首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The review is devoted to angiogenin, one of the factors that induce formation of blood vessels, which is unique in that it is a ribonuclease. Consideration is given to the tertiary structure of human angiogenin; the catalytic and cell receptor binding sites, their significance for angiogenic activity; the human angiogenin gene structure, chromosomal localization, and expression; the specificity of angiogenin as a ribonuclease and abolishment of protein synthesis; the nuclear localization of angiogenin in proliferating endothelial cells and its significance for angiogenic activity; angiogenin binding to cell surface actin as a plausible mechanism of inducing neovascularization (enhancement of plasminogen activation by actin, stimulation of the cell-associated proteolytic activity; promotion of the cultured cell invasiveness); modulation of mitogenic stimuli in endothelial, smooth muscle, and fibroblast cells by angiogenin. The importance of angiogenin as an adhesive molecule for endothelial and tumor cells is discussed too, as well as the modulation of tubular morphogenesis by bovine angiogenin, prevention of tumor growth in vivoby angiogenin antagonists, prospects of the use of angiogenin and angiogenin-encoding recombinant plasmids and vaccinia virus in therapeutic practice.  相似文献   

2.
Angiogenin and its role in angiogenesis]   总被引:5,自引:0,他引:5  
The review is devoted to angiogenin, one of the factors that induce formation of blood vessels, which is unique among them in that it is a ribonuclease. Consideration is given to the tertiary structure of human angiogenin; the catalytic and cell-receptor binding sites, their significance for angiogenic activity; the human angiogenin gene structure, chromosomal localization, and expression; the specificity of angiogenin as a ribonuclease and abolishment of protein synthesis; the nuclear localization of angiogenin in proliferating endothelial cells and its significance for angiogenic activity; angiogenin binding to a cell-surface actin as a plausible mechanism of inducing neovascularization (enhancement of plasminogen activation by actin with angiogenin, stimulation of the cell-associated proteolytic activity by angiogenin; promotion of the cultured cells invasiveness); modulation of mitogenic stimuli in endothelial, smooth muscle, and fibroblast cells by angiogenin. The importance of angiogenin as an adhesive molecule for endothelial and tumor cells is discussed too, as well as the modulation of tubular morphogenesis by bovine angiogenin, prevention of tumor growth in vivo by angiogenin antagonists, prospects of the use of angiogenin and angiogenin-encoding recombinant plasmids and vaccinia virus in therapeutic practice.  相似文献   

3.
Angiogenin activates Erk1/2 in human umbilical vein endothelial cells   总被引:4,自引:0,他引:4  
Angiogenin is a potent angiogenic factor that binds to endothelial cells and is endocytosed and rapidly translocated to the nucleus where it is concentrated in the nucleolus and binds to DNA. Angiogenin also activates cell-associated proteases, induces cell invasion and migration, stimulates cell proliferation, and organizes cultured cells to form tubular structures. The intracellular signaling pathways that mediate these various cellular responses are not well understood. Here we report that angiogenin induces transient phosphorylation of extracellular signal-related kinase1/2 (Erk1/2) in cultured human umbilical vein endothelial cells. Angiogenin does not affect the phosphorylation status of stress-associated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) and p38 mitogen-activated protein (MAP) kinases. PD98059--a specific inhibitor of MAP or Erk kinase 1 (MEK 1), the upstream kinase that phosphorylates Erk1/2--abolishes angiogenin-induced Erk phosphorylation and cell proliferation without affecting nuclear translocation of angiogenin. In contrast, neomycin, a known inhibitor of nuclear translocation and cell proliferation, does not interfere with angiogenin-induced Erk1/2 phosphorylation. These data indicate that both intracellular signaling pathways and direct nuclear functions of angiogenin are required for angiogenin-induced cell proliferation and angiogenesis.  相似文献   

4.
Human angiogenin is a plasma protein with angiogenic and ribonucleolytic activities. Angiogenin inhibited both DNA replication and proliferation of aortic smooth muscle cells. Binding of 125I-angiogenin to bovine aortic smooth muscle cells at 4 degrees C was specific, saturable, reversible and involved two families of interactions. High-affinity binding sites with an apparent dissociation constant of 0.2 nm bound 1 x 104 molecules per cell grown at a density of 3 x 104.cm-2. Low-affinity binding sites with an apparent dissociation constant of 0.1 micrometer bound 4 x 106 molecules.cell-1. High-affinity binding sites decreased as cell density increased and were not detected at confluence. 125I-angiogenin bound specifically to cells routinely grown in serum-free conditions, indicating that the angiogenin-binding components were cell-derived. Affinity labelling of sparse bovine smooth muscle cells yielded seven major specific complexes of 45, 52, 70, 87, 98, 210 and 250-260 kDa. The same pattern was obtained with human cells. Potential modulators of angiogenesis such as protamine, heparin and the placental ribonuclease inhibitor competed for angiogenin binding to the cells. Together these data suggest that cultured bovine and human aortic smooth muscle cells express specific receptors for human angiogenin.  相似文献   

5.
6.
Angiogenin is a member of the ribonuclease A superfamily of proteins that has been implicated in stimulating angiogenesis but whether angiogenin can directly affect ovarian granulosa or theca cell function is unknown. Therefore, the objective of these studies was to determine the effect of angiogenin on proliferation and steroidogenesis of bovine granulosa and theca cells. In experiments 1 and 2, granulosa cells from small (1 to 5 mm diameter) follicles and theca cells from large (8 to 22 mm diameter) follicles were cultured to evaluate the dose-response effect of recombinant human angiogenin on steroidogenesis. At 30 and 100 ng/ml, angiogenin inhibited (P<0.05) granulosa cell progesterone production and theca cell androstenedione production but did not affect (P>0.10) granulosa cell estradiol production or theca cell progesterone production, and did not affect numbers of granulosa or theca cells. In experiments 3 and 4, granulosa and theca cells from both small and large follicles were cultured with 300 ng/ml of angiogenin to determine if size of follicle influenced responses to angiogenin. At 300 ng/ml, angiogenin increased large follicle granulosa cell proliferation but decreased small follicle granulosa cell progesterone and estradiol production and large follicle theca cell progesterone production. In experiments 5 and 6, angiogenin stimulated (P<0.05) proliferation and DNA synthesis in large follicle granulosa cells. In experiment 7, 300 ng/ml of angiogenin increased (P<0.05) CYP19A1 messenger RNA (mRNA) abundance in granulosa cells but did not affect CYP11A1 mRNA abundance in granulosa or theca cells and did not affect CYP17A1 mRNA abundance in theca cells. We conclude that angiogenin appears to target both granulosa and theca cells in cattle, but additional research is needed to further understand the mechanism of action of angiogenin in granulosa and theca cells, as well as its precise role in folliculogenesis.  相似文献   

7.
Angiogenin, a potent angiogenic factor, binds to endothelial cells and is endocytosed and rapidly translocated to and concentrated in the nucleolus where it binds to DNA. In this study, we report that angiogenin induces transient phosphorylation of protein kinase B/Akt in cultured human umbilical vein endothelial (HUVE) cells. LY294002 inhibits the angiogenin-induced protein kinase B/Akt activation and also angiogenin-induced cell migration in vitro as well as angiogenesis in chick embryo chorioallantoic membrane in vivo without affecting nuclear translocation of angiogenin in HUVE cells. These results suggest that cross-talk between angiogenin and protein kinase B/Akt signaling pathways is essential for angiogenin-induced angiogenesis in vitro and in vivo, and that angiogenin-induced PKB/Akt activation is independent of nuclear translocation of angiogenin in HUVE cells.  相似文献   

8.
血管生成素是核糖核酸酶A超家族成员之一,具有较弱的核糖核酸酶活性.最新研究发现,血管生成素参与细胞内多种RNA的代谢过程.在生长条件下,血管生成素可以发生核转位聚集于细胞核中,促进rRNA转录,并可参与其剪切加工,同时它也调控一系列mRNA基因的转录,最终促进细胞的生长和增殖;在应激条件下,血管生成素能降解tRNA形成tiRNA,抑制细胞内整体蛋白质的翻译水平,并促进应激小体的形成,激活细胞内应激保护机制,从而促进细胞存活.此外,血管生成素还可参与非编码小RNA等RNA代谢过程.本文概述了血管生成素在RNA代谢中的作用与分子机制等方面的进展,并探讨了其在疾病发生和发展中的作用,以期开拓血管生成素的研究新思路.  相似文献   

9.

Background

In our earlier reports, we showed that downregulation of uPA and uPAR inhibited glioma tumor angiogenesis in SNB19 cells, and intraperitoneal injection of a hairpin shRNA expressing plasmid targeting uPA and uPAR inhibited angiogenesis in nude mice. The exact mechanism by which inhibition of angiogenesis takes place is not clearly understood.

Methodology/Principal Findings

In the present study, we have attempted to investigate the mechanism by which uPA/uPAR downregulation by shRNA inhibits angiogenesis in endothelial and glioblastoma cell lines. uPA/uPAR downregulation by shRNA in U87 MG and U87 SPARC co-cultures with endothelial cells inhibited angiogenesis as assessed by in vitro angiogenesis assay and in vivo dorsal skin-fold chamber model in nude mice. Protein antibody array analysis of co-cultures of U87 and U87 SPARC cells with endothelial cells treated with pU2 (shRNA against uPA and uPAR) showed decreased angiogenin secretion and angiopoietin-1 as well as several other pro-angiogenic molecules. Therefore, we investigated the role of angiogenin and found that nuclear translocation, ribonucleolytic and 45S rRNA synthesis, which are all critical for angiogenic function of angiogenin, were significantly inhibited in endothelial cells transfected with uPA, uPAR and uPA/uPAR when compared with controls. Moreover, uPA and uPAR downregulation significantly inhibited the phosphorylation of Tie-2 receptor and also down regulated FKHR activation in the nucleus of endothelial cells via the GRB2/AKT/BAD pathway. Treatment of endothelial cells with ruPA increased angiogenin secretion and angiogenin expression as determined by ELISA and western blotting in a dose-dependent manner. The amino terminal fragment of uPA down regulated ruPA-induced angiogenin in endothelial cells, thereby suggesting that uPA plays a critical role in positively regulating angiogenin in glioblastoma cells.

Conclusions/Significance

Taken together, our results suggest that uPA/uPAR downregulation suppresses angiogenesis in endothelial cells induced by glioblastoma cell lines partially by downregulation of angiogenin and by inhibition of the angiopoietin-1/AKT/FKHR pathway.  相似文献   

10.
Limited Proteolysis of Angiogenin by Elastase Is Regulated by Plasminogen   总被引:4,自引:0,他引:4  
Human neutrophil elastase cleaves angiogenin at the Ile-29/Met-30 peptide bond to produce two major disulfide-linked fragments with apparent molecular weights of 10,000 and 4000, respectively. Elastase-cleaved angiogenin has slightly increased ribonucleolytic activity, but has lost its ability to undergo nuclear translocation in endothelial cells, a process essential for angiogenic activity. Cleavage appears to alter the cell-binding properties of angiogenin, despite the fact that it occurs some distance from the putative receptor-binding site, since the elastase-cleaved protein fails to compete with its native counterpart for nuclear translocation in endothelial cells. Plasminogen specifically accelerates elastase proteolysis of angiogenin. It does not enhance elastase activity toward ribonuclease A or the synthetic peptide substrate MeOSuc-Ala-Ala-Pro-Val-pNA. Plasminogen-accelerated inactivation of angiogenin by elastase might be a significant event in the process of angiogenin-induced angiogenesis since (i) angiogenin and plasminogen circulate in plasma at high concentrations, (ii) angiogenin, especially when bound to actin, activates tissue plasminogen activator to generate plasmin from plasminogen, and (iii) elastase cleaves plasminogen to produce angiostatin, a potent inhibitor of angiogenesis and metastasis. Interrelationships among angiogenin, plasminogen, plasminogen activators, elastase, and angiostatin may provide a sensitive regulatory system to balance angiogenesis and antiangiogenesis.  相似文献   

11.
Human ribonuclease inhibitor (RI) is a cytoplasmic acidic protein. The experiment demonstrated that it might effectively inhibit tumor-induced angiogenesis and inhibit tumor growth. Ribonuclease inhibitor is constructed almost entirely of leucine-rich repeats, which might be involved in unknown biological effects besides inhibiting RNase A and angiogenin activities. The exact molecular mechanism of antitumor on ribonuclease inhibitor remains unclear so far. In order to further understand the function of ribonuclease inhibitor and investigate the relationship with tumor growth, our study established a transfection of human ribonuclease inhibitor cDNA into the murine B16 cells by the retroviral packaging cell line PA317. The cell line transfected with a stably high expression of ribonuclease inhibitor was identified. We found that the transfected ribonuclease inhibitor could obviously inhibit cell proliferation, regulate cell cycle and induce cell apoptosis in vitro. Mice that were injected with the B16 cells transfected RI cDNA showed a significant inhibition of the tumor growth with lighter tumor weight, lower density of microvessels, longer latent periods, and survival time than those in the other two control groups. In conclusion, the results reveal the novel mechanism that antitumor effect of ribonuclease inhibitor is also associated with inducing apoptosis, regulating cell cycle and inhibiting proliferation besides antiangiogenesis. These results suggest that ribonuclease inhibitor might be a candidate of tumor suppressor gene in some tissues. RI could become a target gene for gene therapy. Our study may be of biological and clinical importance.  相似文献   

12.
Angiogenin is a potent inducer of angiogenesis, a process of blood vessel formation. It interacts with endothelial and other cells and elicits a wide range of cellular responses including migration, proliferation, and tube formation. One important target of angiogenin is endothelial cell-surface actin and their interaction might be one of essential steps in angiogenin-induced neovascularization. Based on earlier indications that angiogenin promotes actin polymerization, we studied the binding interactions between angiogenin and actin in a wide range of conditions. We showed that at subphysiological KCl concentrations, angiogenin does not promote, but instead inhibits polymerization by sequestering G-actin. At low KCl concentrations angiogenin induces formation of unstructured aggregates, which, as shown by NMR, may be caused by angiogenin’s propensity to form oligomers. Binding of angiogenin to preformed F-actin does not cause depolymerization of actin filaments though it causes their stiffening. Binding of tropomyosin and angiogenin to F-actin is not competitive at concentrations sufficient for saturation of actin filaments. These observations suggest that angiogenin may cause changes in the cell cytoskeleton by inhibiting polymerization of G-actin and changing the physical properties of F-actin.  相似文献   

13.
Mechanisms of action of angiogenin   总被引:1,自引:0,他引:1  
  相似文献   

14.
15.
Polypeptides of bovine aortic, pulmonary artery, and pulmonary microvascular endothelial cells, as well as vascular smooth muscle cells and retinal pericytes were evaluated by two-dimensional gel electrophoresis. The principal cytoskeletal proteins in all of these cell types were actin, vimentin, tropomyosin, and tubulin. Cultured pulmonary microvascular endothelial cells also expressed 12 unique polypeptides including a 41 kd acidic type I and two isoforms of a 52 kd basic type II simple epithelial cytokeratin microvascular endothelial cell expression of the simple epithelial cytokeratins was maintained in cultured in the presence or absence of retinal-derived growth factor, and regardless of whether cells were cultured on gelatin, fibronectin, collagen I, collagen IV, laminin, basement membrane proteins, or plastic. Cytokeratin expression was maintained through at least 50 population doublings in culture. The expression of cytokeratins was found to be regulated by cell density. Pulmonary microvascular endothelial cells seeded at 2.5 X 10(5) cell/cm2 (confluent seeding) expressed 3.5 times more cytokeratins than cells seeded at 1.25 X 10(4) cells/cm2 (sparse seeding). Vimentin expression was not altered by cell density. By indirect immunofluorescence microscopy it was determined that the cytokeratins were distributed cytoplasmically at subconfluent cell densities but that cytokeratin 19 sometimes localized at regions of cell-cell contact after cells reached confluence. Vimentin had a cytoplasmic distribution regardless of cell density. These results suggest that pulmonary microvascular endothelial cell have a distinctive cytoskeleton that may provide them with functionally unique properties when compared with endothelial cells derived from the macrovasculature. In conjunction with conventional endothelial cell markers, the presence of simple epithelial cytokeratins may be an important biochemical criterion for identifying pulmonary microvascular endothelial cells.  相似文献   

16.
The mechanism of the cytostatic action of dimerized ribonuclease A toward cultured hepatoma cells was investigated. A decrease in mitotic index, modifications of adsorptive properties of the pericellular membrane and inhibition of the degradation of two different proteins taken up by endocytosis are the first cell functions to be affected by the dimer. This effect on protein digestion is not due to an inhibition of proteolytic enzymes. The intracellular localization of exogenous protein and of ribonuclease dimer was studied by cell fractionation. When proteins (horseradish peroxidase or rabbit immunoglobulin G) are taken up by control hepatoma cells, they are first associated with phagosomes equilibrating at a lower density than lysosomes; their density distribution gradually becomes similar to that of lysosomes. When cells are pre-exposed to ribonuclease dimer, this modification of the density distribution as a function of time no longer occurs, although these proteins are still intracellular, as indicated by fractionation by differential centrifugation. During the first hour after addition of ribonuclease dimer, kinetic studies show an increased fixation of peroxidase to the cell membrane. Protein release into the culture medium is also increased. These results can be explained either by an absence of fusion between phagosomes and lysosomes, or by an inhibition of the discharge of peroxidase adsorbed to the phagosomal membrane after fusion.  相似文献   

17.
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Basic fibroblast growth factor (bFGF), which is highly expressed in developing tissues and malignant cells, regulates cell growth, differentiation, and migration. Its expression is essential for the progression and metastasis of HCC. This study aims to investigate the effects of bFGF on the expression of angiogenin, another growth factor, which plays an important role in tumor angiogenesis, and on cell proliferation in H7402 human hepatoma cells. The bFGF sense cDNA or antisense cDNA was stably transfected into H7402 cells. Genomic DNA PCR analysis demonstrated that human bFGF sense cDNA or antisense cDNA was inserted into the genome. Furthermore, the expression of bFGF and angiogenin was examined by RT-PCR and Western blot assays. MTT and colony formation assays were employed to determine cell proliferation. Stable bFGF over-expressing and under-expressing transfectants were successfully established. Expression of angiogenin was decreased in the over-expressing bFGF cells (sense transfectants) and was increased in the under-expressing bFGF cells (antisense transfectants). Cell proliferation increased in the bFGF sense transfectants and decreased in the bFGF antisense transfectants. These results demonstrated that the endogenous bFGF may not only negatively regulate the angiogenin expression but also contribute to the overall cell proliferation in H7402 human hepatoma cells. This study may be helpful in finding a potential therapeutic approach to HCC.  相似文献   

18.
Oxidized low density lipoproteins (oxLDLs) and activated T lymphocytes are present in early atherosclerotic plaques. It has been shown that oxLDLs are cytotoxic to cultured vascular cells but their possible toxic action on T lymphocytes has not been described. Peripheral blood lymphocytes from healthy individuals were stimulated in vitro with the polyclonal activator phytohemagglutinin and treated with various doses of native and mildly oxidized LDLs. Low doses of oxLDLs inhibited cell growth and DNA synthesis after 48 h culture and at 200 microg apoB/ml we observed a loss of cell viability. Dead cells did not exhibit significant increase of alteration of membrane integrity (i.e., necrosis) but showed chromatin fragmentation evaluated by DNA staining with 4', 6-diamidino-2-phenylindole and propidium iodide. This fragmentation increased with TBARS and hydroperoxide levels. The expression of early apoptosis marker Apo2.7 rose among the CD3(+) T-cell population. In addition, morphological analysis showed apoptotic features (cell shrinking, nucleus condensation, and fragmentation). Study of phosphatidylserine expression using Annexin V confirmed that oxLDLs induced apoptosis in activated lymphocytes. In the Jurkat T-cell line cultured with oxLDLs, apoptotic morphological changes (condensation and nucleus fragmentation) were observed and they were accompanied by DNA fragmentation visualized by propidium iodide staining and electrophoresis showing apoptotic ladder.These results demonstrate that mildly oxidized LDLs induce apoptosis in a part of activated and proliferating T cells. T-lymphocyte apoptosis induction in atherosclerotic lesions might contribute to the development of an inappropriate local T cell response.  相似文献   

19.
Using the cornea of macaque monkey, we demonstrated the relationship between cell density and growth of endothelial cells in vitro. Corneal endothelial cells in a cell sheet grow most actively in regions with cell density of 1000 to 1800 cells/mm2, in explant cultures and cell sheets and in concentrated inocula dissociated cells. Cell morphology was well sustained in these cultures. Cells cultured at a higher cell density retained their potential to proliferate actively, showing clear contrast to cells cultured at a density lower than 200 cells/mm2. When dissociated cells were cultured at a low density and maintained for more than 4 weeks, they gradually lost their growth potential, altered into polymorphonuclear giant cells and eventually dedifferentiated. In addition, cells with no contact with each other did not express growth potential. Density dependent growth was confirmed by measuring the mitotic index against the cell density per square mm from the center to the peripheral regions in cultured explants. It is concluded that the growth pattern of corneal endothelial cells is closely related to cell density, and that growth of these cells might be regulated through intercellular communications.  相似文献   

20.
Mass transfer between flowing blood and arterial mural cells (including vascular endothelial cells) may play an important role in atherogenesis. Endothelial cells are known to have an apical surface topography that is not flat, and hence mass transfer patterns to individual endothelial cells are likely affected by the local cellular topography. The purpose of this paper is to investigate the relationship between vascular endothelial cell surface topography and cellular level mass transfer. Confluent porcine endothelial monolayers were cultured under both shear and static conditions and atomic force microscopy was used to measure endothelial cell topography. Using finite element methods and the measured cell topography, flow and concentration fields were calculated for a typical, small, blood-borne solute. A relative Sherwood number was defined as the difference between the computed Sherwood number and that predicted by the Leveque solution for mass transfer over a flat surface: this eliminates the effects of axial location on mass transfer efficiency. The average intracellular relative Sherwood number range was found to be dependent on cell height and not dependent on cell elongation due to shear stress in culture. The mass flux to individual cells reached a maximum at the highest point on the endothelial cell surface, typically corresponding to the nucleus of the cell. Therefore, for small receptor-mediated solutes, increased solute uptake efficiency can be achieved by concentrating receptors near the nucleus. The main conclusion of the work is that although the rate of mass transfer varies greatly over an individual cell, the average mass transfer rate to a cell is close to that predicted for a flat cell. In comparison to other hemodynamic factors, the topography of endothelial cells therefore seems to have little effect on mass transfer rates and is likely physiologically insignificant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号