首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 537 毫秒
1.
The trace element zinc affects several aspects of immune function, such as the release of proinflammatory cytokines from monocytes. We investigated the role of cyclic nucleotide signaling in zinc inhibition of LPS-induced TNF-alpha and IL-1beta release from primary human monocytes and the monocytic cell line Mono Mac1. Zinc reversibly inhibited enzyme activity of phosphodiesterase-1 (PDE-1), PDE-3, and PDE-4 in cellular lysate. It additionally reduced mRNA expression of PDE-1C, PDE-4A, and PDE-4B in intact cells. Although these PDE can also hydrolyze cAMP, only the cellular level of cGMP was increased after incubation with zinc, whereas cAMP was found to be even slightly reduced due to inhibition of its synthesis. To investigate whether an increase in cGMP alone is sufficient to inhibit cytokine release, the cGMP analogues 8-bromo-cGMP and dibutyryl cGMP as well as the NO donor S-nitrosocysteine were used. All three treatments inhibited TNF-alpha and IL-1beta release after stimulation with LPS. Inhibition of soluble guanylate cyclase-mediated cGMP synthesis with LY83583 reversed the inhibitory effect of zinc on LPS-induced cytokine release. In conclusion, inhibition of PDE by zinc abrogates the LPS-induced release of TNF-alpha and IL-1beta by increasing intracellular cGMP levels.  相似文献   

2.
Alterations in the regulation of CD44 expression play a critical role in modulating cell adhesion, migration, and inflammation. LPS, a bacterial cell wall component, regulates CD44 expression and may modulate CD44-mediated biological effects in monocytic cells during inflammation and immune responses. In this study, we show that in normal human monocytes, LPS and LPS-induced cytokines IL-10 and TNF-alpha enhance CD44 expression. To delineate the mechanism underlying LPS-induced CD44 expression, we investigated the role of the mitogen-activated protein kinases (MAPKs), p38, p42/44 extracellular signal-regulated kinase, and c-Jun N-terminal kinase (JNK) by using their specific inhibitors. We demonstrate the involvement, at least in part, of p38 MAPK in TNF-alpha-induced CD44 expression in both monocytes and promonocytic THP-1 cells. However, neither p38 nor p42/44 MAPKs were involved in IL-10-induced CD44 expression in monocytes. To further dissect the TNF-alpha and LPS-induced signaling pathways regulating CD44 expression independent of IL-10-mediated effects, we used IL-10 refractory THP-1 cells as a model system. Herein, we show that CD44 expression induced by the LPS-mediated pathway predominantly involved JNK activation. This conclusion was based on results derived by transfection of THP-1 cells with a dominant-negative mutant of stress-activated protein/extracellular signal-regulated kinase kinase 1, and by exposure of cells to JNK inhibitors dexamethasone and SP600125. All these treatments prevented CD44 induction in LPS-stimulated, but not in TNF-alpha-stimulated, THP-1 cells. Furthermore, we show that CD44 induction may involve JNK-dependent early growth response gene activation in LPS-stimulated monocytic cells. Taken together, these results suggest a predominant role of JNK in LPS-induced CD44 expression in monocytic cells.  相似文献   

3.
The costimulatory molecule B7.2 (CD86) plays a vital role in immune activation and development of Th responses. The molecular mechanisms by which B7.2 expression is regulated are not understood. We investigated the role of mitogen-activated protein kinases (MAPK) in the regulation of B7.2 expression in LPS-stimulated human monocytic cells. LPS stimulation of human monocytes resulted in the down-regulation of B7.2 expression that could be abrogated by anti-IL-10 Abs. Furthermore, SB202190, a specific inhibitor of p38 MAPK, inhibited LPS-induced IL-10 production and reversed B7.2 down-regulation, suggesting that LPS-induced B7.2 down-regulation may be mediated, at least in part, via regulation of IL-10 production by p38 MAPK. In contrast to human promonocytic THP-1 cells that are refractory to the inhibitory effects of IL-10, LPS stimulation enhanced B7.2 expression. This IL-10-independent B7.2 induction was not influenced by specific inhibitors of either p38 or p42/44 MAPK. To ascertain the role of the c-Jun N-terminal kinase (JNK) MAPK, dexamethasone, an inhibitor of JNK activation, was used, which inhibited LPS-induced B7.2 expression. Transfection of THP-1 cells with a plasmid expressing a dominant-negative stress-activated protein/extracellular signal-regulated kinase kinase 1 significantly reduced LPS-induced B7.2 expression, thus confirming the involvement of JNK. To study the signaling events downstream of JNK activation, we show that dexamethasone did not inhibit LPS-induced NF-kappaB activation in THP-1 cells, suggesting that JNK may not be involved in NF-kappaB activation leading to B7.2 expression. Taken together, our results reveal the distinct involvement of p38 in IL-10-dependent, and JNK in IL-10-independent regulation of B7.2 expression in LPS-stimulated monocytic cells.  相似文献   

4.
Bacterial lipopolysaccharide (LPS)-mediated immune responses, including activation of monocytes, macrophages, and endothelial cells, play an important role in the pathogenesis of Gram-negative bacteria-induced sepsis syndrome. Activation of NF-kappaB is thought to be required for cytokine release from LPS-responsive cells, a critical step for endotoxic effects. Here we investigated the role and involvement of interleukin-1 (IL-1) and tumor necrosis factor (TNF-alpha) signal transducer molecules in LPS signaling in human dermal microvessel endothelial cells (HDMEC) and THP-1 monocytic cells. LPS stimulation of HDMEC and THP-1 cells initiated an IL-1 receptor-like NF-kappaB signaling cascade. In transient cotransfection experiments, dominant negative mutants of the IL-1 signaling pathway, including MyD88, IRAK, IRAK2, and TRAF6 inhibited both IL-1- and LPS-induced NF-kappaB-luciferase activity. LPS-induced NF-kappaB activation was not inhibited by a dominant negative mutant of TRAF2 that is involved in TNF signaling. LPS-induced activation of NF-kappaB-responsive reporter gene was not inhibited by IL-1 receptor antagonist. TLR2 and TLR4 were expressed on the cell surface of HDMEC and THP-1 cells. These findings suggest that a signal transduction molecule in the LPS receptor complex may belong to the IL-1 receptor/toll-like receptor (TLR) super family, and the LPS signaling cascade uses an analogous molecular framework for signaling as IL-1 in mononuclear phagocytes and endothelial cells.  相似文献   

5.
The proliferation of human monocytic Mono Mac 6 cells was significantly retarded by treatment with lovastatin (LOV, 10 μM) for 72 h. Treatment of Mono Mac 6 cells with LOV increased surface protein expression of monocyte-associated CD14 and the integrin-chain CD11b towards levels found in isolated human blood monocytes. These effects were dose-dependent and completely reversed by the isoprenoid precursor mevalonate (MVA). LOV failed to induce growth retardation and upregulation of CD11b or CD14 in the less mature premonocytic U937 cell line. While CD11b expression was comparable in Mono Mac 6 cells treated with LOV (10 μM), TNF (100 U ml?1) or LPS (10 ng ml?1), upregulation of CD14 by LOV was less pronounced. Basal CD23 expression was unaffected by LOV but markedly reduced by treatment with TNF or LPS. Moreover, LOV enhanced Mono Mac 6 adhesiveness to human umbilical vein endothelial cells to levels found in isolated human blood monocytes, probably due to the increased CD11b and CD14 expression. In conclusion, LOV can induce differentiation of monocytic cells which is reflected by the retardation of growth, expression of CD14 and CD11b, and enhanced adhesiveness.  相似文献   

6.
7.
8.
The cholera toxin B chain (CTB) has been reported to suppress T cell-dependent autoimmune diseases and to potentiate tolerance of the adaptive immune system. We have analyzed the effects of CTB on macrophages in vitro and have found that preincubation with CTB (10 microg/ml) suppresses the proinflammatory reaction to LPS challenge, as demonstrated by suppressed production of TNF-alpha, IL-6, IL-12(p70), and NO (p < 0.01) in cells of macrophage lines. Pre-exposure to CTB also suppresses LPS-induced TNF-alpha and IL-12(p70) formation in human PBMC. Both native and recombinant CTB exhibited suppressive activity, which was shared by intact cholera toxin. In cells of the human monocyte line Mono Mac 6, exposure to CTB failed to suppress the production of IL-10 in response to LPS. Control experiments excluded a role of possible contamination of CTB by endotoxin or intact cholera toxin. The suppression of TNF-alpha production occurred at the level of mRNA formation. Tolerance induction by CTB was dose and time dependent. The suppression of TNF-alpha and IL-6 production could be counteracted by the addition of Abs to IL-10 and TGF-beta. IFN-gamma also antagonized the actions of CTB on macrophages. In contrast to desensitization by low doses of LPS, tolerance induction by CTB occurred silently, i.e., in the absence of a measurable proinflammatory response. These findings identify immune-deviating properties of CTB at the level of innate immune cells and may be relevant to the use of CTB in modulating immune-mediated diseases.  相似文献   

9.
目的:探讨EGb761对LPS诱导THP-1细胞释放HMGB1蛋白表达的调节,为EGb761的临床运用提供可行的依据。方法:LPS(1μg/m L)诱导不同时间后,western blotting检测THP-1细胞上清液中HMGB1蛋白含量变化及不同浓度EGb761对LPS诱导THP-1细胞释放HMGB1蛋白的表达和NF-κB的活性;酶联免疫吸附法(ELISA)检测细胞中IL-1β、IL-6、TNF-α的含量。共聚焦显微镜观察EGb761对LPS诱导THP-1细胞释放HMGB1蛋白核转位变化。结果:(1)LPS组IL-1β、IL-6、TNF-α的含量在刺激6-12 h后明显高于空白对照组,而EGb761+LPS组IL-1β、IL-6、TNF-α的含量均显著低于LPS组(P0.05)。(2)EGb761处理LPS诱导THP-1细胞6 h后细胞上清液NF-κB活性表达量较空白对照组低,随着处理时间延长至12 h,NF-κB的活性表达量呈明显下降趋势(P0.05)。(3)LPS诱导THP-1细胞18 h后,细胞上清液中HMGB1蛋白含量呈明显升高趋势(P0.05)。(4)不同浓度EGb761对LPS诱导THP-1细胞18 h后,HMGB1蛋白含量较空白对照组有下降趋势,HMGB1蛋白含量随着EGB761浓度增加至100μg/m L呈下降趋势并呈浓度依赖效应(P0.05)。(5)LPS诱导THP-1细胞后,在共聚焦显微镜下可见胞浆中大量HMGB1蛋白标记分布,而EGb761+LPS共同诱导THP-1细胞后胞浆中可见少量HMGB1蛋白分布。结论:LPS可诱导THP-1细胞IL-1β、IL-6、TNF-α表达增多及NF-κB活化,导致HMGB1蛋白表达增多及核转位,而EGB761能抑制THP-1细胞IL-1β、IL-6、TNF-α表达及NF-κB活化,调节HMGB1蛋白的表达及核转位。  相似文献   

10.
11.
We have previously reported that the CD14+ monocytic subpopulation of human PBMC induces programmed cell death (apoptosis) in cocultured endothelial cells (EC) when stimulated by bacterial endotoxin (LPS). Apoptosis is mediated by two routes, first via transmembrane TNF-alpha (mTNF) expressed on PBMC and, in addition, by TNF-independent soluble factors that trigger apoptosis in EC. Neutralizing anti-TNF mAb completely blocked coculture-mediated apoptosis, despite the fact that there should have been additional soluble cell death factors. This led to the hypothesis that a reverse signal is transmitted from the TNF receptor on EC to monocytes (MO) via mTNF that prevents the production of soluble apoptotic factors. Here we have tested this hypothesis. The results support the idea of a bidirectional cross-talk between MO and EC. Peripheral blood MO, MO-derived macrophages (MPhi), or the monocytic cell line Mono Mac 6 were preincubated with human microvascular EC that constitutively express TNF receptor type I (TNF-R1) and subsequently stimulated with LPS. Cell-free supernatants of these preparations no longer induced EC apoptosis. The preincubation of MO/MPhi with TNF-reactive agents, such as mAb and soluble receptors, also blocked the production of death factors, providing further evidence for reverse signaling via mTNF. Finally, we show that reverse signaling through mTNF mediated LPS resistance in MO/MPhi as indicated by the down-regulation of LPS-induced soluble TNF and IL-6 as well as IL-1 and IL-10.  相似文献   

12.
Studies in humans and cell culture as well as bioinformatics suggested that Coenzyme Q(10) (CoQ10) functions as an anti-inflammatory molecule. Here we studied the influence of CoQ10 (Kaneka Q10) on secretion of the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) by using the human and murine monocytic cell lines THP-1 and RAW264.7 expressing human apolipoprotein E3 (apoE3) or pro-inflammatory apoE4. Incubation of cells with physiological (0.1-10 microM) and supra-physiological (> 10 to < 100 microM) concentrations of CoQ10 led to an intracellular accumulation of its reduced form without any cytotoxic effects. Stimulation of cell models with lipopolysaccharide (LPS) resulted in a substantially release of TNF-alpha. When THP-1 cells were pre-incubated with 10 microM CoQ10, the LPS-induced TNF-alpha release was significantly decreased to 72 +/- 32%. This effect is similar to those obtained by 10 microM N-Acetyl-Cysteine, a well known reference antioxidant. In RAW264.7-apoE3 and -apoE4 cells, significant reductions of LPS-induced TNF-alpha secretion to 73.3 +/- 2.8% and 74.7 +/- 8.9% were found with 2.5 microM and 75 microM CoQ10, respectively. In conclusion, CoQ10 has moderate anti-inflammatory effects in two monocytic cell lines which could be mediated by its antioxidant activity.  相似文献   

13.
The objective of this study was to elucidate the role of the cellular proteasome on endotoxin-mediated activation of the macrophage. To study this role, THP-1 cells were stimulated with lipopolysaccharide (LPS) with selective cells being pretreated with the proteasome inhibitor, lactacystin or MG-132. LPS stimulation led to the phosphorylation and degradation of IRAK, followed by activation of JNK/SAPK, ERK 1/2, and p38. Subsequently, LPS induced the degradation of IkappaB, and the nuclear activation of NF-kappaB and AP-1. Activation of these pathways was associated with the production of IL-6, IL-8, IL-10, and TNF-alpha. Proteasome inhibition with either lactacystin or MG-132 attenuated LPS-induced IRAK degradation, and enhanced activation of JNK/SAPK, ERK 1/2, and p38. Proteasome inhibition, also, led to increased LPS-induced AP-1 activation, and attenuated LPS-induced IkappaB degradation resulting in abolished NF-kappaB activation. Proteasome inhibition led to significant modulation of LPS-induced cytokine production; increased IL-10, no change in IL-6, and decreased IL-8, and TNF-alpha. Thus, this study demonstrates that cellular proteasome is critical to regulation of LPS-induced signaling within the macrophage, and inhibition of the proteasome results in a conversion to an anti-inflammatory phenotype.  相似文献   

14.
Interaction of CD44, an adhesion molecule, with its ligand, hyaluronan (HA), in monocytic cells plays a critical role in cell migration, inflammation, and immune responses. Most cell types express CD44 but do not bind HA. The biological functions of CD44 have been attributed to the generation of the functionally active, HA-adhesive form of this molecule. Although lipopolysaccharide (LPS) and cytokines induce HA-adhesive CD44, the molecular mechanism underlying this process remains unknown. In this study, we show that LPS-induced CD44-mediated HA (CD44-HA) binding in monocytes is regulated by endogenously produced tumor necrosis factor (TNF)-alpha and IL-10. Furthermore, p38 mitogen-activated protein kinase (MAPK) activation was required for LPS- and TNF-alpha-induced, but not IL-10-induced, CD44-HA-binding in normal monocytes. To dissect the signaling pathways regulating CD44-HA binding independently of cross-regulatory IL-10-mediated effects, IL-10-refractory promonocytic THP-1 cells were employed. LPS-induced CD44-HA binding in THP-1 cells was regulated by endogenously produced TNF-alpha. Our results also suggest that lysosomal sialidase activation may be required for the acquisition of the HA-binding form of CD44 in LPS- and TNF-alpha-stimulated monocytic cells. Studies conducted to understand the role of MAPKs in the induction of sialidase activity revealed that LPS-induced sialidase activity was dependent on p42/44 MAPK-mediated TNF-alpha production. Blocking TNF-alpha production by PD98059, a p42/44 inhibitor, significantly reduced the LPS-induced sialidase activity and CD44-HA binding. Subsequently, TNF-alpha-mediated p38 MAPK activation induced sialidase activity and CD44-HA binding. Taken together, our results suggest that TNF-alpha-induced p38 MAPK activation may regulate the induction of functionally active HA-binding form of CD44 by activating sialidase in LPS-stimulated human monocytic cells.  相似文献   

15.
NF-kappa B plays a key role in the production of cytokines in inflammatory diseases. The effects of a novel T cell-specific NF-kappa B inhibitor, SP100030, were evaluated in cultured Jurkat cells and in murine collagen-induced arthritis (CIA). Chemical libraries were screened for NF-kappa B-inhibitory activity. SP100030, a compound identified in this process, inhibited NF-kappa B activation in PMA/PHA-activated Jurkat cells by EMSA at a concentration of 1 microM. Jurkat cells and the monocytic cell line THP-1 were transfected with an NF-kappa B promotor/luciferase construct and activated. SP100030 inhibited luciferase production in the Jurkat cells (IC50 = 30 nM). ELISA and RT-PCR confirmed that IL-2, IL-8, and TNF-alpha production by activated Jurkat and other T cell lines were inhibited by SP100030. However, cytokine expression was not blocked by the compound in THP-1 cells, fibroblasts, endothelial cells, or epithelial cells. Subsequently, DBA/1J mice were immunized with type II collagen. Treatment with SP100030 (10 mg/kg/day i.p. beginning on day 21) significantly decreased arthritis severity from onset of clinical signs to the end of the study on day 34 (arthritis score, 5.6 +/- 1.7 for SP100030 and 9.8 +/- 1.5 for control; p < 0.001). Histologic evaluation demonstrated a trend toward improvement in SP100030-treated animals. EMSA of arthritic mouse ankles in CIA showed that synovial NF-kappa B binding was suppressed in the SP100030-treated mice. SP100030 inhibits NF-kappa B activation in T cells, resulting in reduced NF-kappa B-regulated gene expression and decreased CIA. Its selectivity for T cells could provide potent immunosuppression with less toxicity than other NF-kappa B inhibitors.  相似文献   

16.
Surfactant protein A (SP-A) increases production of proinflammatory cytokines by monocytic cells, including THP-1 cells, as does lipopolysaccharide (LPS). Herein we report differences in responses to these agents. First, polymyxin B inhibits the LPS response but not the SP-A response. Second, SP-A-induced increases in tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), and IL-8 are reduced by >60% if SP-A is preincubated with Survanta (200 microgram/ml) for 15 min before addition to THP-1 cells. However, the LPS effects on TNF-alpha and IL-8 are inhibited by <20% and the effect on IL-1beta by <50%. Third, at Survanta levels of 1 mg/ml, SP-A-induced responses are reduced by >90%, and although the inhibitory effects on LPS action increase, they still do not reach those seen with SP-A. Finally, we tested whether SP-A could induce tolerance as LPS does. Pretreatment of THP-1 cells with LPS inhibits their response to subsequent LPS treatment 24 h later, including TNF-alpha, IL-1beta, and IL-8. Similar treatment with SP-A reduces TNF-alpha, but IL-1beta and IL-8 are further increased by the second treatment with SP-A rather than inhibited as with LPS. Thus, whereas both SP-A and LPS stimulate cytokine production, their mechanisms differ with respect to inhibition by surfactant lipids and in ability to induce tolerance.  相似文献   

17.
In a search for monocyte-specific nuclear factors, we analyzed in human cells the promoter of the chicken myelomonocytic growth factor, a gene that, in the chicken, is expressed in myeloid and myelomonocytic cells. Reporter gene constructs were active in monocytic Mono Mac 6 cells and in monoblastic THP-1 cells but not in the hematopoietic stem cell line K562. When a region with homology to the sequence recognized by CAAT enhancer-binding proteins (C/EBP) was inactivated by site-directed mutagenesis, the reporter activity was reduced by a factor of 10. Multimers of this region, termed F, in front of a heterologous promoter were active in Mono Mac 6 and THP-1 cells but not in K562 cells, WIL2 B cells, BT20 mammary carcinoma cells, MelJuso melanoma cells, or SK-Hep-1 hepatoma cells. Gel shift analysis with the F oligonucleotide identified DNA-binding activity in monocytic Mono Mac 6, monoblastic THP-1, and myelomonocytic HL60 cells. No binding was detected in myelomonocytic RC2A cells, in myeloid KG-1 cells, or in the hematopoietic stem cell line K562. Furthermore, a panel of solid tumor cell lines, representing various tissues, were also negative. Stimulation by PMA could not induce this binding factor in any of the negative cell lines. Analysis of primary cells (granulocytes, T cells, monocytes, and alveolar macrophages) revealed binding activity only in monocytes and macrophages. This DNA-binding factor, termed NF-M, was found to consist of two molecules, of 50 and 72 kDa, as determined by affinity cross-linking. Binding of NF-M was competed by the region F oligonucleotide and by the C/EBP motif from the albumin enhancer but not by an AP-2 motif. These data suggest that NF-M is a member of the C/EBP family of nuclear factors. The monocyte-restricted activity of NF-M suggests that this nuclear factor may be involved in regulation of monocyte-specific genes.  相似文献   

18.
19.
Metabolic acidosis frequently complicates sepsis and septic shock and may be deleterious to cellular function. Different types of metabolic acidosis (e.g., hyperchloremic and lactic acidosis) have been associated with different effects on the immune response, but direct comparative studies are lacking. Murine macrophage-like RAW 264.7 cells were cultured in complete medium with lactic acid or HCl to adjust the pH between 6.5 and 7.4 and then stimulated with LPS (Escherichia coli 0111:B4; 10 ng/ml). Nitric oxide (NO), IL-6, and IL-10 levels were measured in the supernatants. RNA was extracted from the cell pellets, and RT-PCR was performed to amplify corresponding mediators. Gel shift assay was also performed to assess NF-kappa B DNA binding. Inc easing concentrations of acid caused increasing acidification of the media. Trypan blue exclusion and lactate dehydrogenase release demonstrated that acidification did not reduce cell viability. HCl significantly increased LPS-induced NO release and NF-kappa B DNA binding at pH 7.0 but not at pH 6.5. IL-6 and IL-10 expression (RNA and protein) were reduced with HCl-induced acidification, but IL-10 was reduced much more than IL-6 at low pH. By contrast, lactic acid significantly decreased LPS-induced NO, IL-6, and IL-10 expression in a dose-dependent manner. Lactic acid also inhibited LPS-induced NF-kappa B DNA binding. Two common forms of metabolic acidosis (hyperchloremic and lactic acidosis) are associated with dramatically different patterns of immune response in LPS-stimulated RAW 264.7 cells. HCl is essentially proinflammatory as assessed by NO release, IL-6-to-IL-10 ratios, and NF-kappa B DNA binding. By contrast, lactic acidosis is anti-inflammatory.  相似文献   

20.
Regulation of cytokine and chemokine expression in microglia may have implications for CNS inflammatory disorders. In this study we examined the role of the cyclopentenone PG 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)) in microglial inflammatory activation in primary cultures of human fetal microglia. 15d-PGJ(2) potently inhibited the expression of microglial cytokines (IL-1, TNF-alpha, and IL-6). We found that 15d-PGJ(2) had differential effects on the expression of two alpha-chemokines; whereas the Glu-Lys-Arg (ELR)(-) chemokine IFN-inducible protein-10/CXCL10 was inhibited, the ELR(+) chemokine IL-8/CXCL8 was not inhibited. These findings were shown in primary human microglia and the human monocytic cells line THP-1 cells, using diverse cell stimuli such as bacterial endotoxin, proinflammatory cytokines (IL-1 and TNF-alpha), IFN-beta, and HIV-1. Furthermore, IL-8/CXCL8 expression was induced by 15d-PGJ(2) alone or in combination with TNF-alpha or HIV-1. Combined results from EMSA, Western blot analysis, and immunocytochemistry showed that 15d-PGJ(2) inhibited NF-kappaB, Stat1, and p38 MAPK activation in microglia. Adenoviral transduction of super-repressor IkappaBalpha, dominant negative MKK6, and dominant negative Ras demonstrated that NF-kappaB and p38 MAPK were involved in LPS-induced IFN-inducible protein 10/CXCL10 production. Interestingly, although LPS-induced IL-8/CXCL8 was dependent on NF-kappaB, the baseline or 15d-PGJ(2)-mediated IL-8/CXCL8 production was NF-kappaB independent. Our results demonstrate that 15d-PGJ(2) has opposing effects on the expression of two alpha-chemokines. These data may have implications for CNS inflammatory diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号