface over the projections of the epithelial cells and because of its hydrophilic nature it attracts the polar heads of surfactant phospholipids. The chemical composition of the subphase has not been addressed. Type II cells in the wall of the alveolus are specialized to produce surfactant and they also secrete hyaluronan (hyaluronic acid) into the subphase. In solution, molecules of hyaluronan appear to be flexible coils which self-aggregate. The resulting solutions are quite viscous and exhibit non-Newtonian behavior. Hyaluronan binds to cell surface receptors and to proteins in the extracellular matrix. The networks formed with self-aggregated hyaluronan with or without proteins create gels whose properties depend largely upon the molecular weight of the hyaluronan and its concentration. Hyaluronan is also known to interact with phospholipids and has hydrophobic regions which could bind to the hydrophobic surfactant proteins B and C. The working hypothesis presented herein states that hyaluronan interacts with itself and with proteins in the subphase to form a hydrophilic gel. At the epithelial cell layer the components are concentrated due to tethered HA molecules and the gel smooths over cell projections. At the air interface the components are so dilute that a layer which is essentially water is present. The surfactant phospholipids spread on the water. Direct interactions of HA and surfactant phospholipids may also occur and contribute to the stability of the surfactant layer.  相似文献   

12.
The interaction of pyridinium salts (PS) with red blood cells and planar lipid membranes was studied. The aim of the work was to find whether certain cationic surfactant counterion influence its possible biological activity. The counterions studied were Cl-, Br-, I-, ClO4-, BF4- and NO3-. The model membranes used were erythrocyte and planar lipid membranes (BLM). At high concentration the salts caused 100% erythrocyte hemolysis (C100) or broke BLMs (CC). Both parameters describe mechanical properties of model membranes. It was found that the efficiency of the surfactant to destabilize model membranes depended to some degree on its counterion. In both, erythrocyte and BLM experiments, the highest efficiency was observed for Br-, the lowest for NO3-. The influence of all other anions on surfactant efficiency changed between these two extremities; that of chloride and perchlorate ions was similar. Some differences were found in the case of BF4- ion. Its influence on hemolytic possibilities of PS was significant while BLM destruction required relatively high concentration of this anion. Apparently, the influence of various anions on the destructive action of PS on the model membrane used may be attributed to different mobilities and radii of hydrated ions and hence, to different possibilities of particular anions to modify the surface potential of model membranes. This can lead to a differentiated interaction of PS with modified bilayers. Moreover, the effect of anions on the water structure must be taken into account. It is important whether the anions can be classified as water ordering kosmotropes that hold the first hydration shell tightly or water disordering chaotropes that hold water molecules in that shell loosely.  相似文献   

13.
There is a developmental increase in fatty acid biosynthesis and surfactant production in late-gestation fetal lung and both are accelerated by glucocorticoids. We have examined the distribution of the newly synthesized fatty acids to determine whether they are preferentially incorporated into surfactant. Explants of 18 day fetal rat lung were cultured with and without dexamethasone for 48 h and then with [3H]acetate for 4 h after which labeled fatty acids were measured. Incorporation of radioactivity from acetate was considered a measure of newly synthesized fatty acids. Phospholipids contained 86% of the newly synthesized fatty acids of which approx. 80% were in phosphatidylcholine. Phosphatidylcholine and disaturated phosphatidylcholine contained a much greater percentage of the labeled fatty acids than of the phospholipid mass determined by phosphorus assay while phosphatidylethanolamine, phosphatidylserine and sphingomyelin contained less. Dexamethasone increased the rate of acetate incorporation into total lipid fatty acids but it had little effect on fatty acid distribution, except that it increased the percentages in phosphatidylglycerol and disaturated phosphatidylcholine. The hormone also increased the mass of these two phospholipids to a greater extent than that of the total. These data suggested that the newly synthesized fatty acids are preferentially incorporated into surfactant phospholipids and that this process is accelerated by dexamethasone. However, since phosphatidylcholine and phosphatidylglycerol are not exclusive to surfactant, we compared isolated lamellar bodies with a residual fraction not enriched in surfactant. The rate of acetate incorporation into fatty acids in lamellar body phosphatidylcholine as well as its specific activity (radioactivity per unit phosphorus) were both increased by dexamethasone. Specific activity, however, was no greater in the lamellar bodies than in the residual fraction in both control and dexamethasone-treated cultures. Therefore, there is no preferential incorporation of newly synthesized fatty acids into phospholipids in surfactant as opposed to those in other components of the lung.  相似文献   

14.
Summary High sensitivity, differential scanning calorimetry studies of vovine retinal rod outer segment (ROS) disk membranes and aqueous dispersions of the extracted ROS phospholipids have been performed. ROS disk membranes were found to exhibit a broad peak of excess heat capacity with a maximum at less than about 3°C, ascribable to a gel-to-liquid crystalline phase transition of traction of the phospholipids. A similar thermotropic transition was observed for aqueous dispersions of the total extracted and purified ROS phospholipids. Comparison of the results obtained for the dispersion of total ROS phospholipids to those of the purified head group fractions. suggests that the thermotropic behavior reffects a gel-to-liquid crystalline transition, leading to lateral phase separation, involving those phosphatidylcholine (PC) molecules containing saturated fatty acylchains, possibley together with the highest melting ROS phosphatidylethanolamine (PE) and phosphatidylserine (PS) components. The interpretation of the thermal behavior of the ROS disk membranes depends on whether the transition is assumed to derive from the ROS PC and/or PE/PS fractions, and whether the transbilayer arrangement of the ROS phospholipids is assumed to be symmetric or asymmetric. The calorimetric data can be simply explained in terms of an asymmetric distribution of the major ROS disk membrane phospholipids (G.P. Miljanich et al.,J. Membrane Biol. 60:249–255, 1981). In this case, the transition would arise from the PE/PS fractions in the outer ROS disk membrane monolyer, and the anticipated transition from the PC in the inner monolayer would be broadened due to interaction with cholesterol. For the ROS membranes at higher temperatures, two additional, irreversible transitions are observed at 57 and 72°C, corresponding to the thermal denauturation of opsin and rhodopsin, respectively.  相似文献   

15.
为探讨磷脂酰丝氨酸(phosphatidylserine,PS)外翻和磷脂氧化在凋亡细胞被吞噬细胞清除中的作用,用脂质体整合的方法将不同的磷脂整合到红细胞上或用N-乙酰马来酰胺(N-ethylmaleimide,NEM)预处理红细胞然后整合磷脂,制备含不同凋亡信号的红细胞模型,测定巨噬细胞对整合不同磷脂信号红细胞的结合率和吞噬率。结果表明,单独整合PS或用NEM处理造成PS外翻,可显著性提高巨噬细胞对红细胞的结合率,但对吞噬率没有影响;同时整合PS和氧化磷脂(氧化PS或氧化磷脂酰胆碱(phosphatidylcholine,PC)),或用NEM处理造成PS外翻后再整合氧化PS或氧化PC,不仅可显著提高巨噬细胞对红细胞的结合率,而且可显著性提高吞噬率。这些结果提示PS外翻可能参与了巨噬细胞对凋亡细胞的结合,而磷脂氧化可能启动了巨噬细胞对凋亡细胞的吞噬,二者协作才可能完成巨噬细胞对凋亡细胞的清除。  相似文献   

16.
内皮素-1对肺表面活性物质分泌的调控   总被引:4,自引:2,他引:2  
Luo ZQ  Sun XH 《生理学报》1998,50(3):333-336
采用离体大鼠非灌流肺,观察生理浓度内皮素-1对肺表面活性物质分泌的影响。结果表明,10^-12和10^-10mol/L的ET-1可促进PS磷脂及其主要组分磷脂酰胆碱的基础分泌;在间歇性肺扩张刺激基础上,ET-1可进一步加强磷脂和PC的分泌。蛋白激酶C抑制剂H7可阻断ET-1的促PS分泌效应。  相似文献   

17.
M H Lee  R M Bell 《Biochemistry》1992,31(22):5176-5182
The mechanism of protein kinase C (PKC) activation by phosphatidyl-L-serine (PS) is highly specific and occurs with high cooperativity [Lee, M.-H., & Bell, R. M. (1989) J. Biol. Chem. 264, 14797-14805]. To further investigate the multiplicity and specificity of PS cofactor requirement, some of the PS molecules present in Triton X-100 mixed micelles were substituted with nonactivating phospholipids devoid of required amino or carboxyl functional groups. The ability of these phospholipids to spare or reduce the mole percent of PS required was determined. Addition of phosphatidyl-(3-hydroxypropionate) (PP) or phosphatidate (PA) reduced the mole percent of PS required for maximal activity from 10 to 4 mol %, and also reduced the cooperativity of activation with PS. In contrast, phosphatidylethanolamine did not alter the dependence on PS. Phosphatidylethanol (P-Et) reduced the PS requirement to 2-4 mol % and cooperatively less efficiently than PP or PA. Phosphatidylglycerol and phosphatidylinositol resemble P-Et in their ability to reduce PS requirements and cooperativity. Therefore, it appears that the ability of phospholipids to substitute for PS in PKC activation depends on the negative charge in the phospholipid head group and the efficiency of substitution appears to be directly related to the negative charge density. The presence of two acyl groups within the phospholipid cofactor proved important since lyso-PS and lyso-PA replaced a portion of PS molecules required less efficiently than P-Et. Sodium oleate and sodium dodecyl sulfate behaved like lyso-PS. When other anionic lipids are present, approximately four molecules of PS per micelle are required for maximal PKC activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
肺泡表面活性物质中各磷脂组分对缺氧的反应是不同的。急性缺氧时,肺泡冲洗液中溶血卵磷脂、神经鞘磷脂、磷脂酰乙醇胺及磷脂酰甘油均下降(p<0.05);间断适应性缺氧后,基本回复到缺氧前水平。而急性缺氧时,肺组织中除磷脂酰乙醇胺变化不明显外,其它各成分均有明显增加(p<0.05)。间断缺氧时,肺组织中各脂质成分持续下降。该变化可能与肺组织中ATP等能量物质在缺氧时代谢异常有关。从肺泡冲洗液的脂质分析结果来看,适当地以间断减压作缺氧适应,能有效地解除急性缺氧对肺泡表面磷脂含量的抑制作用。  相似文献   

19.
Extensive homogenization of lung tissue by nitrogen decompression in a Parr disruption bomb increased by 5-fold the yields of low-density phospholipid (d = 1.06) achieved by other methods. This intracellular phospholipid preparation was high in phosphatidylcholines (84.3%), particularly disaturated phosphatidylcholine (51.2%). On the basis of its low density, composition, and morphological appearance, we concluded that this phospholipid was derived from the intracellular compartment of pulmonary surfactant. We examined the relationship between intra- and extra-cellular surfactant pools according to age, gender and silica-induced pulmonary injury. In normal animals the intracellular pool of surfactant phospholipids increased from 1.54 +/- 0.14 mg at 1 day after birth to 62.30 +/- 4.50 mg per pair of lungs after 31 months, and over the same time period the extracellular pool increased from 1.04 +/- 0.15 mg to 27.45 +/- 2.30 mg per pair of lungs. The ratio between the extracellular and intracellular pools of surfactant increased from 1.50 +/- 0.19 at 1 day after birth to 2.28 +/- 0.23 after 31 months of age. The ratio between the two pools was not influenced by gender, but was changed by the intratracheal injection of silica into the lungs. Intratracheal injection of silica dust increased the levels of surfactant in both compartments, but not to the same extent, indicating that the ratio between the pools could be changed by toxic materials. These data suggest the existence of a size relationship between the intra- and the extra-cellular pools of surfactant, a relationship which implies a common regulatory mechanism that can be disturbed during pulmonary injury.  相似文献   

20.
Pulmonary surfactant is a mixture of lipids and proteins that controls the surface tension of the fluid lining the inner lung. Its composition is conserved among the vertebrates. Here we hypothesize that the in ovo administration of glucocorticoids and thyroid hormones during late incubation will accelerate surfactant development in the saltwater crocodile, Crocodylus porosus. We also hypothesize that the increased maturation of the type II cells in response to hormone pretreatment will result in enhanced responsiveness of the cells to surfactant secretagogues. We sampled embryos at days 60, 68, and 75 of incubation and after hatching. We administered dexamethasone (Dex), 3,5,3'-triiodothyronine (T(3)), or a combination of both hormones (Dex + T(3)), 48 and 24 h before each prehatching time point. Lavage analysis indicated that the maturation of the phospholipids (PL) in the lungs of embryonic crocodiles occurs rapidly. Only T(3) and Dex + T(3) increased total PL in lavage at embryonic day 60, but Dex, T(3), and Dex + T(3) increased PL at day 75. The saturation of the PLs was increased by T(3) and Dex + T(3) at day 68. Swimming exercise did not increase the amount or alter the saturation of the surfactant PLs. Pretreatment of embryos with Dex, T(3), or Dex + T(3) changed the secretion profiles of the isolated type II cells. Dex + T(3) increased the response of the cells to agonists at days 60 and 68. Therefore, glucocorticoids and thyroid hormones regulate surfactant maturation in the crocodile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号