首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterization of conformational transition and folding intermediates is central to the study of protein folding. We studied the effect of various alcohols (trifluoroethanol (TFE), butanol, propanol, ethanol and methanol) and salts (K(3)FeCN(6), Na(2)SO(4), KClO(4) and KCl) on the acid-induced state of alpha-chymotrypsinogen A, a predominantly beta-sheet protein, at pH 2.0 by near-UV circular dichroism (CD), far-UV CD and 1-anilinonaphthalene-8-sulfonic acid (ANS) fluorescence measurements. Addition of alcohols led to an increase in ellipticity value at 222 nm indicating the formation of alpha-helical structure. The order of effectiveness of alcohols was shown to be TFE>butanol>propanol>ethanol>methanol. ANS fluorescence data showed a decrease in fluorescence intensity on alcohol addition, suggesting burial of hydrophobic patches. The near-UV CD spectra showed disruption of tertiary structure on alcohol addition. No change in ellipticity was observed on addition of salts at pH 2.0, whereas in the presence of 2 M urea, salts were found to induce a molten globule-like state as evident from the increases in ellipticity at 222 nm and ANS fluorescence indicating exposure of hydrophobic regions of the protein. The effectiveness in inducing the molten globule-like state, i.e. both increase in ellipticity at 222 nm and increase in ANS fluorescence, followed the order K(3)FeCN(6)>Na(2)SO(4)>KClO(4)>KCl. The loss of signal in the near-UV CD spectrum on addition of alcohols indicating disordering of tertiary structure results suggested that the decrease in ANS fluorescence intensity may be attributed to the unfolding of the ANS binding sites. The results imply that the alcohol-induced state had characteristics of an unfolded structure and lies between the molten globule and the unfolded state. Characterization of such partially folded states has important implications for protein folding.  相似文献   

2.
We have carried out a systematic investigation of salts- and alcohols-induced conformational alterations on the trifluoroacetic acid (TFA)-treated ferricytochrome c by soret absorption spectroscopy, far UV circular dichroism (CD), tryptophan fluorescence, and 1-anilino-8-naphthalene sulfonate (ANS) binding. TFA induces the unfolding of native cytochrome c obtained from horse heart leading to loss of secondary structure. The addition of increasing concentration of salts and alcohols leads to increase in MRE value at 222 and 208 nm indicating an increase in the alpha-helical content leading to formation of compact dimensional structure. Cytochrome c is a heme protein in which the resonance energy of tryptophan is transferred to heme resulting in quenched tryptophan fluorescence. Addition of alcohols leads to increase in tryptophan and ANS fluorescence. The tryptophan and ANS fluorescence in case of salts shows decreased fluorescence intensity. TFA-induced unfolded cytochrome c showed the soret absorption maximum at 394 nm. However, an intermediate state in presence of alcohols and salts showed the absorption maxima at 398 nm and 402 nm, respectively. Among all the salts and alcohols studied, K3Fe(CN)6 and butanol were found to be most effective as examined by the above-mentioned spectroscopic techniques. The order of effectiveness of alcohols was found to be butanol > propanol > ethanol > methanol. The following effective trend in the case of salts was obtained: K3Fe(CN)6 > K2SO4>KClO4 > KCl. These results suggest that alcohols induce an intermediate with molten globule-like conformation on the TFA unfolded state, whereas salts induce a refolded intermediate approaching native-like conformation.  相似文献   

3.
Human serum albumin (HSA) exists in a molten-globule like state at low pH (pH 2.0). We studied the effects of trifluoroethanol (TFE) and hexafluoroisopropanol (HFIP) on the acid-denatured state of HSA by far-UV circular dichroism (CD), near-UV CD, tryptophan fluorescence, and 1-anilinonaphthalene-8-sulfonic acid (ANS) binding. At pH 2.0, these alcohols induced the formation of alpha-helical structure as evident from the increase in mean residue ellipticity (MRE) value at 222 nm. On addition of different alcohols, HSA exhibited a transition from the acid-denatured state to the alpha-helical state and loss of ANS-binding sites reflected by the decrease in ANS fluorescence at 480 nm. However, the concentration range required to bring about the transition varied greatly among different alcohols. HFIP was found to have highest potential whereas methanol was least effective in inducing the transition. The order of effectiveness of alcohols was shown to be: HFIP > TFE > 2-chloroethanol > tert-butanol > isopropanol > ethanol > methanol as evident from the Cm values. The near-UV CD spectra and tryptophan fluorescence showed the differential effects of halogenated alcohols with those of alkanols. A comparison of the m values, showing the dependence of Delta GH on alcohol concentration, suggests that the helix stabilizing potential of different alcohols is due to the additive effect of different constituent groups present whereas remarkably higher potential of HFIP involves some other factor in addition to the contribution of constituent groups.  相似文献   

4.
In our earlier communications, we had studied the acid induced unfolding of stem bromelain, glucose oxidase and fetuin [Eur. J. Biochem. 269 (2002) 47; Biochem. Biophys. Res. Comm. 303 (2003) 685; Biochim. Biophys. Acta 1649 (2003) 164] and effect of salts and alcohols on the acid unfolded state of alpha-chymotrypsinogen and stem bromelain [Biochim. Biophy. Acta 1481 (2000) 229; Arch. Biochem. Biophys. 413 (2) (2003) 199]. Here, we report the presence of molten globule like equilibrium intermediate state under alkaline, native and acid conditions in the presence of SDS and butanol. A systematic investigation of sodium dodecyl sulphate and butanol induced conformational alterations in alkaline (U(1)) and acidic (U(2)) unfolded states of horse heart ferricytochrome c was examined by circular dichroism (CD), tryptophan fluorescence and 1-anilino-8-napthalene sulfonate (ANS) binding. The cytochrome c (cyt c) at pH 9 and 2 shows the loss of approximately 61% and 65% helical secondary structure. Addition of increasing concentrations of butanol (0-7.2 M) and sodium dodecyl sulphate (0-5 mM) led to an increase in ellipticity value at 208 and 222 nm, which is the characteristic of formation of alpha-helical structure. Cyt c is a heme protein in which the tryptophan fluorescence is quenched in the native state by resonance energy transfer to the heme group attached to cystines at positions 14 and 17. At alkaline and acidic pH protein shows enhancement in tryptophan fluorescence and quenched ANS fluorescence. Addition of increasing concentration of butanol and SDS to alkaline or acid unfolded state leads to decrease in tryptophan and increase in ANS fluorescence with a blue shift in lambda(max), respectively. In the presence of 7.2 M butanol and 5 mM SDS two different intermediate states I(1) and I(2) were obtained at alkaline and acidic pH, respectively. States I(1) and I(2) have native like secondary structure with disordered side chains (loss of tertiary structure) as predicted from tryptophan fluorescence and high ANS binding. These results altogether imply that the butanol and SDS induced intermediate states at alkaline and acid pH lies between the unfolded and native state. At pH 6, in the presence of 7.2 M butanol or 5 mM SDS leads to the loss of CD bands at 208 and 222 nm with the appearance of trough at 228 nm also with increase in tryptophan and ANS fluorescence in contrast to native protein. This partially unfolded intermediate state obtained represents the folding pathway from native to unfolded structure. To summarize; the 7.2 M butanol and 5 mM SDS stabilizes the intermediate state (I(1) and I(2)) obtained at low and alkaline pH. While the same destabilizes the native structure of protein at pH 6, suggesting a difference in the mechanism of conformational stability.  相似文献   

5.
A systematic investigation of the acid-induced unfolding of glucose oxidase (beta-D-glucose: oxygen 1-oxidoreductase) (GOD) from Aspergillus niger was made using steady-state tryptophan fluorescence, circular dichroism (CD), and ANS (1-anilino 8-naphthalene sulfonic acid) binding. Intrinsic tryptophan fluorescence studies showed a maximally unfolded state at pH 2.6 and the presence of a non-native intermediate in the vicinity of pH 1.4. Flavin adenine dinucleotide (FAD) fluorescence measurements indicate that the bound cofactors are released at low pH. In the pH range studied, near- and far-UV CD spectra show maximal loss of tertiary as well as secondary structure (40%) at pH 2.6 although glucose oxidase at this pH is relatively less denatured as compared to the conformation in 6M GdnHCl. Interestingly, in the vicinity of pH 1.4, glucose oxidase shows a refolded conformation (A-state) with approximately 90% of native secondary structure and native-like near-UV CD spectral features. ANS fluorescence studies, however, show maximal binding of the dye to the protein at pH 1.4, indicating a "molten-globule"-like conformation with enhanced exposure of hydrophobic surface area. Acrylamide quenching data exhibit reduced accessibility of quencher to tryptophan, suggesting a more compact conformation at low pH. Thermal stability of this state was assessed by ellipticity changes at 222 nm relative to native protein. While native glucose oxidase showed a completely reversible thermal denaturation profile, the state at pH 1.4 showed approximately 50% structural loss and the denatured state appeared to be in a different conformation exhibiting prominent beta-sheet structure (around 85 degrees C) that was not reversible. To summarize; the A-state of GOD exists as a compact folded intermediate with "molten-globule"-like characteristics, viz., native-like secondary structure but with non-native cofactor environment, enhanced hydrophobic surface area and non-cooperative thermal unfolding. That the A-state also possesses significant tertiary structure is an interesting observation made in this study.  相似文献   

6.
Naeem A  Fatima S  Khan RH 《Biopolymers》2006,83(1):1-10
A systematic investigation of the effects of detergents [Sodium dodecyl sulphate (SDS), hexa decyltrimethyl ammonium bromide (CTAB) and Tween-20] on the structure of acid-unfolded papain (EC.3.4.22.2) was made using circular dichroism (CD), intrinsic tryptophan fluorescence, and 1-anilino 8-sulfonic acid (ANS) binding. At pH 2, papain exhibits a substantial amount of secondary structure and is relatively less denatured compared with 6 M GdnHCl (guanidine hydrochloride) but loses the persistent tertiary contacts of the native state. Addition of detergents caused an induction of alpha-helical structure as evident from the increase in the mean residue ellipticity value at 208 and 222 nm. Near-UV CD spectra also showed the regain of native-like spectral features in the presence of 8 mM SDS and 3.5 mM CTAB. Induction of structure in acid-unfolded papain was greater in the presence SDS followed by CTAB and Tween-20. Intrinsic tryptophan fluorescence studies indicate the change in the environment of tryptophan residues upon addition of detergents to acid-unfolded papain. Addition of 8 mM SDS resulted in the loss of ANS binding sites exhibited by a decrease in ANS fluorescence intensity, suggesting the burial of hydrophobic patches. Maximum ANS binding was obtained in the presence of 0.1 mM Tween-20 followed by CTAB, indicating a compact "molten-globule"-like conformation with enhanced exposure of hydrophobic surface area. Acid-unfolded papain in the presence of detergents showed the partial recovery of enzymatic activity. These results suggest that papain at low pH and in the presence of SDS exists in a partially folded state characterized by native-like secondary structure and tertiary folds. While in the presence of Tween, acid-unfolded papain exists as a compact intermediate with molten-globule-like characteristics, viz. enhanced hydrophobic surface area and retention of secondary structure. While in the presence of CTAB it exists as a compact intermediate with regain of native-like secondary and partial tertiary structure as well as high ANS binding with the partially recovered enzymatic activity, i.e., a molten globule state with tertiary folds.  相似文献   

7.
Human serum albumin (HSA), under conditions of low pH, is known to exist in two isomeric forms, the F form at around pH 4.0 and the E form below 3.0. We studied its conformation in the acid-denatured E form using far-UV and near-UV CD, binding of a hydrophobic probe, 1-anilinonaphthalene-8-sulfonic acid (ANS), thermal transition by far-UV and near-UV CD, tryptophan fluorescence, quenching of tryptophan fluorescence using a neutral quencher, acrylamide and viscosity measurements. The results show that HSA at pH 2.0 is characterized by a significant amount of secondary structure, as evident from far-UV CD spectra. The near-UV CD spectra showed a profound loss of tertiary structure. A marked increase in ANS fluorescence signified extensive solvent exposure of non-polar clusters. The temperature-dependence of both near-UV and far-UV CD signals did not exhibit a co-operative thermal transition. The intrinsic fluorescence and acrylamide quenching of the lone tryptophan residue, Trp214, showed that, in the acid-denatured state, it is buried in the interior in a non-polar environment. Intrinsic viscosity measurements showed that the acid-denatured state is relatively compact compared with that of the denatured state in 7 M guanidine hydrochloride. These results suggest that HSA at pH 2.0 represents the molten globule state, which has been shown previously for a number of proteins under mild denaturing conditions.  相似文献   

8.
The effects of pH on Clitoria ternatea agglutinin (CTA) were studied by spectroscopy, size-exclusion chromatography, and by measuring carbohydrate specificity. At pH 2.6, CTA lacks well-defined tertiary structure, as seen by fluorescence and near-UV CD spectra. Far-UV CD spectra show retention of 50% native-like secondary structure. The mean residue ellipticity at 217 nm plotted against pH showed a transition around pH 4.0 with loss of secondary structure leading to the formation of an acid-unfolded state. This state is relatively less denatured than the state induced by 6 M guanidine hydrochloride. With a further decrease in pH, this unfolded state regains ∼75% secondary structure at pH 1.2, leading to the formation of the A-state with native-like near-UV CD spectral features. Enhanced 8-anilino-1-naphthalene-sulfonate binding was observed in A-state, indicating a “molten-globule” like conformation with exposed hydrophobic residues. Acrylamide quenching data exhibit reduced accessibility of quencher to tryptophan, suggesting a compact conformation at low pH. Size-exclusion chromatography shows the presence of a compact intermediate with hydrodynamic size corresponding to a monomer. Thermal denaturation of the native state was cooperative single-step transition and of the A-state was non-cooperative two-step transition. A-State regains 72% of the carbohydrate-binding activity.  相似文献   

9.
Effect of increasing concentrations of two of the polyols, ethylene glycol (EG) and polyethylene glycol (PEG), was studied by near and far circular dichroism (CD), fluorescence emission spectroscopy, and binding of hydrophobic dye, 1-anilino-8-naphthalene sulfonic acid (ANS). Far-UV CD spectra show the transition of acid-unfolded trypsinogen from an unordered state to an intermediate state having ordered secondary structure. Interestingly, near-UV CD spectra show some amounts of stabilizing effect on the tertiary structure of the protein also. Tryptophan fluorescence studies indicate the change in the environment of the tryptophan residues on addition of EG and PEG. Maximum ANS binding occurs in presence of 80% EG and 90% PEG (v/v), suggesting the presence of an intermediate or molten globule-like state at high concentrations of the two polyols.  相似文献   

10.
Steady-state and time-resolved intrinsic fluorescence, fluorescence quenching by acrylamide, and surface testing by hydrophobic label ANS were used to study the structure of inactivated alpha-actin. The results are discussed together with that of earlier experiments on sedimentation, anisotropy of fluorescence, and CD spectrum in the near- and far-UV regions. A dramatic increase in ANS binding to inactivated actin in comparison with native and unfolded protein indicates that the inactivated actin has solvent-exposed hydrophobic clusters on the surface. It results in specific association of actin macromolecules (sedimentation constants for native and inactivated actin are 3 and 20 S, respectively) and, consequently, in irreversibility of native-inactivated actin transition. It was found that, though the fluorescence spectrum of inactivated actin is red-shifted, the efficiency of the acrylamide collision quenching is even lower than that of the intact protein. It suggests that tryptophan residues of inactivated actin are located in the inner region of protein formed by polar groups, which are highly packed. It correlates with the pronounced near-UV CD spectrum of inactivated actin. The experimentally found tryptophan fluorescence lifetimes allowed evaluation rotational correlation times on the basis of Perrin plots. It is found that oscillations of tryptophan residues in inactivated actin are restricted in comparison with native one. The inactivated actin properties were invariant with experimental conditions (ionic strength, the presence of reducing agents), the way of inactivation (Ca2+ and/or ATP removal, heating, 3-5 M urea or 1.5 M GdmCl treatment), and protein concentration (within the limits 0.005-1.0 mg/mL). The same state of actin appears on the refolding from the completely unfolded state. Thermodynamic stability, pronounced secondary structure, and the existing hydrophobic clusters, tested by ANS fluorescence and reversibility of transition inactivated-unfolded forms, allowed us to suggest that inactivated actin can be intermediate in the folding-unfolding pathway.  相似文献   

11.
Equilibrium studies on the acid included denaturation of stem bromelain (EC 3.4.22.32) were performed by CD spectroscopy, fluorescence emission spectroscopy and binding of the hydrophobic dye, 1-anilino 8-naphthalene sulfonic acid (ANS). At pH 2.0, stem bromelain lacks a well defined tertiary structure as seen by fluorescence and near-UV CD spectra. Far-UV CD spectra show retention of some native like secondary structure at pH 2.0. The mean residue ellipticities at 208 nm plotted against pH showed a transition around pH 4.5 with loss of secondary structure leading to the formation of an acid-unfolded state. With further decrease in pH, this unfolded state regains most of its secondary structure. At pH 2.0, stem bromelain exists as a partially folded intermediate containing about 42.2% of the native state secondary structure Enhanced binding of ANS was observed in this state compared to the native folded state at neutral pH or completely unfolded state in the presence of 6 m GdnHCl indicating the exposure of hydrophobic regions on the protein molecule. Acrylamide quenching of the intrinsic tryptophan residues in the protein molecule showed that at pH 2.0 the protein is in an unfolded conformation with more tryptophan residues exposed to the solvent as compared to the native conformation at neutral pH. Interestingly, stem bromelain at pH 0.8 exhibits some characteristics of a molten globule, such as an enhanced ability to bind the fluorescent probe as well as considerable retention of secondary structure. All the above data taken together suggest the existence of a partially folded intermediate state under low pH conditions.  相似文献   

12.
We have carried out denaturation studies of bovine cytochrome c (cyt c) by LiClO4 at pH 6.0 and 25 degrees C by observing changes in difference molar absorbance at 400 nm (Deltaepsilon400), mean residue ellipticities at 222 nm ([theta]222) and difference mean residue ellipticity at 409 nm (Delta[theta]409). The denaturation is a three-step process when measured by Deltaepsilon400 and Delta[theta]409, and it is a two-step process when monitored by [theta]222. The stable folding intermediate state has been characterized by near- and far-UV circular dichroism, tryptophan fluorescence, 8-anilino-1-naphthalene sulfonic acid (ANS) binding, and intrinsic viscosity measurements. A comparison of the conformational and thermodynamic properties of the LiClO4-induced molten globule (MG) state with those induced by other solvent conditions (e.g., low pH, LiCl, and CaCl2) suggests that LiClO4 induces a unique MG state, i.e., (i) the core in the LiClO4-induced state retains less secondary and tertiary structure than that in the MG states obtained in other solvent conditions, and (ii) the thermodynamic stability associated with the LiClO4-induced process, native state <--> MG state, is the same as that observed for each transition between native and MG states induced by other solvent conditions.  相似文献   

13.
Acid denaturation of Aspergillus niger glucoamylase was studied using different conformational probes. Both far-UV CD spectral signal (MRE222 nm) and tryptophan fluorescence remained unchanged in the pH range, 7.0–3.0 but decreased significantly below pH 3.0, whereas ANS fluorescence showed a marked increase below pH 1.5. Maximal changes in MRE222 nm and ANS fluorescence were noticed at pH 1.0. Acid-denatured state of glucoamylase at pH 1.0 retained a significant amount of secondary structure as reflected from far-UV CD spectra but showed a deformed tertiary structure with significant exposure of nonpolar groups as well as tryptophan residues as revealed by increased ANS fluorescence, decreased tryptophan fluorescence and three-dimensional fluorescence spectral signals and increase in Ksv value in acrylamide quenching experiments. Acid-denatured state showed no significant variation in the CD spectral signal throughout the temperature range, 0–100 °C. However, a late cooperative transition was observed upon GdnHCl treatment, compared to the native enzyme. All these results suggested that the acid-denatured state of glucoamylase at pH 1.0 represented the molten globule-like state.  相似文献   

14.
The kinetics of protein folding for horse ferricytochrome c was investigated by stopped-flow methods, using far-UV circular dichroism (CD), near-UV CD, and tryptophan fluorescence to probe the formation of secondary structure and tertiary interactions. In the far-UV region of the CD spectrum (222 nm), 44% of the total change associated with refolding occurs within the dead time of the stopped-flow experiment, indicating that a significant amount of helical secondary structure is formed in less than 4 ms. The remaining changes in the ellipticity at 222 nm occur in two kinetic phases with time constants of about 40 ms and 0.7 s, respectively. In contrast, there is no evidence for rapid changes in the ellipticity at 289 nm: an aromatic CD band, which is indicative of the formation of a tightly packed core, only begins to appear in a 400-ms step and is completed in a final 10-s phase. The fluorescence of a single tryptophan at position 59, which becomes quenched upon folding via nonradiative energy transfer to the heme group, provides complementary information on the condensation of the polypeptide chain during refolding. The fluorescence-detected stopped-flow folding kinetics of ferricytochrome c exhibits a 35% decrease in fluorescence during the dead time, suggesting that a substantial decrease in the average tryptophan-heme distance occurs on a submillisecond time scale. The subsequent fluorescence changes exhibit two prominent phases with time constants of about 20 and 300 ms, followed by a minor 5-s phase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Acid-induced conformational changes were studied in human placental cystatin (HPC) in terms of circular dichroism (CD) spectroscopy, the binding of hydrophobic dye 1-anilinonapthalene-8-sulphonic acid (ANS), and intrinsic fluorescence measurements. Our results show the formation of an acid-induced molten globule state at pH 2.0, with significant secondary and tertiary interactions that resemble the native state, exposed hydrophobic regions and the effects of trifluoroethanol (TFE) and methanol in conversion of the acid-denatured state of HPC to the alcohol-induced state, which is characterized by increased helical content, disrupted tertiary structure, and the absence of hydrophobic clusters. Alcohol-induced formation of alpha-helical structures at pH 2.0 is evident from the increase in the ellipticity values at 222 nm, with native-like secondary structural features at 40% TFE. The increase in helical content was observed up to 80% TFE concentration. The ability of TFE (40%) to refold acid-denatured HPC to native-state conformation is also supported by intrinsic and ANS fluorescence measurements.  相似文献   

16.
Y Goto  A L Fink 《Biochemistry》1989,28(3):945-952
We present evidence that beta-lactamase is close to fully unfolded (i.e., random coil conformation) at low ionic strength at the extremes of pH and that the presence of salt causes a cooperative transition to a conformation with the properties of a molten globule, namely, a compact state with native-like secondary structure but disordered side chains (tertiary structure). The conformation of beta-lactamase I from Bacillus cereus was examined over the pH 1.5-12.5 region by circular dichroism (CD), tryptophan fluorescence, dynamic light scattering, and 1-anilino-8-naphthalenesulfonate (ANS) binding. Under conditions of low ionic strength (I = 0.05) beta-lactamase was unfolded below pH 2.5 and above pH 11.5, on the basis of the far-UV and near-UV CD and tryptophan fluorescence. However, at high ionic strength and low pH an intermediate conformation (state A) was observed, with a secondary structure content similar to that of the native protein but a largely disordered tertiary structure. The transition from the unfolded state (U) to state A induced by KCl was cooperative and had a midpoint at 0.12 M KCl (I = 0.17 M) at pH 1.6. A similar conformation (state B) was observed at high pH and high ionic strength. The transition from the alkaline U state to state B induced by KCl at pH 12.2 was cooperative and had a midpoint at 0.6 M KCl (I = 0.65 M). Light scattering measurements showed that state B was compact although somewhat expanded compared to the N state. The compactness of state A could not be determined due to its strong propensity to aggregate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Muzammil S  Kumar Y  Tayyab S 《Proteins》2000,40(1):29-38
The unfolding of human serum albumin (HSA), a multidomain protein, by urea was followed by far-UV circular dichroism (CD), intrinsic fluorescence, and ANS fluorescence measurements. The urea-induced transition, which otherwise was a two-step process with a stable intermediate at around 4.8 M urea concentration as monitored by far-UV CD and intrinsic fluorescence, underwent a single-step cooperative transition in the presence of 1.0 M KCl. The free energy of stabilization (DeltaDelta G(H2O)D) in the presence of 1 M KCl was found to be 1,090 and 1,200 cal/mol as determined by CD and fluorescence, respectively.The salt stabilization occurred in the first transition (0-5.0 M urea), which corresponded to the formation of intermediate (I) state from the native (N) state, whereas the second transition, corresponding to the unfolding of I state to denatured (D) state, remained unaffected. Urea denaturation of HSA as monitored by tryptophan fluorescence of the lone tryptophan residue (Trp(214)) residing in domain II of the protein, followed a single-step transition suggesting that domain(s) I and/or III is (are) involved in the intermediate formation. This was also confirmed by the acrylamide quenching of tryptophan fluorescence at 5 M urea, which exhibited little change in the value of Stern-Volmer constant. ANS fluorescence data also showed single-step transition reflecting the absence of accumulation of hydrophobic patches. The stabilizing potential of various salts studied by far-UV CD and intrinsic fluorescence was found to follow the order: NaClO(4) > NaSCN >Na(2)SO(4) >KBr >KCl >KF. A comparison of the effects of various potassium salts revealed that anions were chiefly responsible in stabilizing HSA. The above series was found similar to the electroselectivity series of anions towards the anion-exchange resins and reverse of the Hofmeister series, suggesting that preferential binding of anions to HSA rather than hydration, was primarily responsible for stabilization. Further, single-step transition observed with GdnHCl can be ascribed to its ionic character as the free energy change associated with urea denaturation in the presence of 1.0 M KCl (5,980 cal/mol) was similar to that obtained with GdnHCl (5,870 cal/mol).  相似文献   

18.
Ahmad B  Ansari MA  Sen P  Khan RH 《Biopolymers》2006,81(5):350-359
The effect of low, medium, and high molecular weight poly(ethylene glycol) (e.g., PEG-400, -6000, and -20,000) on the structure of the acid unfolded state of unmodified stem bromelain (SB) obtained at pH 2.0 has been studied by various spectroscopic methods. The conformation of stem bromelain at pH 2.0 exhibits substantial loss of secondary structure and almost complete loss of native tertiary contacts and has been termed the acid unfolded state (A(U)). Addition of PEG-400 to A(U) led to an increase in the mean residue ellipticity (MRE) value at 222 nm, indicating formation of alpha-helical structure. On the other hand, PEG-6000 and 20,000 led to a decrease in the MRE value at 222 nm, indicating unfolding of the A(U) state. Interestingly, at 70% (w/v) PEG-400 and 40% (w/v) PEG-20,000, MRE values at 222 nm almost approach the native state at pH 7.0 and the unfolded state (6 M GnHCl) of stem bromelain, respectively. The probes for tertiary structure showed formation of nonnative tertiary contacts in the presence of 70% (w/v) PEG-400, while 40% (w/v) PEG-6000 and 20,000 were found to stabilize the unfolded state of SB. An increase in binding of 1-anilino 8-naphthalene sulfonic acid and a decrease in fractional accessibility of tryptophan residues (f(a)) compared to A(U) in the presence of 70% PEG-400 indicate that the PEG-400-induced state has a significant amount of exposed hydrophobic patches and is more compact than A(U). The results imply that the PEG-400-induced state has characteristics of molten globule, and higher molecular weight PEGs led to the unfolding of the A(U) state.  相似文献   

19.
Acid unfolding pathway of conalbumin (CA), a monomeric glycoprotein from hen egg white, has been investigated using far- and near-UV CD spectroscopy, intrinsic fluorescence emission, extrinsic fluorescence probe 1-anilino-8-napthalene sulfonate (ANS) and dynamic light scattering (DLS). We observe pH-dependent changes in secondary and tertiary structure of CA. It has native-like α-helical secondary structure at pH 4.0 but loss structure at pH 3.0. The CA existed exclusively as a pre-molten globule state and molten globule state in solution at pH 4.0 and pH 3.0, respectively. The effect of pH on the conformation and thermostability of CA points toward its heat resistance at neutral pH. DLS results show that MG state existed as compact form in aqueous solutions with hydrodynamic radii of 4.7 nm. Quenching of tryptophan fluorescence by acrylamide further confirmed the accumulation of an intermediate state, partly unfolded, in-between native and unfolded states.  相似文献   

20.
A systematic investigation of the effect of polyethylene glycols, salts, and alcohols on the trichloroacetic acid (TCA)-induced state of ferricytochrome c was made using various spectroscopic techniques. Native cytochrome c (Cyt c) has a fluorescence maximum at 335 nm, whereas the TCA-induced state of Cyt c has a red shift of 7 nm with enhanced fluorescence intensity. The near- and far-UV CD spectra showed a significant loss of tertiary and secondary structure, although the protein is relatively less unfolded as compared with a conformation at pH 2.0. Addition of 70% (v/v) polyols to TCA (3.3 mM)-induced state of Cyt c resulted in increased 1-anilino-8-naphthalene sulfonate binding and increased mean residue ellipticity at 222 nm, indicating increase in compactness with enhanced exposure of hydrophobic surface area. Also, the stabilizing effect of salts and alcohols on the TCA-induced state was studied and compared with their effect on trifluoroacetic acid-unfolded state of Cyt c. Among all the polyols, salts, and alcohols studied, PEG-400, K3[Fe(CN)6], and butanol were the most efficient in inducing secondary structure in TCA-induced state as examined by the above-mentioned spectroscopic techniques. For salts, the efficiency in inducing the secondary structure followed the order K3[Fe(CN)6] > KClO4 > K2SO4 > KCl. For alcohols, this order was found to be as follows: butanol > propanol > ethanol > methanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号