首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In some bird species, both adult and juvenile individuals are often brightly coloured. It has been commonly assumed that identical plumage colouration present in both sexes results from strong intersexual genetic correlations in colour-related traits. Here, we aimed at testing this hypothesis in juvenile individuals and looked at genetic parameters describing carotenoid-based colouration of blue tit nestlings in a wild population. To separate genetic and environmental sources of phenotypic variation we performed a cross-fostering experiment. Our analyses confirmed the existence of sexual dichromatism in blue tit nestlings and revealed a significant, although low, genetic component of carotenoid-based colouration. However, genetic effects are expressed differently across sexes as indicated by low cross-sex genetic correlations (rmf). Thus our results do not support the prediction of generally high rmf and suggest that intersexual constraints on the evolution of colouration traits may be weaker than expected. We hypothesise that observed patterns of genetic correlations result from sex-specific selective pressures acting on nestling plumage colouration.  相似文献   

2.
Hitherto, most of the investigation on the perceptual efficacy of begging signals has dwelled on how patterns of nestling colouration adjust to predominant nest luminosity. However, visual sensitivity of birds varies across species, which raises the question of whether colouration of traits involved in begging displays is adjusted to parent visual capacities. Here, by comparing nestling colouration and visual sensitivity across 22 altricial bird species, we provide a first test of this hypothesis. Firstly, we assessed differences in performance of typical UV‐tuned and violet‐tuned bird eyes when looking at the nestling traits under the light regimes prevailing at their nests. Secondly, while controlling for common ancestry in a comparative approach, we explored variation in colouration of nestlings in relation to parent visual system. The colour discrimination model indicated a general higher performance of the ultraviolet over the violet eye at detecting gape and body skin traits in either open‐ or hole‐nest light conditions. Gape colouration was associated with parental visual system as the nestlings of UVS species displayed more yellow and less pure ultraviolet mouths than the nestlings of VS species. Thus, our results agree with an adaptive parent–offspring communication scenario where the nestlings’ colours tuned the perception capacities of their parents.  相似文献   

3.
Carotenoid‐based colouration in feathers is widely accepted to be a reliable signal of the health of an individual, but the condition‐dependence of melanin‐based plumage ornaments has been highly debated. Using broods that were manipulated in size, we tested whether nutritional stress during rearing affected the carotenoid pigmentation in secondary feathers and the size, shape, and symmetry of melanin spots on breast plumage of northern flicker Colaptes auratus nestlings. Two measures of carotenoid colour (chroma and brightness) of secondary flight feathers did not vary according to brood size treatment, but in a larger dataset from the population, carotenoid chroma was positively associated with nestling mass. Nestlings from experimentally enlarged broods had smaller melanin spots than those from reduced broods, which is some of the first experimental evidence that melanin ornament size in growing nestlings is condition‐dependent. However, the shape and symmetry of the melanin breast spots was not associated with nestling mass. Sexual dimorphism was apparent in both types of pigmentation and future studies should investigate whether there are any trade‐offs for nestlings between investing in carotenoid colouration and melanisation and whether trade‐offs differ between the sexes.  相似文献   

4.
Tschirren B  Fitze PS  Richner H 《Oecologia》2005,143(3):477-482
While elaborate carotenoid-based traits in adult birds may have evolved as honest signals of individual quality in the context of sexual selection or other social interactions, the function of carotenoid-based colours in juveniles is less well understood. We investigated the hypothesis that carotenoid-based nestling colouration has evolved in response to parental preference of intensely coloured offspring during food provisioning. In a field experiment, we manipulated nestling plumage colouration by a carotenoid-supplementation and analysed the parental food provisioning behaviour before feather appearance and at the end of the nestling stage. Carotenoids per se did not influence the nestlings begging behaviour or parental feeding decisions and we found no evidence that carotenoid-based colouration in nestling great tits has a signalling function in parent-offspring interactions. Parents did not discriminate between intensely coloured and control offspring in their food provisioning and in accordance with this finding intensely coloured nestlings were not heavier or larger at the end of the nestling stage. Alternative explanations for the evolution of carotenoid-based colours in nestling birds are discussed.  相似文献   

5.
The yellow carotenoid-based plumage coloration of great tit Parus major nestlings is found to be paler in polluted and urban environments. Because carotenoid pigmentation is often considered to be a condition dependent trait in birds we wanted to find out whether food-limitation and poor nestling condition could explain the pale plumage colour in a polluted area. P. major nestlings were supplemented with variable diets along a well known heavy metal pollution gradient around a copper smelter: two food treatments with carotenoids, one food treatment with little carotenoid and one unsupplemented control. Our field experiment showed that nestlings in the polluted area grew better with carotenoid rich diets, while such effect was not found in the unpolluted area. Nestlings showed higher plasma carotenoid (lutein) levels and higher plumage carotenoid chroma values in the unpolluted area than in the polluted area. However, plasma lutein levels or plumage colour were not associated with heavy metal levels in nestling faeces (a proxy for dietary exposure). Our results provide only weak evidence for carotenoid-based colouration to be condition-dependent in great tit nestlings as we found a positive relationship between body mass and carotenoid chroma in the non-supplemented control group only. The positive relationship between body mass and plumage colour intensity is more likely to be produced by the fact that good availability of caterpillars, an important food source for P. major, also means a good availability of carotenoids to nestlings. Our results suggest that main reason for pale nestling plumage in the polluted area is lower quality invertebrate food, and not nutrition-related oxidative stress.  相似文献   

6.
The colouration of some traits in nestlings of altricial birds may influence parental food allocation as it may reflect physical condition or hunger. There is increasing evidence of the relationship between colouration of begging traits and nestling performance. However, evidence of the influence of hunger level on nestling colouration is scarce, mainly because of difficulty of distinguishing between the effects of physical condition and hunger levels. Here, we used the appetite stimulant cyproheptadine hydrochloride to increase the sensation of hunger of magpie Pica pica nestlings for eight days and assessed the effect on the colouration of rictal flanges, mouth and body skin. We found that nestlings administered with cyproheptadine had flanges more conspicuous (chromatic visual contrast), more UV coloured and less yellow coloured than their control nestmates. Conversely, mouths of experimental nestlings were more yellow coloured and less UV coloured than controls. Our pharmacological experiment affected the strength of the relationship between body mass and some colour components of body skin (chromatic and achromatic visual contrasts, UV–chroma and yellow–chroma) and of rictal flanges (chromatic visual contrasts, UV–chroma and yellow–chroma), but not for mouth colouration. These results taken together suggest that the effect of the cyproheptadine on nestling colourations is probably mediated by an increase in hunger levels of nestlings for rictal flanges and body skin colourations, and by an increase in physical condition in the case of mouth coloration.  相似文献   

7.
Carotenoid‐based coloration of nestling plumage is generally considered a reliable signal of quality and has consistently been related to habitat structure. The main hypothesis proposed to explain this correlation is that high quality habitats contain high quality food, which in return affects the expression of carotenoid‐based plumage. It therefore assumes that, at the population level, the link between habitat structure and food composition is consistent and more relevant than inter‐individual differences in foraging ability or parental investment. In addition, it is assumed by default that food and habitat produce concordant effects on nestling coloration. In this work we evaluated habitat structure and prey composition in addition to several measures of parental investment. We investigated their relative effect on carotenoid‐based plumage coloration (lightness, chroma and hue) of great tit Parus major nestlings. We found a low correlation between carotenoid‐based coloration of nestlings and that of their parents. Nestling coloration, especially lightness and chroma, increased with the intake of more spiders. The time of breeding was positively correlated with lightness and chroma and negatively correlated with hue. Finally, the maturity of oak trees surrounding nest‐boxes correlated negatively with lightness, and the size of all tree species surrounding nest‐boxes correlated positively with hue of chick plumage. Our findings support the view that habitat structure and prey composition may produce divergent effects on feather pigmentation, and that prey proportions and variables related to parental investment should be assessed when considering carotenoid‐based coloration of chicks. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 547–555.  相似文献   

8.
Colour polymorphism in vertebrates is usually under genetic control and may be associated with variation in physiological traits. The melanocortin 1 receptor (Mc1r) has been involved repeatedly in melanin-based pigmentation but it was thought to have few other physiological effects. However, recent pharmacological studies suggest that MC1R could regulate the aspects of immunity. We investigated whether variation at Mc1r underpins plumage colouration in the Eleonora's falcon. We also examined whether nestlings of the different morphs differed in their inflammatory response induced by phytohemagglutinin (PHA). Variation in colouration was due to a deletion of four amino acids at the Mc1r gene. Cellular immune response was morph specific. In males, but not in females, dark nestling mounted a lower PHA response than pale ones. Although correlative, our results raise the neglected possibility that MC1R has pleiotropic effects, suggesting a potential role of immune capacity and pathogen pressure on the maintenance of colour polymorphism in this species.  相似文献   

9.
Sexual-selection theory assumes that there are costs associated with ornamental plumage coloration. While pigment-based ornaments have repeatedly been shown to be condition dependent, this has been more difficult to demonstrate for structural colours. We present evidence for condition dependence of both types of plumage colour in nestling blue tits (Parus caeruleus). Using reflectance spectrometry, we show that blue tit nestlings are sexually dichromatic, with males having more chromatic (more 'saturated') and ultraviolet (UV)-shifted tail coloration and more chromatic yellow breast coloration. The sexual dimorphism in nestling tail coloration is qualitatively similar to that of chick-feeding adults from the same population. By contrast, the breast plumage of adult birds is not sexually dichromatic in terms of chroma. In nestlings, the chroma of both tail and breast feathers is positively associated with condition (body mass on day 14). The UV/blue hue of the tail feathers is influenced by paternally inherited genes, as indicated by a maternal half-sibling comparison. We conclude that the expression of both carotenoid-based and structural coloration seems to be condition dependent in blue tit nestlings, and that there are additional genetic effects on the hue of the UV/blue tail feathers. The signalling or other functions of sexual dichromatism in nestlings remain obscure. Our study shows that nestling blue tits are suitable model organisms for the study of ontogenetic costs and heritability of both carotenoid-based and structural colour in birds.  相似文献   

10.
Sexually selected traits confer greater reproductive benefits to individuals with more elaborate forms of the signal. However, whether these signals convey reliable information about the physiology underlying trait development remains unknown in many species. The steroid hormone corticosterone (CORT) mediates important physiological and behavioral processes during the vertebrate stress response, and CORT secretion itself can be modulated by melanocortins. Thus, sexually selected melanin-based plumage coloration could function as an honest signal of an individual's ability to respond to stressors. This hypothesis was tested in North American barn swallows, Hirundo rustica erythrogaster, where males with darker ventral plumage color exhibit higher phaeomelanin content and are more successful at reproduction. Because reproductive behavior occurs months after plumage signals are developed, we also addressed the potential temporal disconnect of physiological state during trait development and trait advertisement by analyzing three different measurements of CORT levels in adult males during the breeding season (trait advertisement) and in nestling males while they were growing their feathers (trait development). Variation in adult plumage color did not predict baseline or stress-induced CORT, or stress responsiveness. Likewise, there was no relationship between nestling plumage color and any of the CORT measurements, but heavier nestlings had significantly lower baseline CORT. Our finding that a predominantly phaeomelanin-based trait is unrelated to circulating CORT suggests that phaeomelanin and eumelanin signals may convey different physiological information, and highlights the need for further study on the biochemical links between the hypothalamic–pituitary–adrenal (HPA) axis and the production of different melanin-based pigments.  相似文献   

11.
Abstract.— Carotenoids cannot be synthesized by birds and thus have to be ingested with food, suggesting that ca-rotenoid-based plumage coloration is environmentally determined. However signaling functions ascribed to plumage imply that plumage coloration is the outcome of an evolutionary process based on genetic variation. By means of a cross-fostering design we show significant effects of both a common rearing environment and the brood from which a nestling originally came from (common origin) on the plumage coloration of nestling great tits ( Parus major ). This demonstration of origin-related variation in carotenoid-based plumage coloration suggests that the observed variation of the trait has a partial genetic basis. Consistent with environmental determination of this trait, we also found a significant positive correlation between the color saturation of nestlings and their foster-father's plumage. There was no significant correlation between nestling plumage coloration and the food quantity provided to the nestlings by the male, the female, or both parents. This suggests that the nestling-foster father correlation arises by the carotenoid quantity ingested rather than the food quantity per se. No significant nestling-true father correlation was found, which suggests that nestling plumage coloration did not indirectly evolve due to sexual selection. Consistent with this result there was no significant correlation between the nestling's plumage color and its coloration as a breeding adult the following year, suggesting that nestling plumage color is a different trait than the first year plumage.  相似文献   

12.
Understanding the impressive interspecific variation in avian eggshell colouration has attracted the attention of evolutionary ecologists for more than a century. Several functional explanations predict positive covariation between eggshell pigmentation and phenotypic quality of nestlings. We test this prediction in spotless starlings Sturnus unicolor by using biometric measurements and telomere length of hatchlings and fledglings as proxies of phenotypic quality. Female spotless starlings lay immaculate blue‐green eggs, a sexually selected signal directed to males. Pigmentation predicts positive associations with concentration of antioxidants and testosterone in the yolk and with paternal provisioning effort during nestling growth. Eggshell pigmentation (blue‐green chroma) is not associated with telomere length of hatchlings, which suggests weak maternal effects on this trait. However, we find negative associations of eggshell colouration with both body condition and telomere length of fledglings. Moreover, we find positive associations between eggshell colouration and clutch size, which suggests that sibling competition is higher in nests with more coloured eggshells. Previous works demonstrated that level of sibling competition is positively related to telomere erosion and, thus, the detected negative associations between eggshell colouration, body condition and telomere length of fledglings would reflect higher level of competition in nests with more coloured eggshells. We therefore speculate with the possibility that females that lay larger clutches also lay more coloured eggshells that elicit increased paternal provisioning effort and, thus, raise larger broods at the expense of telomere erosion of their offspring.  相似文献   

13.
Juveniles of several passerine species renew all of their fresh juvenile feathers immediately after fledging (complete post‐juvenile moult), in contrast to the majority, which perform a partial post‐juvenile moult. To understand the adaptive roles of this phenomenon we compared the quality of juvenile plumage in species that perform a complete post‐juvenile moult with that of species which perform a partial post‐juvenile moult; we similarly compared juveniles and adults in each of these groups. The quality of feathers was measured by mass of primaries, colour, and length. In species which perform a complete post‐juvenile moult the plumage quality of second‐year individuals, in their first breeding season, is similar to the plumage quality of adults, unlike those species that perform a partial post‐juvenile moult. In species which perform complete post‐juvenile moult, the quality of the feathers grown in the nest is lower than the quality of adult post‐breeding feathers. In contrast, in species which perform partial post‐juvenile moult the quality of the feathers grown in the nest is similar to that of adult post‐breeding feathers. We found that a complete post‐juvenile moult strategy is much more common 1) in residents and short‐distance migrants than in long‐distance migrants, 2) in southern latitudes, 3) in species with medium body mass and 4) in omnivores and granivores. Our results indicate two adaptive roles of the complete post‐juvenile moult strategy: 1) achieving high quality plumage in the first year which may increase individual survival probability and fitness and 2) allocating fewer resources to nestling plumage and more to nestling development, which enables the nestlings to leave the nest earlier, thus reducing the probability of encountering nest predators. We suggest that the complete post‐juvenile moult, immediately after fledging, is an optimal strategy in favourable habitats and under low time constraints, as in some tropical ecosystems.  相似文献   

14.
Telomeres are conserved DNA-protein structures at the termini of eukaryotic chromosomes which contribute to maintenance of genome integrity, and their shortening leads to cell senescence, with negative consequences for organismal functions. Because telomere erosion is influenced by extrinsic and endogenous factors, telomere dynamics may provide a mechanistic basis for evolutionary and physiological trade-offs. Yet, knowledge of fundamental aspects of telomere biology under natural selection regimes, including sex- and context-dependent variation in early-life, and the covariation between telomere dynamics and growth, is scant. In this study of barn swallows (Hirundo rustica) we investigated the sex-dependent telomere erosion during nestling period, and the covariation between relative telomere length and body and plumage growth. Finally, we tested whether any covariation between growth traits and relative telomere length depends on the social environment, as influenced by sibling sex ratio. Relative telomere length declined on average over the period of nestling maximal growth rate (between 7 and 16 days of age) and differently covaried with initial relative telomere length in either sex. The frequency distribution of changes in relative telomere length was bimodal, with most nestlings decreasing and some increasing relative telomere length, but none of the offspring traits predicted the a posteriori identified group to which individual nestlings belonged. Tail and wing length increased with relative telomere length, but more steeply in males than females, and this relationship held both at the within- and among-broods levels. Moreover, the increase in plumage phenotypic values was steeper when the sex ratio of an individual’s siblings was female-biased. Our study provides evidence for telomere shortening during early life according to subtly different dynamics in either sex. Furthermore, it shows that the positive covariation between growth and relative telomere length depends on sex as well as social environment, in terms of sibling sex ratio.  相似文献   

15.
We studied the within-brood distribution of a haematophagous mite Pellonyssus reedi living on nestling house sparrows (Passer domesticus) near the time of fledging. We measured the natural level of infestation of individual nestlings, and determined the feeding efficiency of mites, by scoring their feeding status. Within-brood distribution of mite loads was unrelated to nestling body mass, tarsus length, or immunocompetence. These results did not support parasite preference for large or susceptible hosts. Mite feeding-efficiency was also unrelated to these nestling characteristics, confirming that large nestlings or nestlings with less-developed immunocompetence did not provide superior feeding conditions for mites. Therefore, our results do not support the hypothesis that within-brood distribution of avian ectoparasites is explained by the parasites' preferences for characteristics, such as large body size or low immunocompetence, that make nestlings suitable hosts. On the other hand, we found that mite loads were negatively correlated with nestling age and feather length, suggesting that nestlings closer to fledging harbored fewer mites then their less-developed nestmates. Furthermore, feather length had a stronger relationship with parasite distribution than did nestling age. We presume, therefore, that feather characteristics, i.e., length, may serve as a signal for mites to perceive the ready-to-fledge state of nestlings, inducing abandonment behavior. These results support another, largely neglected hypothesis, i.e., that the avoidance or abandonment of those nestlings that are close to fledging may also explain the parasites' distribution in a brood. This hypothesis is based on the argument that many nest-dwelling ectoparasites breed in the nest material and emerge only periodically to feed on nestlings. In such parasites, the ability to recognize and avoid mature fledglings can be adaptive because this may help the parasites to avoid their removal from the nest so they can continue to reproduce by feeding on unfledged chicks of the current or later broods. Our results suggest that adaptive host-abandonment by nest-dwelling ectoparasites can influence within-brood parasite distributions around the time of fledging.  相似文献   

16.
Carotenoids are an essential and often limiting resource in animals and play important roles in immune system function. In birds, the period shortly after hatching is an energetically demanding stage characterized by rapid growth in body size and organ systems, including the immune system. Availability of carotenoids for the growing nestlings may be of particular importance and potentially limiting at this stage of development. We tested the hypothesis that the availability of carotenoids for the embryo in the egg and in the diet of nestlings limits the condition and immune responses of nestling house wrens (Troglodytes aedon Vieillot 1809), a species with melanin-based plumage pigments. In one experiment, nestlings within females' second broods were randomly assigned to receive either a control or a lutein supplement (2008); in a second experiment, females, before their first broods, were either induced to lay additional eggs or not induced, and nestlings within both kinds of broods were supplemented as in the first experiment (2009). There were no significant effects of lutein supplementation on nestling condition or phytohemagglutinin response. There was a significant effect of lutein supplementation on nestling mass in 2008, but the difference was opposite to that predicted. Moreover, even when breeding females were stressed by inducing them to lay supernumerary eggs, lutein supplementation of nestlings had no effect on the size or condition of nestlings hatching from these eggs. These results suggest that maternally derived lutein in the egg and that provided in the diet of nestlings are not limiting to normal development and to the components of the immune system involved in the phytohemagglutinin response of nestling house wrens.  相似文献   

17.
A process of infecting the chaffinch nestlings Fringilla coelebs with three analgoid feather mites, Analges passerinus L., 1758, Monojoubertia microphylla (Robin, 1877), and Pteronyssoides striatus (Robin, 1977), commonly occurred on this bird species was investigated. 15 nests contained totally 65 nestlings, from 2 to 6 individuals in a brood, have been examined from the day of hatching till 11th day. Observations were held in the neighbourhood of the bird banding station "Rybachy" (Russia, Kaliningrad Province) in June of 1982. Number of mites on alive nestlings taken temporarily from their nest was counted by means of binocular lens under the magnification x12.5 and x25. The nestlings receive the mites from the chaffinch female during the night time, when the female sits together with the young birds and heats them. In the condition of this prolonged direct contact the mites migrate from the female onto the nestlings. As it was shown in our study of seasonal dynamics of mites on the chaffinch (Mironov, 2000), the chaffinch female only gives its mites to young generation and looses about three quarter of its mite micropopulation during the nesting period (June), hile in the chaffinch males the number of mites continues to increase during all summer. The infections with three feather mite species happen in the second part of the nestling's stay in the nest. The starting time of this process, its intensity, and sex and age structure of mite micropopulations on the nestlings just before their leaving the nest are different in the mite species examined. These peculiarities of feather mite species are determined by the biology of examined species, and first of all by their morphological characteristic and specialisation to different microhabitats, i.e. certain structural zones of plumage. Pteronyssoides striatus (Pteronyssidae) is rather typical mite specialised to feathers with vanes. In adult birds with completely developed plumage this species occupies the ventral surface of the big upper coverts of primary flight feathers. This species appears on the chaffinch nestlings in a significant number on 7th day. The mites occupy the basal parts of primary flight feathers represented in that moment by the rods only. They sit on practically open and smooth surface of this microhabitat, which is uncommon for them, because the vanes of the big upper coverts are not yet open and also represented by thin rods. During the period of the last 5 days (from 7 to 11th day) the mean number of mites per one nestling increases from 2.3 +/- 0.5 to 17.1 +/- 1.8 mites. Just before the day, when the nestling leave the nest, the tritonymphs absolutely predominate (82.4%) in the micropopulation of P. striatus. Analges passerinus (Analgidae) is specialised to live in the friable layer formed by numerous not-engaged thread barbles of the down feathers and basal parts of the body covert feathers. Mites have special hooks on legs used for hard attaching to the barbles and for fast moving in the friable layer of feathers. On the chaffinch nestlings, these mites appear usually on 8th day, when the rod-like body covert feathers begin to open on apices and form short brushes; however some individuals occur on the skin of nestlings even on 6th day. The mean number of mites per nestling on the 11th day reaches 16.5 +/- 1.4 individuals. The micropopulation of A. passerinus is represented on the nestlings mainly by the females (45.5%), tritonymphs (23.6%) and males (11.5%). Monojobertia microphylla (Proctophyllodidae) is a typical dweller of feathers with large vanes. Mites of this species commonly occupy the ventral surface of primary and secondary flight feathers and also respective big upper covert feathers of wings. M. microphylla appears on the nestlings in a significant number (7.1 +/- 1.2 mites) on 9th day, only when the primary flight feathers already have short vanes about 10 mm in length. In next three days the number of mites increases very fast and reaches on 11th day 60.3 +/- 5.7 mites per nestling. In the micropopulation of this species, the tritonymphs count 38.3%, and the quota of males and females is 25.3% each. The migration of this species goes most intensively, than in two other species. An analitic selection of logistic curves shows, that the increasing of mite number during the process of infection with three mite species may be most adequately described by the sigmoid curves with clearly recognizable levels of saturation, which can be theoretically reached. Indeed, the number of mite individuals being able to migrate onto the nestlings is limited by their number on a respective chaffinch female. In a contrast, the increasing of plumage indices, for instance the length of flight feathers, has almost linear character during the period of observation. The beginning of mite migration is determined by the development of respective microhabitats in the plumage of nestlings, or at least by the development of certain structure elements of plumage, where mites are able to attach for a while, before that moment, when the nestlings will develop the plumage completely and begin to fly. In three mite species examined, the process of infection was performed by older stages, namely by the imago and/or tritonymphs. This can be explained by two reasons. On the one hand, the older stages are most active in their movement, resistible and able to survive successfully on new host individuals. On the other hand, the older stage are ready for the reproduction or will be ready after one moulting. The older stages of mites can quickly create a large and self-supporting micropopulations on the birds, therefore this strategy ensures a successful subsequent existence of the parasite species. In cases, when mites (A. passerinus, M. microphylla) migrate into the respective microhabitats structurally corresponding to their normal microhabitats on adult birds, the micropopulations of these mite species include a significant or dominant quota of females and males. When the normal microhabitat is not yet formed, feather mites migrate into neighboring structure elements of plumage, where they can survive and wait for the development of normal microhabitat, to which they are well adapted. Therefore, in the case of P. striatus, its micropopulations on the chaffinch nestlings are represented mainly by the tritonymphs.  相似文献   

18.
Although the condition‐dependence and signaling function of ornamental plumage coloration among adult males is well studied, less research has focused on the information content of ornamental coloration among juvenile birds. Eastern Bluebird (Sialia sialis) nestlings grow their nuptial plumage while in the nest and dependent on parents for food, making them an ideal species for studying the development and function of elaborate plumage. Previous research suggests that plumage brightness of Eastern Bluebirds functions, in the juvenile stage, in parent–offspring interactions as a sexually selected trait in adults. Using an experimental approach, we tested the effects of supplemental food on the structural plumage coloration (i.e., tips of primary feathers) of Eastern Bluebird nestlings in Watauga County, North Carolina, during the 2011 breeding season. We provided supplemental mealworms daily to breeding pairs from the onset of incubation through the nestling period, and measured plumage brightness, UV chroma, and mass of nestlings (N = 89 males and 71 females). Male nestlings of supplementally fed parents exhibited brighter plumage. The mass and UV chroma of young bluebirds were not significantly affected by food supplementation. However, the relationship between mass and brightness differed between male nestlings in the control and supplementally fed treatments. Males reared in food‐supplemented territories exhibited a positive relationship between color and mass. Nestlings in control territories, however, exhibited a negative relationship between size and brightness, suggesting that reduced food availability results in a tradeoff between allocating resources toward somatic growth and development of bright plumage. Our results suggest that UV‐blue structural plumage in male juvenile Eastern Bluebirds is at least partially condition‐dependent and may help to explain why plumage color can influence social interactions in Eastern Bluebirds.  相似文献   

19.
In many avian species, nestlings have evolved striking plumage, behaviours and mouth colours to obtain a greater share of parental investment. Studies revealing parental feeding preferences for nestlings with red gapes have proposed that red mouth colour in songbirds can act as a signal of nestling need or condition. Alternative hypotheses suggest that bright nestling mouths in cavity-nesting birds evolved to increase nestling detectability by the parents. We tested whether nestling mouth colour affects parental feeding preferences in great tits, Parus major L. In broods of six young, we experimentally painted mouth gapes and flanges either red or yellow and tested the effect of mouth colour on nestlings' mass gain under two lighting conditions. In nests with high luminosity, there was no significant effect of mouth colour on mass gain. In nests with low luminosity, nestlings with red gapes and flanges gained less mass than nestlings with red gapes and yellow flanges or both yellow gapes and flanges. Our results suggest that, in nests with low luminosity, red mouths decreased nestling detectability to the feeding parents and support the hypothesis that poor luminosity in nesting cavities can select for pale mouths. Overall, our results do not support the hypothesis that red mouth colour signals nestling need or condition to parent great tits.  相似文献   

20.
Nests of altricial birds exhibit variable spectral properties that may affect the efficacy (conspicuousness) of the colored begging traits that a nestling displays to its parents. Here we explored whether selection for efficient perception has favored the evolution of nestling color designs that maximizes nestling detectability in variable light environments. Visual models were used to estimate how parents perceive the coloration of mouths, flanges, heads, and breasts of nestlings within their nest in 21 species of European birds. We show that the largest chromatic and achromatic contrasts against the nest background appeared for nestling mouths and flanges, respectively. Nestlings of open-nesting species showed a larger general achromatic contrast with the nest than did nestlings of hole-nesting species. However, nestlings of hole nesters showed a more evident achromatic contrast between flanges and other traits than did nestlings of open nesters. In addition, species with larger clutch sizes showed larger general achromatic contrasts with the nest. Gaping traits of open-nesting species contrasting with the nest background were better perceived under rich light regimes than under poor ones. These findings are consistent with a scenario in which selection for nestling detectability in dark environments has favored the evolution of particular achromatic components of gape coloration but also nestling traits that enhance signal efficacy by maximizing color contrasts within a nestling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号