首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated muscle development in two chiton species, Mopalia muscosa and Chiton olivaceus, from embryo hatching until 10 days after metamorphosis. The anlagen of the dorsal longitudinal rectus muscle and a larval prototroch muscle ring are the first detectable muscle structures in the early trochophore-like larva. Slightly later, a ventrolaterally situated pair of longitudinal muscles appears, which persists through metamorphosis. In addition, the anlagen of the putative dorsoventral shell musculature and the first fibers of a muscular grid, which is restricted to the pretrochal region and consists of outer ring and inner diagonal muscle fibers, are generated. Subsequently, transversal muscle fibers form underneath each future shell plate and the ventrolateral enrolling muscle is established. At metamorphic competence, the dorsoventral shell musculature consists of numerous serially repeated, intercrossing muscle fibers. Their concentration into seven (and later eight) functional shell plate muscle bundles starts after the completion of metamorphosis. The larval prototroch ring and the pretrochal muscle grid are lost at metamorphosis. The structure of the apical grid and its atrophy during metamorphosis suggests ontogenetic repetition of (parts of) the original body-wall musculature of a proposed worm-shaped molluscan ancestor. Moreover, our data show that the "segmented" character of the polyplacophoran shell musculature is a secondary condition, thus contradicting earlier theories that regarded the Polyplacophora (and thus the entire phylum Mollusca) as primarily eumetameric (annelid-like). Instead, we propose an unsegmented trochozoan ancestor at the base of molluscan evolution.  相似文献   

2.
To date only few comparative approaches tried to reconstruct the ontogeny of the musculature in invertebrates. This may be due to the difficulties involved in reconstructing three dimensionally arranged muscle systems by means of classical histological techniques combined with light or transmission electron microscopy. Within the scope of the present study we investigated the myogenesis of premetamorphic, metamorphic, and juvenile developmental stages of the anaspidean opisthobranch Aplysia californica using fluorescence F‐actin‐labeling in conjunction with modern confocal laser scanning microscopy. We categorized muscles with respect to their differentiation and degeneration and found three true larval muscles that differentiate during the embryonic and veliger phase and degenerate during or slightly after metamorphosis. These are the larval retractor, the accessory larval retractor, and the metapodial retractor muscle. While the pedal retractor muscle, some transversal mantle fibers and major portions of the cephalopedal musculature are continued and elaborated during juvenile and adult life, the buccal musculature and the anterior retractor muscle constitute juvenile/adult muscles which differentiate during or after metamorphosis. The metapodial retractor muscle has never been reported for any other gastropod taxon. Our findings indicate that the late veliger larva of A. californica shares some common traits with veligers of other gastropods, such as a larval retractor muscle. However, the postmetamorphic stages exhibit only few congruencies with other gastropod taxa investigated to date, which is probably due to common larval but different adult life styles within gastropods. Accordingly, this study provides further evidence for morphological plasticity in gastropod myogenesis and stresses the importance of ontogenetic approaches to understand adult conditions and life history patterns. J. Morphol., 2008. © 2007 Wiley‐Liss, Inc.  相似文献   

3.
The structure of the larval nervous system and the musculature of Phoronis pallida were studied, as well as the remodeling of these systems at metamorphosis. The serotonergic portion of the apical ganglion is a U-shaped field of cell bodies that send projections into a central neuropil. The majority of the serotonergic cells are (at least) bipolar sensory cells, and a few are nonsensory cells. Catecholaminergic cell bodies border the apical ganglion. The second (hood) sense organ develops at competence and is composed of bipolar sensory cells that send projections into a secondary neuropil. Musculature of the competent larva includes circular and longitudinal muscle fibers of the body wall, as well as elevators and depressors of the tentacles and hood. The juvenile nervous system and musculature are developed prior to metamorphosis and are integrated with those of the larva. Components of the juvenile nervous system include a diffuse neural net of serotonergic cell bodies and fibers and longitudinal catecholaminergic fibers. The juvenile body wall musculature consists of longitudinal fibers that overlie circular muscle fibers, except in the cincture regions, where this pattern is reversed. Metamorphosis is initiated by the larval neuromuscular system but is completed by the juvenile neuromuscular system. During metamorphosis, the larval nervous system and the musculature undergo cell death, and the larval tentacles and gut are remodeled into the juvenile arrangement. Although the phoronid nervous system has often been described as deuterostome-like, these data show that several cytological aspects of the larval and juvenile neuromuscular systems also have protostome (lophotrochozoan) characteristics.  相似文献   

4.
In electron microscopic study of structural organization of the thoracic ganglion of the locust larva of the 1st age (1–2 days after hatching), the data on the structure of motoneurons of the 1st nerve, basal and motor neuropil of the larva were obtained. The effector elements of the larval locust CNS are formed rather early and have the structural plan similar to that in adult insects. However, in the larval motoneurons innervating the flight muscles (longitudinal dorsal muscles, wing depressors) the clearly seen features of immaturity of these nervous elements are revealed. Study of the larval ganglion neuropil has shown that the basal neuropil is morphologically formed sufficiently completely as early as in larvae of the first days after hatching. There are shown longitudinal contacts between axons of the ventral neuropil zone, the presence of axons forming theen-passant contacts as well as the synapses with a heterogeneous set of vesicles in the presynaptic area. The presence of the great number of granular vesicles in the basal neuropil of the locust larva may indicate an important role of catecholamines in the early development of the nervous system in the locust larva.  相似文献   

5.
The external morphology, musculature, and the innervation of the abdominal segments were examined in larvae and adult Tenebrio molitor. In the larva, there are 26 pairs of muscles arranged at four different levels in the ventral, lateral, and dorsal region of each segment. In the adult, the number of muscles has been dramatically reduced and is limited to six pairs of muscles located at the dorsal and lateral region of the segment. These muscles, in either larval or adult stages, are innervated by two main nerves, n1 and n2, which originate from the segmental ganglia. The cell bodies of the motoneurons innervating the muscles of the 3rd abdominal segment are located in the 3rd and 2nd abdominal ganglia. Some cell bodies are retained throughout metamorphosis, but others disappear during the larva-pupa transition.  相似文献   

6.
The structure and fate of transitory larval organs (velum, shell, operculum, retractor muscles, part of the epidermis) of Phestilla sibogae Bergh were studied before, during, and after metamorphosis with both light and electron microscopy to elucidate the morphology of these organs and the mechanisms by which they are lost.Loss of the velar lobes is the first morphological sign of metamorphosis, and involves selective dissociation and subsequent ingestion of the ciliated velar cells; the remaining aggregate of supportive cells is apparently incorporated into cephalic epidermis. Attachment of the larval body to shell and operculum is primarily at sites of retractor muscle insertions; once the velum is gone, the attachment between shell and larval body is lost and the shell is cast off as the visceral organs exit through the shell aperture. Merger of visceral and cephalopedal elements results in flattening of the postlarval body and reorientation of internal organs. Simultaneously, a rapid spreading of epipodial epidermis over the lateral, dorsal, and posterior sides of the body produces the definitive integument. The squamous cells which comprise the larval perivisceral epidermis are pushed ahead of the definitive epidermis and are seen shortly after the shell is cast as a constricted aggregate of cells on the posterior end of the body. Autolysis of the left and right retractor muscles begins during metamorphosis and no trace of them is left after 24 to 48 h. The metapodial mucous glands which hypertrophy before metamorphosis are also lost within 48 h following exit of the post larva from the shell. Metamorphosis produces a detorsion caused in part by muscular action and in part by continuing growth and development.  相似文献   

7.
Developmental programmes for many marine invertebrates include the assembly of muscular systems appropriate to the functions of swimming and feeding in pelagic larvae. Upon metamorphosis, that musculature is often radically re-organized to meet very different demands of post-larval life. To investigate the development and fate of musculature in the nudibranch Phestilla sibogae, embryos, larvae and metamorphosing stages were fixed, labelled with phalloidin and examined with confocal microscopy. The resultant images revealed the sequential development of both large retractor muscles and numerous finer muscles that allow the larva to manipulate the velum, foot and operculum. Observations of living specimens at the same stages as those fixed for microscopy revealed the actions of the muscles as they developed. During metamorphosis, muscles with shell attachments disintegrate as the larva transforms into a shell-less juvenile. Notably, the massive velar, pedal and opercular retractor muscles disappear during metamorphosis in a sequence that corresponds to their loss of function. Other muscles, however, that appear to be important to the embryo and free-swimming larva persist into juvenile life. The comprehensive and detailed observations of the musculature presented here provide a solid foundation for comparisons with other species with different phylogenies and life histories.  相似文献   

8.

Background  

Flatfish metamorphosis is a thyroid hormone (TH) driven process which leads to a dramatic change from a symmetrical larva to an asymmetrical juvenile. The effect of THs on muscle and in particular muscle sarcomer protein genes is largely unexplored in fish. The change in Troponin T (TnT), a pivotal protein in the assembly of skeletal muscles sarcomeres and a modulator of calcium driven muscle contraction, during flatfish metamophosis is studied.  相似文献   

9.
Pattern formation in muscle development is often mediated by special cells called muscle organizers. During metamorphosis in Drosophila, a set of larval muscles function as organizers and provide scaffolding for the development of the dorsal longitudinal flight muscles. These organizers undergo defined morphological changes and dramatically split into templates as adult fibers differentiate during pupation. We have investigated the cellular mechanisms involved in the use of larval fibers as templates. Using molecular markers that label myoblasts and the larval muscles themselves, we show that splitting of the larval muscles is concomitant with invasion by imaginal myoblasts and the onset of differentiation. We show that the Erect wing protein, an early marker of muscle differentiation, is not only expressed in myoblasts just before and after fusion, but also in remnant larval nuclei during muscle differentiation. We also show that interaction between imaginal myoblasts and larval muscles is necessary for transformation of the larval fibers. In the absence of imaginal myoblasts, the earliest steps in metamorphosis, such as the escape of larval muscles from histolysis and changes in their innervation, are normal. However, subsequent events, such as the splitting of these muscles, fail to progress. Finally, we show that in a mutant combination, null for Erect wing function in the mesoderm, the splitting of the larval muscles is aborted. These studies provide a genetic and molecular handle for the understanding of mechanisms underlying the use of muscle organizers in muscle patterning. Since the use of such organizers is a common theme in myogenesis in several organisms, it is likely that many of the processes that we describe are conserved.  相似文献   

10.
Morphological changes in the tunic layers and migration of the test cells during swimming period in the larva of the ascidian, Ciona intestinalis , were observed by light and electron microscopy. The swimming period was divided into three stages. In stage 1, further formation of juvenile tunic layer started only in the larval trunk and neck region. In stage 2, the layer became swollen in the ventral and dorsal sides of the neck region and in stage 3, the swelling expanded backward. Concomitantly with these changes, the outermost larval tunic layer (outer cuticular layer), which had been formed before hatching, also swelled in the neck region in stage 2 and formed two humps in stage 3, although the layer did not change in the tail region during the swimming period. Test cells that were present over the entire larval tunic layer in stage 1 began to move from the surface of the fin toward that of the side of the body in stage 2, and finally gathered to form six bands running radially from the anterior end to the posterior end of the trunk region and aligned along the lateral sides of body in the tail region in stage 3. In electron microscopic observations, pseudopodia protruding from the test cells invaded the larval tunic, following which they extended proximate to the juvenile tunic in the trunk region. In the tail region, which had no juvenile tunic layer as that described, the pseudopodia invaded and remained adjacent to the surface of the epidermis or the sensory cilia protruded from the epidermis. Metamorphosis of the larvae, further tunic formation, degradation of adhesive papilla, attachment of larva to the substratum and tail resorption commenced after these morphological changes occurred. The possible role of the test cells in metamorphosis is discussed.  相似文献   

11.
The freely spawned eggs of Crania go through radial cleavage, embolic gastrulation, and the posteroventral part of the archenteron forms mesoderm through modified enterocoely. The blastopore closes in the posterior end of the larva. The ciliated, lecithotrophic larva has four pairs of coelomic pouches and three pairs of dorsal setal bundles. At metamorphosis, the larva curls ventrally by contraction of a pair of midventral muscles, which are extensions of the first pair of coelomic sacs; the larva attaches by the epithelium just behind the closed blastopore. The brachial valve is secreted by the middle part of the dorsal epithelium and the pedicle valve is secreted by the attachment epithelium. The second pair of coelomic sacs develop small attachment areas at the edge of the dorsal valve and become the lophophore coelom (mesocoel); the third pair of coelomic sacs become the body coelom (metacoel) with the adductor muscles. The posterior position of the closing blastopore is characteristic of deuterostomes. The ventral curving of the settling larva and the formation of both valves from dorsal epithelial areas indicate that the brachiopods have a very short ventral side as opposed to the phoronids. It is concluded that both groups have originated from a creeping ancestor with a straight gut.  相似文献   

12.
13.
This study analyzes the structure of the mandibular arch musculature in larval, metamorphic, and postmetamorphic anurans of 26 species and makes comparisons with larvae of three caudate and one gymnophione species. Major transformations in early evolution of anuran larvae comprise, for example, the powering of the larval upper jaw cartilages by relocating insertion sites of mandibular arch levators; splitting of some larval muscles into two muscles or muscle heads (m. intermandibularis, m. lev. mand. externus, m. lev. mand. longus); evolution of a muscle invading the lower lip of the oral disk (m. mandibulolabialis), and shift of origin of the internus and longus muscles from dorsal on the cranium to sites on the ventral otic capsule and palatoquadrate, respectively. In all these characters, Ascaphus truei shares the plesiomorphic conditions with caudates. The larva of Xenopus laevis is remarkable because the insertion pattern of three larval mandibular muscles anticipates the postmetamorphic condition of frogs in general and also resembles the caudate condition. Discoglossids, bombinatorids, pelobatids, and neobatrachians are largely similar in their muscle arrangements. The filter-feeding microhylids, however, have most clearly modified the general neobatrachian pattern. Past conflicts in the interpretation and naming of muscles can be attributed to the implicit or explicit homology assumptions used. In particular, the muscles' relations to the branches of the trigeminal nerve have been the dominant criteria for inferring homology and has led to inconsistencies. This concept is questioned herein. It is observed that the relative position of the ramus mandibularis (V(3)) is more variable interspecifically in anuran larvae than previously thought. The relations of the nerve branches and muscles in larvae are maintained during metamorphosis. Considering the muscle pattern to be more conserved in interspecific comparisons than the position of the nerve branches results in a new interpretation of muscle homologies and a hypothesis of jaw muscle evolution in amphibians that is more parsimonious than earlier views. A new, simplified terminology for the jaw musculature is proposed that is applicable for larvae and adults. It maximizes information content and reflects the hypothesized homologies of amphibian jaw muscles.  相似文献   

14.
Cycliophora is a very recently described phylum of acoelomate metazoans with a complex life cycle and a phylogenetic position that has been under debate ever since its discovery in 1995. Symbion americanus, which lives attached to the mouthparts of the American lobster, Homarus americanus, represents the second species described for the phylum. Aiming to increase the morphological knowledge about this cryptic clade, the present study describes the muscle arrangement of the feeding stage, the attached Prometheus larva with the dwarf male inside, the free living male, the Pandora larva, and the chordoid larva of S. americanus using actin staining and confocal laser scanning microscopy. 3D reconstructions of the muscular systems are presented. In the feeding stage, circular muscles compose the buccal funnel aperture. In addition, a pair of muscles runs longitudinally in the buccal funnel. A complex sphincter was found just proximally to the anus, and six longitudinal muscles run from the trunk constriction (“neck”) in basal direction. The musculature of the larval stages and the dwarf male is very complex and includes longitudinal muscles that run dorsally and ventrally. In addition, we found dorso‐ventral muscles. The male has a complex posterior muscle apparatus in the vicinity of the penis. In this stage, X‐ and V‐shaped structures were identified on the dorsal and the ventral side, respectively. Pandora and chordoid larvae possess additional circular muscles. We discuss our findings with respect to muscle elements of other metazoan groups and the chordoid larva of Symbion pandora. J. Morphol., 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

15.
The calcareous sponge Leucosolenia laxa releases free-swimming hollow larvae called coeloblastulae that are the characteristic larvae of the subclass Calcinea. Although the coeloblastula is a major type of sponge larva, our knowledge about its development is scanty. Detailed electron microscopic studies on the metamorphosis of the coeloblastula revealed that the larva consists of four types of cells: flagellated cells, bottle cells, vesicular cells, and free cells in a central cavity. The flagellated cells, the principal cell type of the larva, are arranged in a pseudostratified layer around a large central cavity. The larval flagellated cells characteristically have glutinous granules that are used as internal markers during metamorphosis. After a free-swimming period the larva settles on the substratum, and settlement apparently triggers the initiation of metamorphosis. The larval flagellated cells soon lose their flagellum and begin the process of dedifferentiation. Then the larva becomes a mass of dedifferentiated cells in which many autophagosomes are found. Within 18 h after settlement, the cells at the surface of the cell mass differentiate to pinacocytes. The cells beneath the pinacoderm differentiate to scleroblasts that form triradiate spicules. Finally, the cells of the inner cell mass differentiate to choanocytes and are arranged in a choanoderm that surrounds a newly formed large gastral cavity. We found glutinous granules in these three principal cell types of juvenile sponges, thus indicating the multipotency of the flagellated cells of the coeloblastula.  相似文献   

16.
The entire muscle system of Nerilla antennata, Nerillidium sp. and Trochonerilla mobilis was three-dimensionally reconstructed from whole mounts. In juvenile and adult specimens the F-actin musculature subset was stained with FITC-conjugated phalloidin and visualized with a confocal laser scanning microscope (cLSM). The muscle system shows the following major organization: 1) circular muscles are totally absent in the body wall; 2) the longitudinal muscles are confined in two ventral and two dorsal thick bundles; 3) additional longitudinal muscles are located in the ventro- and dorsomedian axis; 4) three segmental pairs of ventral oblique muscles elongate into the periphery: the main dorsoventral muscles that run along the body side posterior and dorsally and the anterior and posterior oblique parapodial muscles, which contribute to the ventral chaetal sacs; 5) one segmental pair of dorsal oblique parapodial muscles, contributing to the dorsal chaetal sacs; 6) five to seven small dorsoventral muscles per segment; and 7) complex head and pharyngeal musculature. These results support the belief that absence of circular muscles in the polychaete body wall is much more widely distributed than is currently presumed.  相似文献   

17.
18.
 Insect molting and metamorphosis are orchestrated by ecdysteroids with juvenile hormone (JH) preventing the actions of ecdysteroids necessary for metamorphosis. During the molt and metamorphosis of the dorsal abdominal epidermis of the tobacco hornworm, Manduca sexta, the isoforms involved in the ecdysone receptor (EcR)/Ultraspiracle (USP) complex change with the most dramatic switch being the loss of USP-1 and the appearance of USP-2 during the larval and pupal molts. We show here that this switch in USP isoforms is mediated by high 20-hydroxyecdysone (20E) and that the presence of JH is necessary for the down-regulation of USP-1 mRNA. The decrease of USP-1 mRNA in day 2 fourth instar larval epidermis in vitro required exposure to a high concentration (10–5 M) of 20E equivalent to the peak ecdysteroid concentration in vivo, whereas the increase of USP-2 mRNA occurred at lower concentrations (effective concentrations, EC50=6.3×10–7 M). During the pupal molt of allatectomized larvae which lack JH, USP-2 mRNA increased normally with the increasing ecdysteroid titer, whereas USP-1 mRNA remained high until pupation. When day 2 fifth instar larval epidermis was exposed to 500 ng/ml 20E in the absence of JH to cause pupal commitment of the cells by 24 h, USP-1 RNA remained at its high preculture level for 12 h, then increased two- to threefold by 24 h. The increase was prevented by the presence of 1 μg/ml JH I which also prevents the pupal commitment of the cells. By contrast, USP-2 mRNA increased steadily with the same EC50 as in fourth stage epidermis, irrespective of the presence or absence of JH. Under the same conditions, mRNAs for both EcR-B1 and EcR-A isoforms were up-regulated by 20E, each in its own time-dependent manner, similar to that seen in vivo. These initial mRNA increases were unaffected by the presence of JH I, but those seen after 12 h exposure to 20E were prevented by JH, indicating a difference in response between larvally and pupally committed cells. The presence of JH which maintained larval commitment of the cells also prolonged the half-life of the EcR proteins in these cells. These results indicate that both EcR and USP RNAs are regulated by 20E and can be modulated by JH in a complex manner with only that of USP-2 apparently unaffected. Received: 16 July 1998 / Accepted: 5 August 1998  相似文献   

19.
During its life cycle, Drosophila makes two sets of neuromuscular junctions (NMJs), embryonic/larval and adult, which serve distinct stage-specific functions. During metamorphosis, the larval NMJs are restructured to give rise to their adult counterparts, a process that is integrated into the overall remodeling of the nervous system. The NMJs of the prothoracic muscles and the mesothoracic dorsal longitudinal (flight) muscles have been previously described. Given the diversity and complexity of adult muscle groups, we set out to examine the less complex abdominal muscles. The large bouton sizes of these NMJs are particularly advantageous for easy visualization. Specifically, we have characterized morphological attributes of the ventral abdominal NMJ and show that an embryonic motor neuron identity gene, dHb9, is expressed at these adult junctions. We quantified bouton numbers and size and examined the localization of synaptic markers. We have also examined the formation of boutons during metamorphosis and examined the localization of presynaptic markers at these stages. To test the usefulness of the ventral abdominal NMJs as a model system, we characterized the effects of altering electrical activity and the levels of the cell adhesion molecule, FasciclinII (FasII). We show that both manipulations affect NMJ formation and that the effects are specific as they can be rescued genetically. Our results indicate that both activity and FasII affect development at the adult abdominal NMJ in ways that are distinct from their larval and adult thoracic counterparts  相似文献   

20.
In ascidians, the events of metamorphosis transform the non-feeding, mobile tadpole larva into a filter-feeding, fixed juvenile, and the process involves rearrangements of cells, two organs and physiological changes. Differential screening was used to isolate two genes that are not expressed in swimming larvae but are expressed immediately after the initiation of metamorphosis in Ciona intestinalis. One of the genes, Ci-meta1, encodes a polypeptide with a putative secretion signal sequence, 6 epidermal growth factor (EGF)-like repeats and 13 calcium-binding EGF-like repeats. The gene begins to be expressed immediately after the beginning of metamorphosis in the adhesive organ and is likely to be associated with the signal response for metamorphosis. Another gene named Ci-meta2 encodes a protein with a putative secretion signal and three thrombospondin type-1 repeats. Ci-meta2 gene expression begins at the larval stage and is upregulated in the metamorphosing juveniles. Ci-meta2 expression is found in three regions; the adhesive organ which is also associated with settlement, the neck region between the trunk and the tail of the larva which is associated with tail resorption, and dorsal regions of the trunk which correspond to the location of the siphon primordium. This gene may be involved in the dynamic arrangement of cells during ascidian metamorphosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号