首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In order to analyze the complex activities of histamine H2 receptor activation on neutrophils, human HL-60 promyelocytic leukemia cells were differentiated into neutrophils by incubation with dimethyl sufoxide, loaded with the Ca2+-sensitive indicator dyes, indo-1 or fura-2, and the levels of intracellular Ca2+ ([Ca2+]i) measured in a fluorescent-activated cell sorter and fluorimeter, respectively. Histamine increased [Ca2+]i in a dose-dependent manner with a half-maximal concentration (EC50) of approximately 10(-6) to 10(-5) M, which exhibited H2 receptor specificity. Prostaglandin E2 and isoproterenol also induced [Ca2+]i mobilization in HL-60 cells, whereas the cell permeable form of cAMP and forskolin failed to increase [Ca2+]i. Since H2-receptor mediated [Ca2+]i mobilization was not inhibited by reducing the concentration of extracellular Ca2+ nor by the addition of Ca2+ channel antagonists, LaCl3 and nifedipine, [Ca2+]i mobilization is due to the release of Ca2+ from intracellular stores. Furthermore, both 10(-4) M histamine and 10(-6) M fMet-Leu-Phe increased the levels of 1,4,5-inositol trisphosphate. However, histamine-induced mobilization of [Ca2+]i was inhibited by cholera toxin but not by pertussis toxin, whereas the action of fMet-Leu-Phe was inhibited by pertussis toxin but not by cholera toxin. These data suggest that H2 receptors on HL-60 cells are coupled to two different cholera toxin-sensitive G-proteins and activate adenylate cyclase and phospholipase C simultaneously.  相似文献   

2.
Using the fluorescent Ca2+ probe Quin-2 it has been reported that cholera toxin (CT) and its B subunit (B-CT) increase cytosolic free Ca2+ concentration ([Ca2+]i) in entherocytes, thymocytes and fibroblasts. In this work we show, however, that the fluorescence increases of Quin-2-loaded cells (rat thymocytes, mouse splenocytes, P-388 macrophages and 3T3 fibroblasts) observed upon addition of CT or B-CT are not caused by an increase in [Ca2+]i. The observed effect appears to be accounted for by EDTA-2Na admixtures (present as conservation agent in all CT and B-CT preparations) which 'unquenches' the fluorescence of Quin-2 acid leaked out from the cells into the extracellular medium and produces influorescent complexes with contaminating heavy metal ions. Thus the mitogenic effect of B-CT is not obviously connected with the cytosolic free Ca2+ increase but is probably due to ganglioside-mediated protein phosphorylation.  相似文献   

3.
The effect of bacterial toxins, modifying the activity of regulatory N proteins of adenylate cyclase and probably other systems, on the mitogen-induced changes of cytosolic free Ca2+ concentration ([Ca2+]i) has been studied using Ca2+ fluorescent probe quin-2. It is shown that treatment of thymocytes with cholera toxin, E. coli heat-labile (HL) toxin or pertussis toxin abolishes the concanavalin A (con A)-induced rise of [Ca2+]i. The inhibitory effect of cholera and HL toxins can be explained by the toxin-induced rise of intracellular cAMP. The effect of pertussis toxin indicates the involvement of N proteins in the action of con A receptor and in generation of Ca2+-signal during the mitogenic activation of thymocytes.  相似文献   

4.
Con A刺激致T淋巴细胞胞浆游离Ca~(2+)浓度升高   总被引:1,自引:0,他引:1  
本文分别应用荧光Ca~(2+)指示剂Quin2和Indo-1研究了Con A刺激的T淋巴细胞[Ca~(2+)]i升高过程及其发生机制.结果表明Con A与T淋巴细胞作用可导致细胞[Ca~(2+)]i的迅速升高.这种增加的胞内游离Ca~(2+)不仅来自胞外Ca~(2+)的内流,也来源于胞内钙库的释放.其中Ca~(2+)内流与T细胞钙通道的开放有关.可被钙通道抑制剂戊脉胺抑制,细胞的去极化及钾通道阻断剂四乙胺均不能阻断Ca~(2+)的内流,提示Ca~(2+)内流不是通过电位操纵的钙通道实现的,也与拥通道的开闭无关.Ca~(2+)内流可能是通过Con A受体活化的受体操纵的钙通道而实现的.  相似文献   

5.
We have studied the activation of the Na+/H+ exchanger which leads to the intracellular alkalinization in cultured bovine aortic endothelial cells stimulated by extracellular ATP. The alkalinization induced by ATP was largely dependent on extracellular Ca2+ and the rate of alkalinization was decreased by about 60% in the absence of extracellular Ca2+. ATP caused a rapid and transient increase and a subsequent sustained increase of the intracellular Ca2+ concentration ([Ca2+]i) in the Ca2+ buffer, while only the rapid and transient increase of [Ca2+]i was observed in the absence of extracellular Ca2+. The Ca2+-depleted cells prepared by incubation in Ca2+-free buffer containing 0.1 mM EGTA showed only a slight increase of [Ca2+]i with no alkalinization on stimulation by ATP. The alkalinization was inhibited by 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H-7), an inhibitor of protein kinase C, but not by another isoquinoline analogue (HA 1004), which has a less inhibitory effect on the kinase. Phorbol 12-myristate 13-acetate also induced the alkalinization by the activation of the Na+/H+ exchanger. Neither dibutyryl cyclic AMP nor dibutyryl cyclic GMP affected the alkalinization induced by ATP. Treatment of the cells by pertussis and cholera toxins had no effect on the alkalinization. The results suggest that the increase in [Ca2+]i is essential for the ATP-induced activation of the Na+/H+ exchanger in cultured bovine aortic endothelial cells and a protein kinase C-dependent pathway is involved in the activation.  相似文献   

6.
The effects of acute (3 h) and chronic (30 h) in vivo infusions of Escherichia coli endotoxin on the Ca2+ homeostasis of rat spleen cells was investigated. Conditions were established for obtaining reliable estimates of [Ca2+]i in these cells using the newly-developed Ca2+ indicator Fluo-3. The resting [Ca2+]i of splenocytes and T lymphocyte-enriched preparations were 119 +/- 35 and 102 +/- 31 nM, respectively. Treatment of the cells with concanavalin A (Con A) resulted in a rapid increase in [Ca2+]i. The magnitude of the increase was positively correlated with the concentration of Con A, whereas the time required to reach the maximum [Ca2+]i was inversely related to the amount of Con A. The peak [Ca2+]i was attained more rapidly in splenocytes (i.e. less than or equal to 30 s) than in the T cell-enriched fraction (i.e. 1.5-2.0 min). Both the resting [Ca2+]i and the Con A-induced increase in [Ca2+]i were similar to values previously reported for other lymphocyte cell types using different Ca2+ indicators, thereby supporting the values obtained with Fluo-3. Infusions of saline or endotoxin prior to the isolation of the cells did not result in significant alterations of either resting [Ca2+]i or the cells' response to Con A. Since chronic infusions of endotoxin have previously been shown to cause a reduction in blastogenic responsiveness of splenocytes to Con A, these data suggest that the endotoxin-induced lesion occurs distal to the mobilization of intracellular Ca2+.  相似文献   

7.
The B subunit of cholera toxin, which binds specifically to ganglioside GM1, stimulates DNA synthesis in quiescent Swiss 3T3 fibroblasts grown in chemically defined medium. The mitogenic response to the B subunit was potentiated by insulin and other growth factors. To elucidate the mechanism by which the B subunit stimulates cell growth , its effects on several transmembrane signaling systems which have been suggested to play a vital role in cell growth regulation were examined. The B subunit did not increase cAMP levels nor activate adenylate cyclase. The B subunit induced a rapid and profound increase in intracellular free Ca2+ as measured with the fluorescent Ca2+-sensitive dye quin 2/AM. Removal of external Ca2+ completely inhibited the signal, thus suggesting that the B subunit elevates intracellular Ca2+ through a net influx of extracellular Ca2+ rather than by causing the release of Ca2+ from intracellular stores. These findings are consistent with the observations that the B subunit induced reinitiation of DNA synthesis without activation of phospholipase C. There was no increase in the formation of inositol trisphosphate, the second messenger that mediates release of Ca2+ from intracellular stores. In addition, the B subunit still stimulated DNA synthesis in Swiss 3T3 cells pretreated with phorbol ester to down-regulate protein kinase C. These results suggest that the mitogenic effects of the B subunit are mediated mainly by facilitation of Ca2+ influx and that activations of adenylate cyclase, phospholipase C, or protein kinase C are not obligatory steps in the initiation of cell growth by the B subunit. Furthermore, the observation that Ca2+ ionophores, such as ionomycin and A23187, are not mitogenic implies that additional undefined growth signaling pathways may exist in this system.  相似文献   

8.
内皮素对培养心肌细胞内游离钙浓度的作用   总被引:5,自引:0,他引:5  
Wang TH  Wu B  Zhu XN  Pan JY 《生理学报》1999,51(4):391-396
实验用培养新生SD大鼠心室肌细胞,以Fura-2/AM荧光指示剂负载检测收肌细胞内游离钙浓度(「Ca^2+」)的变化,探讨内皮素-1(ET-1)对「Ca^2+」i的作用及其机制。结果显示:ET-1引起心肌细胞「Ca^2+」i升高有两个时相,瞬时相持续相。ET-1诱导的瞬时相「Ca^2+」i升高呈浓度依赖性,预先用ETA特异性受阻断剂BQ123处理,可阻断ET-1引起的「Ca^2+」i升高,揭示上述  相似文献   

9.
The aim of our study was to investigate the physiologic mechanisms involved in eosinophil activation as an essential prerequisite to disrupting the biochemical cascade that triggers inflammation, thereby attenuating the effect of this activation or, ideally, preventing it from occurring. We have, therefore, examined the nature of the fMLP- and PAF-induced [Ca2+]i rise and the relationship between the [Ca2+]i rise and O2- production in human umbilical cord blood-derived eosinophils cultured in the presence of IL-3 and IL-5. These cells responded to fMLP or PAF (1 microM each) with an increase in [Ca2+]i (217.3 +/- 22.1 and 197.8 +/- 22.1 nM respectively) which was associated with production of O2- (40.2 +/- 8.2 and 35.2 +/- 7.6 pmol/min/10(6) cells respectively). The role of Ca2+ in the induced respiratory burst was studied by changing the availability of Ca2+ in the intra- and extracellular compartments. Removal or chelation of extracellular Ca2+ induced a reduction of both the fMLP and PAF-induced [Ca2+]i rise and O2- production. Chelation of intracellular Ca2+ induced a concentration-dependent inhibition of fMLP- and PAF-induced [Ca2+]i rise and caused a decrease in O2- production. SK&F 96365 had a stimulatory effect on PAF-induced [Ca2+]i rise and on fMLP-induced O2- production, this phenomenon was not observed with extracellular Ca2+ removal or chelation. Furthermore, Ni2+ exhibited an inhibition of both fMLP and PAF-induced [Ca2+]i rise and O2- production. Finally, both fMLP and PAF induced an increase in divalent cation influx that was further augmented by thapsigargin. Our results indicate that fMLP and PAF dependent O2- production in human eosinophils require intra- and extracellular Ca2+ and that Ca2+ influx is necessary for optimal activation.  相似文献   

10.
Regulation of cytosolic Ca2+ in clonal human muscle cell cultures   总被引:4,自引:0,他引:4  
Human muscle cells were grown in culture and clonally selected for fusion potential. The concentration of cytoplasmic ionized calcium, [Ca2+]i, was measured in monolayers of fused myotubes using the Ca2+ indicator indo-1. The contributions of independent routes of Ca2+ influx and efflux to/from the cytoplasm on [Ca2+]i were investigated. The resting [Ca2+]i was 170-190 nM in different cell clones. Acetylcholine increased [Ca2+]i by about 2-fold in the presence of absence of extracellular Ca2+. Cell depolarization by K+ elevated [Ca2+]i about 3-fold, and this increase was largely dependent on extracellular Ca2+. Replacing Na+ by N-methylglucammonium+ raised [Ca2+]i greater than 5-fold, and 50% of this increase was dependent on extracellular Ca2+. All these increases in [Ca2+]i were transient, returning to basal [Ca2+]i within 2 min. It is concluded that cells in culture [Ca2+]i can be elevated transiently by acetylcholine through Ca2+ release from intracellular stores, and by K through Ca2+ influx. The return to basal [Ca2+]i is due to Na+/Ca2+ exchange and Ca2+-ATPase activity.  相似文献   

11.
A transient rise in intracellular free Ca2+ concentration ([Ca2+]i) has been implicated in mitogenic induction of cell division. Individual human foreskin fibroblasts in confluent cultures examined with the Ca2+ indicator Fura-2 and a fluorescence microscope-imaging system had a basal [Ca2+]i which varied markedly from cell-to-cell. A transient serum-induced rise in [Ca2+]i was demonstrated the magnitude of which was directly correlated with the basal [Ca2+]i level. In contrast to serum-induced increase in [Ca2+]i, exposure to an elevated level of extracellular Ca2+, which is at least equally mitogenic for fibroblasts, did not alter the basal [Ca2+]i of single subconfluent cells or confluent cells. Elevated extracellular Ca2+ does not exert its mitogenicity via a transient rise in [Ca2+]i.  相似文献   

12.
Glucose-induced changes in cytoplasmic pH (pHi) were investigated using pancreatic beta-cells isolated from obese hyperglycemic mice. Glucose, at concentrations above 3-5 mM, depolarized the beta-cell and increased pHi, cytoplasmic free Ca2+ ([Ca2+]i), and insulin release. This increase in pHi was dependent on the presence of extracellular Na+ and was inhibited by 5-(N-ethyl-N-isopropyl) amiloride, a blocker of Na+/H+ exchange. Stimulation of protein kinase C with phorbol ester also induced an alkalinization. However, when protein kinase C activity was down-regulated, glucose stimulation still induced alkalinization. At 20 mM glucose, 10 mM NH4Cl induced a marked rise in pHi, paralleled by repolarization, inhibition of electrical activity, and decreases in both [Ca2+]i and insulin release. Reduction in [Ca2+]i was prevented by 200 microM tolbutamide, but not by 10 mM tetraethylammonium. At 4 mM glucose, NH4Cl induced a transient increase in insulin release, without changing [Ca2+]i. Exposure of beta-cells to 10 mM sodium acetate caused a persistent decrease in pHi, an effect paralleled by a small transient increase in [Ca2+]i. Acidification per se did not change the beta-cell sensitivity to glucose, not excluding that the activity of the ATP-regulated K+ channels may be modulated by changes in pHi.  相似文献   

13.
The epidermal growth factor-induced calcium signal in A431 cells   总被引:24,自引:0,他引:24  
Addition of epidermal growth factor (EGF) to human A431 cells causes a 2-4-fold increase in cytoplasmic free Ca2+ concentration ([Ca2+]i) as measured by quin-2 fluorescence. The EGF effect is rapid but transient: [Ca2+]i reaches a maximum within 30-60 s and then returns to its resting value (182 +/- 3 nM) over a 5-8-min period. The EGF-induced [Ca2+]i rise is completely dependent on extracellular Ca2+, is abolished by La3+ and Mn2+, and is not accompanied by changes in membrane potential (mean values of -64 mV). Serum also elicits a transient [Ca2+]i rise in A431 cells, but this response is not dependent on the presence of extracellular Ca2+. The tumor promoter 12-O-tetradecanoylphorbol 13-acetate completely inhibits the EGF- and serum-induced increases in [Ca2+]i without affecting basal [Ca2+]i levels. Our results, together with previous 45Ca2+ uptake data (Sawyer, S. T., and Cohen, S. (1981) Biochemistry 20, 6280-6286), suggest that while serum factors trigger the release of Ca2+ from internal stores, EGF acts by opening a voltage-independent Ca2+ channel in the plasma membrane. The data further suggest a role for protein kinase C in attenuating the Ca2+-mobilizing mechanisms of EGF and serum.  相似文献   

14.
Treatment of thymic lymphocytes with the mitogenic lectin concanavalin A (ConA) increases the intracellular free Ca2+ concentration and stimulates phosphoinositide turnover. ConA also induced a rapid, amiloride-sensitive, Na+-dependent increase in cytosolic pH of 0.13 +/- 0.01, indicative of stimulation of the Na+/H+ antiport. To investigate the mechanism underlying activation of Na+/H+ exchange by ConA, the intracellular free Ca2+ concentration changes induced by this lectin were precluded by loading the cells with Ca2+-buffering agents and suspension in Ca2+-free media. Under these conditions, the ConA-induced cytoplasmic alkalinization proceeded normally. Two approaches were used to assess the role of protein kinase C. First, this enzyme was inhibited by the addition of 1-(5-isoquinolinysulfonyl)-2-methylpiperazine. In the presence of this potent antagonist, stimulation of the antiport by 12-O-tetradecanoylphorbol-13-acetate was greatly inhibited. In contrast, stimulation by ConA was unaffected. Second, protein kinase C was depleted by overnight incubation with phorbol esters. Following this treatment, Na+/H+ exchange was no longer activated by 12-O-tetradecanoyl-13-acetate, but was still stimulated by ConA. These data suggest that a Ca2+- and protein kinase C-independent mechanisms mediates the activation of Na+/H+ exchange by ConA. The possible role of GTP-binding proteins in the activation was also studied. The antiport was not stimulated by either fluoroaluminate or vanadate. Moreover, pretreatment with pertussis toxin failed to inhibit the ConA-induced cytoplasmic alkalinization. In contrast, preincubation with cholera toxin partially inhibited activation. Under these conditions, cholera toxin significantly elevated intracellular cAMP levels. Inhibition was also observed in cells treated with forskolin at concentrations that increased [cAMP]. The data suggest that a novel cAMP-sensitive signaling mechanism not involving Ca2+ and protein kinase C is involved in the stimulation of Na+/H+ exchange by mitogens in T lymphocytes.  相似文献   

15.
In this study the influence of mu-, delta-, and kappa-selective opioid agonists (DAMGO, DSLET, and dynorphin A (1-13)) on cytoplasmic free Ca2+ ([Ca2+]i) level in normal and concanavalin-A (Con A)-activated mouse lymphocytes was investigated. [Ca2+]i was measured using the fluorescent dye FURA-2AM. The opioid peptides at 10-12-10-7 M induced some increase in [Ca2+]i in non-activated lymphocytes. However, DAMGO and DSLET (10-13-10-7 M) considerably inhibited a Con A-induced increase in [Ca2+]i. The inhibiting effect of both peptides was higher after 20-min preincubation compare to 2-h preincubation. The effect of the kappa-agonist dynorphin A (1-13) was significantly different depending on the duration of cell pretreatment and the concentration of the peptide used. After preincubation for 20 min at low concentrations (10-12-10-11 M) it slightly stimulated, while at higher (10-10-10-7 M) concentrations it inhibited lymphocyte response to Con A. After preincubation for 2 h, pronounced stimulation of mitogen-induced Ca2+ flux was observed at peptide concentration 10-9 M. The effects of opioids were antagonized by naloxone. These data indicate that functionally active opioid receptors expressed on lymphocytes could be involved in early stages of mitogen activation.  相似文献   

16.
Regulation of cytoplasmic free calcium concentration ([Ca2+)]i) is a key factor for maintenance of viability of cells, including oocytes. Indeed, during fertilization of an ovum, [Ca2+]i is known to undergo oscillations, but it is unknown how basal [Ca2+]i or calcium oscillations are regulated. In the present study we investigated the role of the plasma membrane in regulating [Ca2+]i of metaphase II-arrested mouse oocytes (ova). Ova were collected from B6C3F1 mice treated with eCG (10 IU) and hCG (5 IU), and intracellular calcium was determined by means of fura-2. Extracellular calcium flux across the zona pellucida was detected noninvasively by a calcium ion-selective, self-referencing microelectrode that was positioned by a computer-controlled micromanipulator. Under basal conditions ova exhibited a calcium net efflux of 20.6 +/- 5.2 fmol/cm2 per sec (n = 69). Treatment of ova with ethanol (7%) or thapsigargin (25 nM-2.5 microM) transiently increased intracellular calcium and stimulated calcium efflux that paralleled levels of [Ca2+]i. The presence of a Na+/Ca2+ exchanger was indicated by experiments employing both bepridil, an inhibitor of Na+/Ca2+ exchange, and sodium-depleted media. In the presence of bepridil, a net influx of calcium was revealed across the zona pellucida, which was reflected by an increase in the [Ca2+]i. In addition, replenishment of extracellular sodium to ova that had been incubated in sodium-depleted media induced a large calcium efflux, consistent with the actions of Na+/Ca2+ exchange. Sodium/calcium exchange in mouse ova may be an important mechanism that regulates [Ca2+]i.  相似文献   

17.
We investigated the role of the L3T4 molecule in mitogen and antigen-initiated signal transduction in the L3T4(+) murine T cell hybridoma, 3DT52.5.9 and an L3T4(-) variant, 3DT52.5.24. Both Concanavalin A (Con A) and specific antigen stimulated increases in cytosolic-free calcium ([Ca2+]i), phosphatidylinositol turnover, and interleukin-2 (IL-2) production in both cell lines. About 85% of the stimulated rise in [Ca2+]i was from an extracellular source. Anti-L3T4 monoclonal antibody (MAb) inhibited 90% of antigen- and 50% of Con A-stimulated increases in [Ca2+]i and IL-2 production but had no effect on the ability of either activation signal to stimulate phosphatidylinositol turnover in the parent L3T4(+) cells. Stimulus-response coupling in the L3T4(-) cells was unaffected by the MAb. The anti-L3T4-insensitive increase in [Ca2+]i induced by Con A was inhibited by EGTA, suggesting that this mitogen also stimulated an influx of Ca2+ via an additional transport mechanism distinct from that stimulated by antigen. The fact that anti-L3T4 antibodies inhibit antigen and Con A-stimulated Ca2+ transport and IL-2 production without affecting phosphatidylinositol turnover suggests that L3T4 may play a critical role in modulating the activation of the T cell receptor-associated Ca2+ transporter in T cell stimulus-response coupling.  相似文献   

18.
The hydrogen ion is an important factor in the alteration of vascular tone in pulmonary circulation. Endothelial cells modulate vascular tone by producing vasoactive substances such as prostacyclin (PGI2) through a process depending on intracellular Ca2+ concentration ([Ca2+]i). We studied the influence of CO2-related pH changes on [Ca2+]i and PGI2 production in human pulmonary artery endothelial cells (HPAECs). Hypercapnic acidosis appreciably increased [Ca2+]i from 112 +/- 24 to 157 +/- 38 nmol/l. Intracellular acidification at a normal extracellular pH increased [Ca2+]i comparable to that observed during hypercapnic acidosis. The hypercapnia-induced increase in [Ca2+]i was unchanged by the removal of Ca2+ from the extracellular medium or by the depletion of thapsigargin-sensitive intracellular Ca2+ stores. Hypercapnic acidosis may thus release Ca2+ from pH-sensitive but thapsigargin-insensitive intracellular Ca2+ stores. Hypocapnic alkalosis caused a fivefold increase in [Ca2+]i compared with hypercapnic acidosis. Intracellular alkalinization at a normal extracellular pH did not affect [Ca2+]i. The hypocapnia-evoked increase in [Ca2+]i was decreased from 242 +/- 56 to 50 +/- 32 nmol/l by the removal of extracellular Ca2+. The main mechanism affecting the hypocapnia-dependent [Ca2+]i increase was thought to be the augmented influx of extracellular Ca2+ mediated by extracellular alkalosis. Hypercapnic acidosis caused little change in PGI2 production, but hypocapnic alkalosis increased it markedly. In conclusion, both hypercapnic acidosis and hypocapnic alkalosis increase [Ca2+]i in HPAECs, but the mechanisms and pathophysiological significance of these increases may differ qualitatively.  相似文献   

19.
We investigated the action of cholera toxin on the intracellular ionized calcium [Ca2+]i increase induced by anti-CD2 and anti-CD3 monoclonal antibodies in the leukemic human T-cell line Jurkat. Cholera toxin inhibits in a dose-dependent manner these two pathways of human T-lymphocyte activation but with different half maximal inhibition doses (75 ng/ml for CD3, 30 ng/ml for CD2). This effect cannot be accounted for only by the increase in cAMP induced by cholera toxin because forskolin, which raises cellular cyclic adenosine monophosphate (cAMP) to the same levels, induced only a small inhibition of the [Ca2+]i increase in similar conditions. Cholera toxin induced a decrease in the surface expression of the CD3 molecule, suggesting a down-regulation of the CD3 molecules. On the other hand, the expression of CD2 remained unchanged. Cell surface disappearance of the CD3 molecule cannot account for all the inhibitory effects of cholera toxin because CD2 molecule expression was not affected (no modifications in the half maximal binding of anti-CD2 monoclonal antibodies). All together, these results suggest that cholera toxin acts on substrates, possibly G proteins, that could regulate the [Ca2+]i increase induced by anti-CD2 and anti-CD3 mAbs in Jurkat cells. In addition, the present study demonstrated that the rise in cellular cAMP partially inhibits the [Ca2+]i increase induced by anti-CD2 and anti-CD3 mAbs.  相似文献   

20.
Dual wavelength microfluorometry was used to characterize the changes in cytosolic free Ca2+ concentration [( Ca2+]i) in individual cultured rat aortic vascular smooth muscle cells (VSMC). Angiotensin II (ANG II) at 10(-8) M induced a transient rise in [Ca2+]i from 43 +/- 2 to 245 +/- 23 nM, lasting for approximately 60 s (n = 42). In half of the population, discrete oscillations in [Ca2+]i of smaller amplitude occurred after the initial [Ca2+]i peak, with a period of 58 +/- 8 s and a maximum height of 132 +/- 24 nM. A similar oscillatory pattern was observed with arginine vasopressin (AVP). The oscillations depended upon the presence of extracellular Ca2+. Cytosolic free Na+ concentration ([Na+]i) in VSMC was also measured using the fluorescent Na+ probe sodium-binding benzofuran isophthalate. ANG II induced a gradual and sustained elevation of [Na+]i, from 24.0 +/- 6.2 to 36 +/- 9.7 mM. In response to AVP, [Na+]i rose to 41.0 +/- 11.6 mM. Video imaging of individual VSMC, with on-line ratio calibration of [Ca2+]i, revealed an inhomogeneous distribution of Ca2+ within the cell. [Ca2+] in the nucleus was invariably lower than in the cytoplasm in resting cells. In the cytoplasm, there were small regions in which [Ca2+] was elevated, or "hot spots." In Ca(2+)-containing medium, the initial rise in [Ca2+]i triggered by ANG II and AVP appeared to emanate from the hot spots and to spread evenly throughout the cytoplasm. Between [Ca2+]i oscillations, Ca2+ retreated back to the original hot spots. This study demonstrates the cellular and subcellular heterogeneity of [Ca2+]i both in resting VSMC and during stimulation by ANG II and AVP and reports the direct measurement of [Na+]i in VSMC. The results suggest an action of Ca2+ in both the initial and sustained phases of the response in VSMC and a link between changes in [Ca2+]i and [Na+]i.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号