首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite the evidence that the human small intestine produces two separate species of apoB mRNA encoding for B-100 and B-48, there is a paucity of data concerning the expression of the latter form in this organ. Using a high resolution immunogold approach, with specific polyclonal antibodies and a panel of monoclonal antibodies (2D8, 3A10, 4G3), both forms of apoB (B-48 and B-100) were revealed over enterocytes of pediatric intestinal samples. Intense labeling was observed over microvilli, apical smooth membrane vesicles, multivesicular bodies, the basolateral membrane, as well as the trans Golgi region. Only low labeling was found over the rough endoplasmic reticulum (rER). Similar patterns of apoB distribution characterized both duodenal and jejunal regions. The presence of labeling over the Golgi apparatus and rER suggests a synthetic activity of both forms of apoB by the epithelial cells. To test this hypothesis, human intestine was incubated with [3H]leucine, homogenized, and subjected to immunoprecipitation for apoB. Immunoprecipitates contained radioactivity mainly in apoB-48 with relatively small amounts in apoB-100 when examined by NaDodSO4-polyacrylamide gel electrophoresis. These findings were further supported by the biochemical determination of apoB-100 and apoB-48 in chylomicron particles isolated from thoracic duct lymph of a human donor. Taken together, our data suggest that the human intestine is able to synthesize and to express the apoB-100.  相似文献   

2.
In this study, we tested the hypothesis that two separate pathways, the two-step process and an apolipoprotein B (apoB) size-dependent lipidation process, give rise to different lipoproteins. Expression of apoB-100 and C-terminally truncated forms of apoB-100 in McA-RH7777 cells demonstrated that VLDL particles can be assembled by apoB size-dependent linear lipidation, resulting in particles whose density is inversely related to the size of apoB. This lipidation results in a LDL-VLDL 2 particle containing apoB-100. VLDL 1 is assembled by the two-step process by apoB-48 and larger forms of apoB but not to any significant amount by apoB-41. The major amount of intracellular apoB-80 and apoB-100 banded with a mean density of 1.10 g/ml. Its formation was dependent on the sequence between apoB-72 and apoB-90. This dense particle, which is retained in the cell, possibly by chaperones or association with the microsomal membrane, is a precursor of secreted VLDL 1. The intracellular LDL-VLDL 2 particles formed during size-dependent lipidation appear to be the precursors of intracellular VLDL 1. We propose that the dense apoB-100 intracellular particle is converted to LDL-VLDL 2 by size-dependent lipidation. LDL-VLDL 2 is secreted or converted to VLDL 1 by the uptake of the major amount of triglycerides.  相似文献   

3.
Quantitation of apoB-48 and apoB-100 by gel scanning or radio-iodination   总被引:2,自引:0,他引:2  
In this presentation, we have validated two procedures for the separation and quantitation of apoB-48 and apoB-100 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE): 1) gamma counting of radio-iodinated lipoproteins and 2) scanning of stained gels. Total apoB in SDS solutions was determined by absorbance at 220 nm, and validated by amino acid analysis. The absorbance at 220 nm, in contrast to the Lowry procedure, could be used with BSA as a standard without correction factors. At relative apoB-48 concentrations higher than 10% of total apoB, both scanning and radio-iodination gave reliable results. At lower relative apoB-48 concentrations, the radio-iodine method appeared to be superior, but at low total apoB concentrations, the efficiency of radio-iodination was low.  相似文献   

4.
5.
6.
A new agarose-acrylamide gradient slab gel electrophoresis system is described. The preparation of this new gel has been facilitated by the use of agarose with a relatively low gelation temperature. Fractionation of marker proteins and crosslinked proteins from a subcellular cytoskeletal preparation on agarose-acrylamide gradient gels is compared to that found using other acrylamide gel electrophoresis systems.  相似文献   

7.
Apolipoprotein B synthesized by Hep G2 cells undergoes fatty acid acylation   总被引:1,自引:0,他引:1  
Apolipoprotein B is the principal protein associated with cholesterol transport in the blood and has been proposed to play a central role in human atherogenesis. The unique hydrophobic nature of this large (512 kDa), glycosylated apolipoprotein differs from that of the other apolipoproteins. Since another apolipoprotein, apolipoprotein A-I, has been recently shown to have covalently bound fatty acids, potential fatty acid acylation of apolipoprotein B was investigated. The human hepatoma cell line, Hep G2, synthesizes apoB-100 and secretes the apolipoprotein into the culture medium. After a 24-hr incubation with [14C]palmitate and [14C]stearate, the label was incorporated into apoB-100 when assessed by a sodium dodecyl sulfate polyacrylamide gel electrophoresis, autoradiography, immunoblot analysis, and immunoprecipitation. Hydroxylamine treatment, which hydrolyzes ester and thioester bonds, removed the radiolabel. ApoB-100 isolated from Hep G2 cells by ultracentrifugation and preparative sodium dodecyl sulfate gel electrophoresis was hydrolyzed and analyzed by gas-liquid chromatography-mass spectrometry. In contrast to circulating apoB in low density lipoproteins, both palmitate and stearate were present in newly synthesized apoB-100. These results establish that newly synthesized apoB-100 undergoes covalent acylation with palmitate and stearate. The acylation of apoB may play an important role in lipoprotein particle secretion. In addition, derangements in apoB fatty acid acylation may lead to dyslipoproteinemia.  相似文献   

8.
9.
To study the mechanism of low levels of full length and truncated apoB in individuals heterozygous for apoB truncation, a non-sense mutation was introduced in one of the three alleles of apob gene of HepG2 cells by homologous recombination. Despite very low levels of apoB-82 (1-2%) in the media, a prominent N-terminal apoB protein of 85 kDa (apoB-15) was secreted that fractionated at d > 1.065 in density gradient ultracentrifugation. The mechanism of production of this short protein was studied by 35S-methionine pulse-chase experiment. Oleate prevented presecretory degradation of apoB-100 in the cell and resulted in increased secretion of newly synthesized apoB-100 with decreases in the apoB-15, suggesting that rescue of pre-secretary intracellular degradation of apoB restricted the production and secretion of apoB-15. Further investigation on the degradation of transmembrane forms of apoB, in the presence and absence of a cysteine protease inhibitor, N-acetyl-leucyl-leucyl-norleucinal (ALLN), showed appearance of detectable levels of newly synthesized apoB-82 in the cell and the media together with increased apoB-100 secretion, and reduction in the secretion of apoB-15. Compared to ER membrane, the levels of apoB were higher in the luminal content, and presence of both oleate and ALLN had additive effect on apoB secretion. These results suggest that the presence of improper folding of apoB during translocation led to the cleavage of both apoB-100 and apoB-82 by ALLN-sensitive protease and generation of 85 kDa N-terminal fragment of apoB.  相似文献   

10.
Apolipoprotein (apo) B-100, an essential protein for the assembly and secretion of very low density lipoproteins depends on lipid binding (lipidation) for its secretion. Seven of its 8 disulfides are clustered within the N-terminal 21%. The role of these disulfides in the secretion of lipidated or unlipidated truncated forms of apoB was studied in C127 cells expressing apoB-17, apoB-29, or apoB-41. These cells do not express microsomal triglyceride transfer protein yet secrete apoB-41 on triacylglycerol-rich lipoproteins while apoB-29 and apoB-17 are secreted with little or no lipid, respectively. Dithiothreitol utilized in pulse-chase studies prevented the cotranslational formation of disulfides and when added posttranslationally reduced native disulfides. As a result, the secretion of reduced apoB forms was blocked and they were retained in the cells. Reduced apoB polypeptides were rescued following removal of dithiothreitol, as they underwent post-translational disulfide bonding, attained their mature form, and were subsequently secreted. Together the data suggest that in C127 cells the formation of native disulfides is critical for the folding and secretion of apoB independent of its length, its requirement for lipidation or microsomal triglyceride transfer protein expression. Therefore, these cells provide an appropriate model to study the folding of apoB in great detail.  相似文献   

11.
We have identified a mutation of apolipoprotein B (apoB) in a kindred with hypobetalipoproteinemia. Four affected members had plasma concentrations of total cholesterol of 115 +/- 14, low density lipoprotein (LDL)-C of 48 +/- 11, and apoB of 28 +/- 9 (mg/dl mean +/- SD). The values correspond to approximately 30% the values for unaffected relatives. Triglyceride and high density lipoprotein (HDL)-C concentrations were 92 +/- 50 and 49 +/- 4, respectively, neither significantly different from unaffected relatives. Western blots of plasma apoB of affected subjects showed two major bands: apoB-100 and an apoB-75 (mol wt of approximately 418,000). DNA sequencing of the appropriate polymerase chain reaction (PCR)-amplified genomic DNA segment revealed a deletion of the cytidine at nucleotide position 10366, resulting in a premature stop codon at amino acid residue 3387. In apoB-75/apoB-100 heterozygotes, two LDL populations containing either apoB-75 or apoB-100 could be distinguished from each other by gel permeation chromatography and by immunoblotting of nondenaturing gels using monoclonal antibodies B1B3 (epitope between apoB amino acid residues 3506-3635) and C1.4 (epitope between residues 97-526). ApoB-75 LDL were smaller and more dense than apoB-100 LDL. To determine whether the low concentration of apoB-75 was due to its enhanced LDL-receptor-mediated removal, apoB-75 LDL were isolated from the proband's d 1.063-1.090 g/ml fraction (which contained most of the apoB-75 in his plasma) by chromatography on anti-apoB and anti-apoA-I immunoaffinity columns. The resulting pure apoB-75 LDL fraction interacted with the cells 1.5-fold more effectively than apoB-100 LDL (d 1.019-1.063 g/ml). To determine the physiologic mechanism responsible for the hypobetalipoproteinemia, in vivo kinetic studies were performed in two affected subjects, using endogenous labeling of apoB-75 and apoB-100 with [13C]leucine followed by multicompartmental kinetic analyses. Fractional catabolic rates of apoB-75 VLDL and LDL were 2- and 1.3-fold those of apoB-100 very low density lipoprotein (VLDL) and LDL, respectively. Production rates of apoB-75 were approximately 30% of those for apoB-100. This differs from the behavior of apoB-89, a previously described variant, whose FCRs were also increased approximately 1.5-fold relative to apoB-100, but whose production rates were nearly identical to those of apoB-100. Thus, in contrast to the apoB-89 mutation, the apoB-75 mutation imparts two physiologic defects to apoB-75 lipoproteins that account for the hypobetalipoproteinemia, diminished production and increased catabolism.  相似文献   

12.
P P Lau  S H Chen  J C Wang    L Chan 《Nucleic acids research》1990,18(19):5817-5821
Apolipoprotein (apo) B-48 mRNA is the product of RNA editing which consists of a C----U conversion changing a CAA codon encoding Gln-2153 in apoB-100 mRNA to a UAA stop codon in apoB-48 mRNA. In the adult rat, RNA editing occurs both in the small intestine and the liver. We have studied the ability of rat liver nuclear extracts to bind to synthetic apoB mRNA segments spanning the editing site. Using an RNA gel mobility shift assay, we found the sequence-specific binding of a protein(s) to a 65-nucleotide apoB-100 mRNA. UV crosslinking followed by T1 ribonuclease digestion and SDS-polyacrylamide gel electrophoresis demonstrated the formation of a 40 kDa protein-RNA complex when 32P-labeled apoB-100 mRNA was incubated with a rat liver nuclear extract but not with HeLa nuclear extract. Binding was specific for the sense strand of apoB mRNA, and was not demonstrated with single-stranded apoB DNA, or antisense apoB RNA. The complex also failed to form if SDS was present during the UV light exposure. Binding experiments using synthetic apoB mRNAs indicate that the 40 kDa protein would also bind to apoB-48 mRNA but not apoA-I, apoA-IV, apoC-II or apoE mRNA. Experiments using deletion mutants of apoB-100 mRNA indicate efficient binding of wildtype 65-nucleotide (W65), 40-nucleotide (W40) and 26-nucleotide (W26) apoB-100 mRNA segments, but not 10-nucleotide (or smaller) segments of apoB-100 mRNA to the 40 kDa protein. In contrast, two other regions of apoB-100 mRNA, B-5' (bases 1128-3003) and B-3' (bases 11310-11390), failed to bind to the protein. The 40 kDa sequence-specific binding protein in rat liver nuclear extract may play a role in apoB-100 mRNA editing.  相似文献   

13.
Twenty two subjects (9 males, 13 females) were fed a fat-rich meal (1 g of fat/kg body weight). Triglyceride-rich lipoproteins (TRL) were isolated by ultracentrifugation (d less than 1.006 g/ml) from blood drawn 0, 3, 6, 9, and 12 hr after the meal. Plasma triglyceride increased then decreased postprandially, while plasma apoA-I and apoB concentrations decreased. TRL triglyceride, TRL total protein, and TRL apoB concentrations all increased then decreased after the fat-rich meal. Postprandial rise in plasma triglyceride was significantly correlated with fasting plasma triglyceride levels (r = 0.66, P less than 0.001); postprandial rise in TRL triglyceride was significantly correlated with fasting TRL triglyceride levels (r = 0.58, P less than 0.01); postprandial rise in TRL apoB was not, however, significantly correlated with fasting TRL apoB levels (r = 0.37, N.S.). TRL apolipoproteins were separated by polyacrylamide gradient (4-22.5%) gel electrophoresis and protein bands were scanned in two dimensions with a laser densitometer. Relative postprandial changes in the concentration of the TRL apolipoproteins were determined. TRL apoB-100, apoB-48, apoE, and apoC increased then decreased postprandially. The increase in TRL apoB-100 after the fat-rich meal was confirmed in 8 subjects by direct measurement of apoB-100 with a monoclonal antibody ELISA assay. ApoA-I concentration in TRL was unchanged. Albumin in the TRL fraction was significantly increased 12 hr after the meal. Subjects with a greater magnitude of postprandial triglyceridemia had a greater increase in TRL triglyceride and TRL apoB, but their TRL apoB-100/apoB-48 ratios were not different from subjects with less pronounced triglyceridemia. Assuming that plasma TRL containing apoB-100 are predominantly derived from the liver, our data suggest that triglyceride-rich lipoproteins from both the liver and intestine make a significant contribution to postprandial triglyceridemia.  相似文献   

14.
Low LDL cholesterol and apoB levels in plasma cosegregate with mutations of apoB in some kindreds with familial hypobetalipoproteinemia. Approximately 35 apoB mutations, many specifying apoB truncations, have been described. Based on the centile nomenclature where the full-length nature apoB consisting of 4536 amino acids is designated as apoB-100, only those truncations of apoB >25% of normal length are detectable in plasma. Previously, we reported on five unrelated kindreds with familial hypobetalipoproteinemia in whom although no apoB truncations were detectable in plasma, low apoB levels were nevertheless linked to the apoB gene. In one of those kindreds, we reported a donor splice site mutation in intron 5 (specifying apoB- 4). We now describe a nonsense mutation in exon 10 (apoB-9) in two of the other unrelated families. Both the apoB-4 and apoB-9 mutations have been reported by others in unrelated families. Recurrent mutations of apoB-40 and apoB-55 also have been reported, suggesting that recurrent mutations of apoB may account for an appreciable proportion of familial hypobetalipoproteinemia kindreds. To test this hypothesis, we searched for four apoB mutations whose products are not detected in plasma including the apoB-4, apoB-9, and two other previously reported mutations in exons 21 and 25. We studied three groups with plasma cholesterols <130 mg/dl in whom no apoB truncations were detected in plasma: a) 28 FHBL probands from St. Louis, b) 151 individual St. Louisians, and c) 28 individual Sicilians. One subject from the 28 kindreds and two subjects among 151 hypobeta individuals from St. Louis harbored the exon 10 mutation. None of the other mutations were detected. Thus, among hypobeta lipoproteinemic subjects without any detectable apoB truncations in plasma, <5% had an apoB truncation-producing mutation. As only about 0.5% of hypobeta lipoproteinemic subjects have plasma-detectable apoB truncations, our data suggest that the known apoB truncations account for only a small proportion of hypocholesterolemia.  相似文献   

15.
16.
The synthesis of apoB-100 and apoB-48 by rat liver was investigated by studying the apoB complement of very low density lipoproteins (VLDL) from hepatic perfusates and Golgi fractions. The relative amounts of apoB-100 and apoB-48 in perfusate and Golgi VLDL as determined by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis were similar to those in serum VLDL. To investigate the relative rates of synthesis of the VLDL B proteins, rats were injected intraportally with tritiated amino acid, and hepatic Golgi and serum VLDL were isolated from 7.5 to 120 min later. In hepatic Golgi VLDL, apoB-100 and apoE were maximally labeled at 15 min after the tritiated amino acid pulse. In contrast, VLDL apoB-48 attained maximum radioactivity at 30 min after isotope injection. In serum VLDL, apoB-100 and apoE were maximally labeled at 30 min post-isotope injection, while activity in apoB-48 peaked at 60 min. The data suggest that the synthesis of the B proteins and incorporation into rat liver nascent VLDL are independently regulated. The differential labeling patterns of the VLDL B proteins may be explained by an intracellular pool of apoB-48 that is larger than that of apoB-100. An alternative explanation of the results is that apoB-100 is a precursor to apoB-48.  相似文献   

17.
To examine the role of apolipoprotein A-IV (apoA-IV) in the intracellular trafficking and secretion of apoB, COS cells were cotransfected with microsomal triglyceride transfer protein (MTP), apoB-41 (amino terminal 41% of apoB), and either native apoA-IV or apoA-IV modified with the carboxy-terminal endoplasmic reticulum (ER) retention signal, KDEL (apoA-IV-KDEL). As expected, apoA-IV-KDEL was inefficiently secreted relative to native apoA-IV. Coexpression of apoB-41 with apoA-IV-KDEL reduced the secretion of apoB-41 by approximately 80%. The apoA-IV-KDEL effect was specific, as neither KDEL-modified forms of human serum albumin or apoA-I affected apoB-41 secretion. Similar results were observed in McA-RH7777 rat hepatoma cells, which express endogenous MTP. The full inhibitory effect of apoA-IV-KDEL on apoB secretion was observed only for forms of apoB containing a minimum of the amino-terminal 25% of the protein (apoB-25). However, apoA-IV-KDEL inhibited the secretion of both lipid-associated and lipid-poor forms of apoB-25. Dual-label immunofluorescence microscopy of cells transfected with native apoA-IV and apoB-25 revealed that both apolipoproteins were localized to the ER and Golgi, as expected. However, when apoA-IV-KDEL was cotransfected with apoB-25, both proteins localized primarily to the ER. These data suggest that apoA-IV may physically interact with apoB in the secretory pathway, perhaps reflecting a role in modulating the process of triglyceride-rich lipoprotein assembly and secretion.  相似文献   

18.
19.
Familial hypobetalipoproteinemia, a syndrome associated with low plasma cholesterol levels, can be caused by apoB gene mutations. We identified a healthy 42-year-old man whose total plasma cholesterol level was 80 mg/dl. His plasma very low density lipoprotein (VLDL) contained a unique truncated apoB species, apoB-83, in addition to the normal B apolipoproteins, apoB-100 and apoB-48. Virtually no apoB-83 was detectable in his low density lipoprotein (LDL). From the subject's kindred, we identified nine other hypocholesterolemic subjects whose VLDL contained apoB-83. A tendency for cholelithiasis was noted in the apoB-83 heterozygotes, particularly in the older individuals. From the apparent size of apoB-83 on SDS-polyacrylamide gels and its reactivity with apoB-specific monoclonal antibodies, we estimated that it would contain approximately 3700-3800 amino acids. DNA sequencing of apoB genomic clones from two affected individuals revealed that apoB-83 was caused by a C----A transversion in exon 26 of the apoB gene (apoB cDNA nucleotide 11458). This mutation converts Ser-3750 (TCA) into a premature stop codon (TAA) and creates a unique MseI restriction endonuclease site. Thus, a single nucleotide transversion in the apoB gene results in a unique truncated apoB species, apoB-83, and the clinical syndrome of familial hypobetalipoproteinemia.  相似文献   

20.
Procedures are presented for the separation and determination of the isotopic enrichment of multiple human apolipoproteins labeled in vivo with a stable isotope amino acid. The isotopic enrichments of plasma lysine and plasma apolipoproteins were monitored for 16 days after a single intravenous dose of [4,4,5,5-2H4]lysine (5 mg/kg body weight). The use of a multiply deuterated amino acid enabled the measurement of isotopic enrichments above background over the entire 16-day time course in all proteins. Individual apolipoproteins were separated on a specially designed gradient sodium dodecyl sulfate polyacrylamide gel electrophoresis system cast in a conventional slab gel apparatus which resolved apoB-100, apoE, apoA-I, apoA-II, apoC-I, apoC-II, apoC-III-1, and apoC-III-2 on a single gel. After staining with Coomassie blue, proteins bands (containing 5 to 30 micrograms of individual apolipoprotein) were excised from the gel. Amino acids were recovered from hydrolyzed gel slices, derivatized, and analyzed by gas chromatography-mass spectrometry for determination of lysine isotopic enrichments. The utility of the method is demonstrated using examples of apolipoproteins B-100, A-I, A-II, C-I, C-II, and C-III from either total plasma d less than 1.21 g/ml lipoproteins or selected lipoprotein subfractions. Lysine isotopic enrichments of proteins were generally determined with a precision of better than 5%. The isotopic enrichment profiles were consistent with literature reports of apolipoprotein metabolic kinetics based on the use of radioiodinated apolipoproteins. The procedures outlined can be used to separate and measure the isotopic enrichment of virtually any apolipoprotein from any chosen lipoprotein fraction. Thus, these procedures should find wide application in the study of apolipoprotein metabolic kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号