首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although highly homologous in amino acid sequence, the agonist-receptor complexes formed by the human lutropin receptor (hLHR) and rat (r) LHR follow different intracellular routes. The agonist-rLHR complex is routed mostly to a lysosomal degradation pathway whereas a substantial portion of the agonist-hLHR complex is routed to a recycling pathway. In a previous study, we showed that grafting a five-residue sequence (GTALL) present in the C-terminal tail of the hLHR into the equivalent position of the rLHR redirects a substantial portion of the internalized agonist-rLHR complex to a recycling pathway.Using a number of mutations of the GTALL motif, we now show that only the first two residues (GT) of this motif are necessary and sufficient to induce recycling of the internalized agonist-rLHR complex. Phosphoamino acid analysis and mutations of the GT motif show that phosphorylation of the threonine residue is not necessary for recycling. Lastly, we show that addition of portions of the C-terminal tail of the hLHR that include the GT motif to the C-terminal tails of the rat follitropin or murine delta-opioid receptors promotes the post-endocytotic recycling of these G protein-coupled receptors.We conclude that the GT motif present in the C-terminal tail of the hLHR is a transferable motif that promotes the postendocytotic recycling of several G protein-coupled receptors and that the GT-induced recycling does not require the phosphorylation of the threonine residue.  相似文献   

2.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

3.
We show that most of the internalized rat LH receptor is routed to a lysosomal degradation pathway whereas a substantial portion of the human LH receptor is routed to a recycling pathway. Chimeras of these two receptors identified a linear amino acid sequence (GTALL) present near the C terminus of the human LH receptor that, when grafted onto the rat LH receptor, redirects most of the rat LH receptor to a recycling pathway. Removal of the GTALL sequence from the human LH receptor failed to affect its routing, however. The GTALL sequence shows homology with the C-terminal tetrapeptide (DSLL) of the beta2-adrenergic receptor, a motif that has been reported to mediate the recycling of the internalized beta2-adrenergic receptor by binding to ezrin-radixin-moesin-binding phosphoprotein-50. Addition of the DSLL tetrapeptide to the C terminus of the rat LH receptor also redirects most of the internalized rat LH receptor to a recycling pathway but, like the recycling of the human LH receptor, this rerouting is not mediated by ezrin-radixin-moesin-binding phosphoprotein-50. We conclude that most of the internalized rat LH receptor is degraded because its C-terminal tail lacks motifs that promote recycling and that two distinct, but homologous, motifs (DSLL at the C terminus or GTALL near the C terminus) can reroute the internalized rat LH receptor to a recycling pathway that is independent of ezrin-radixin-moesin-binding phosphoprotein-50.  相似文献   

4.
By using a yeast two-hybrid screen we identified GIPC (GAIP-interacting protein C terminus), a protein with a type I PDZ domain as a novel human lutropin receptor (hLHR) binding partner. Pull-down and immunoprecipitation assays confirmed this interaction and showed that it is dependent on the PDZ domain of GIPC and the C-terminal tetrapeptide of the hLHR. To characterize the functional consequences of the GIPC-hLHR interaction, we used a small interfering RNA against GIPC to generate a clonal cell line that is deficient in GIPC. Studies with this cell line reveal that GIPC is partially responsible for the recycling of the hormone that is internalized by the hLHR and also for maintaining a relatively constant level of hLHR at the cell surface during hormone internalization.  相似文献   

5.
Postendocytic sorting of G protein-coupled receptors (GPCRs) is driven by their interactions between highly diverse receptor sequence motifs with their interacting proteins, such as postsynaptic density protein (PSD95), Drosophila disc large tumor suppressor (Dlg1), zonula occludens-1 protein (zo-1) (PDZ) domain proteins. However, whether these diverse interactions provide an underlying functional specificity, in addition to driving sorting, is unknown. Here we identify GPCRs that recycle via distinct PDZ ligand/PDZ protein pairs that exploit their recycling machinery primarily for targeted endosomal localization and signaling specificity. The luteinizing hormone receptor (LHR) and β2-adrenergic receptor (B2AR), two GPCRs sorted to the regulated recycling pathway, underwent divergent trafficking to distinct endosomal compartments. Unlike B2AR, which traffics to early endosomes (EE), LHR internalizes to distinct pre-early endosomes (pre-EEs) for its recycling. Pre-EE localization required interactions of the LHR C-terminal tail with the PDZ protein GAIP-interacting protein C terminus, inhibiting its traffic to EEs. Rerouting the LHR to EEs, or EE-localized GPCRs to pre-EEs, spatially reprograms MAPK signaling. Furthermore, LHR-mediated activation of MAPK signaling requires internalization and is maintained upon loss of the EE compartment. We propose that combinatorial specificity between GPCR sorting sequences and interacting proteins dictates an unprecedented spatiotemporal control in GPCR signal activity.  相似文献   

6.
The amino acid sequences of the human (h) and rat (r) lutropin/choriogonadotropin receptors (LHR) are 87% identical, but the rate of agonist-induced internalization of the hLHR is approximately 7 times faster than that of the rLHR. Chimeras of the hLHR and the rLHR showed that this rate is dictated by the serpentine domain and the cytoplasmic tail. Further mutational analysis identified seven residues, two adjacent residues in the second intracellular loop (Val/Gln in the rLHR and Ile/His in the hLHR), four non-contiguous residues in the third intracellular loop (Arg/Gln/Thr/Pro in the rLHR and Lys/Arg/Met/Thr in the hLHR), and one in the C-terminal tail (Leu in the rLHR and Phe in the hLHR), that are necessary and sufficient to impart the slow rate of internalization of the rLHR and the fast rate of internalization of the hLHR. The internalization of the rLHR and the hLHR display different sensitivities to the non-visual arrestins. Therefore, we also tested if the simultaneous exchange of these seven residues resulted in the exchange of this property. Since this was found to be the case, we propose that these seven residues identified here form a non-visual arrestin-binding site.  相似文献   

7.
Palmitoylation is a well-conserved posttranslational modification among members of the G protein-coupled receptor superfamily. The present study examined the role of palmitoylation in endocytosis and postendocytic trafficking of the human LH receptor (LHR). Palmitoylation of the LHR was determined by incorporation of [3H]palmitic acid into wild-type (WT) or mutant receptor in which the potential palmitoylation sites, C643 and C644, were mutated to glycine residues. The WT receptor showed incorporation of [3H]palmitic acid into the mature 90-kDa form of the receptor whereas mutation of the two Cys residues abrogated this incorporation, indicating that Cys 643 and C644 are the sites of palmitoylation. The role of palmitoylation on endocytosis and postendocytic processing was examined by testing the ability of the WT and mutant receptor to undergo internalization, recycling, and lysosomal degradation. Compared with the WT receptor, the mutant receptor showed increased internalization and decreased recycling, suggesting that retention of palmitic acid residues at Cys 643 and 644 promotes LHR recycling. The role of palmitoylation on receptor recycling was substantiated by demonstrating that a different mutant, D578H LHR, which is deficient in palmitoylation, also recycled less efficiently. Furthermore, the data show that palmitoylation, not the rate of internalization, determines the efficiency of recycling. The present study shows that palmitoylation of cysteine residues 643 and 644 of the human LHR is a determinant of recycling.  相似文献   

8.
Internalization of the Bombyx mori pheromone biosynthesis activating neuropeptide receptor (PBANR) has been attributed to the presence of a 67 amino acid C-terminal extension absent in PBANRs from Helicoverpa. To identify the structural motif(s) responsible for internalization, a series of truncation mutants fused with enhanced green fluorescent protein were constructed and transiently expressed in insect Sf9 cells. Confocal microscopy analyses revealed that truncation at Gly357 severely inhibited internalization while truncation at Gln367 did not, indicating that the PBANR internalization motif resides between Gly357-Gln367. Alanine substitution studies suggest that Tyr360 and Leu363 may constitute a YXXL endosomal targeting motif that facilitates endocytosis, however, this motif does not appear to be the primary determinant; an indication that multiple sites are involved. Furthermore, we determined that internalization of the PBANR proceeds via a clathrin-dependent pathway, is dependent on the influx of extracellular calcium, and likely does not involve a G protein-coupled receptor kinase.  相似文献   

9.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

10.
Agonist-induced internalization of G protein-coupled receptors plays an important role in signal regulation. The underlying mechanisms of the internalization of the human neuropeptide Y(2) receptor (hY(2)R), as well as its desensitization, endocytosis, and resensitization are mainly unknown. In the present study we have investigated the role of carboxyl-terminal (C-terminal) Ser/Thr residues and acidic amino acids in regulating receptor internalization, arrestin interaction, and recycling by fluorescence microscopy, cell surface enzyme-linked immunosorbent assay, and bioluminescence resonance energy transfer in several cell lines. Strikingly, C-terminal truncation mutants revealed two different internalization motifs. Whereas a distal motif (373)DSXTEXT(379) was found to be the primary regulatory internalization sequence acting in concert with arrestin-3, the proximal motif (347)DXXXSEXSXT(356) promoted ligand-induced internalization in an arrestin-3-independent manner. Moreover, we identified a regulatory sequence located between these internalization motifs ((357)FKAKKNLEVRKN(368)), which serves as an inhibitory element. We found that hY(2)R recycling is also governed by structural determinants within the proximal internalization motif. In conclusion, these results indicate that the hY(2)R C terminus is involved in multiple molecular events that regulate internalization, interaction with arrestin-3, and receptor resensitization. Our findings provide novel insights into complex mechanisms of controlled internalization of hY(2)R, which is likely applicable to other GPCRs.  相似文献   

11.
A panel of variants with alanine substitutions in the small loop of anthrax toxin protective antigen domain 4 was created to determine individual amino acid residues critical for interactions with the cellular receptor and with a neutralizing monoclonal antibody, 14B7. Substituted protective antigen proteins were analyzed by cellular cytotoxicity assays, and their interactions with antibody were measured by plasmon surface resonance and analytical ultracentrifugation. Residue Asp683 was the most critical for cell binding and toxicity, causing an approximately 1000-fold reduction in toxicity, but was not a large factor for interactions with 14B7. Substitutions in residues Tyr681, Asn682, and Pro686 also reduced toxicity significantly, by 10-100-fold. Of these, only Asn682 and Pro686 were also critical for interactions with 14B7. However, residues Lys684, Leu685, Leu687, and Tyr688 were critical for 14B7 binding without greatly affecting toxicity. The K684A and L685A variants exhibited wild type levels of toxicity in cell culture assays; the L687A and Y688A variants were reduced only 1.5- and 5-fold, respectively.  相似文献   

12.
A variety of physiologically important receptors are internalized and then recycled back to the plasma membrane by the endocytic recycling compartment. These include the transferrin receptor and many G-protein coupled receptors (GPCRs). The internalization of GPCRs is a result of agonist stimulation. A cell-based fluorescent imaging assay is described that detects and quantifies the presence of fluorescently labeled receptors and macromolecules in the recycling compartment. This High Content Screening application is conducted on the ArrayScan II System that includes fluorescent reagents, imaging instrumentation and the informatics tools necessary to screen for compounds that affect receptor internalization, recycling and GPCR activation. We demonstrate the Receptor Internalization and Trafficking application by quantifying (i) the internalization and recycling of the transferrin receptor using a fluorescently labeled ligand and (ii) the internalization of a physiologically functional model GPCR, a GFP-parathyroid hormone receptor chimera. These assays give high signal-to-noise ratios, broad dynamic ranges between stimulated and unstimulated conditions and low variability across different screening runs. Thus, the Receptor Internalization and Trafficking application, in conjunction with the ArrayScan II System, forms the basis of a robust, information-rich and automated screen for GPCR activation.  相似文献   

13.
The heptahelical G protein-coupled receptors (GPCRs) are internalized following agonist treatment and either recycle rapidly to the plasma membrane or enter the lysosomal degradation pathway. Many conventional GPCR recycling assays suffer from the fact that receptors arriving from the secretory pathway may interfere with recycling receptors. In this study, we introduce a new methodology to study post-endocytotic GPCR trafficking using fusions with the recently cloned Kaede protein. In contrast to the widely used green fluorescent protein, the fluorescence of Kaede can be converted from green to red using ultraviolet irradiation. Our methodology allows to study recycling of GPCRs microscopically in real-time bypassing problems with secretory pathway receptors. Initially, receptors are internalized using an agonist. Fluorescence signals in endosomes are switched, and trafficking of the receptors to the plasma membrane can be easily visualized by monitoring their new fluorescence. Using this methodology, we show that the corticotropin-releasing factor receptor type 1 belongs to the family of recycling GPCRs. Moreover, we demonstrate by fluorescence correlation spectroscopy that Kaede does not oligomerize when fused to membrane proteins, representing an additional advantage of this technique. The Kaede technology may be a powerful tool to study membrane protein trafficking in general.  相似文献   

14.
The mu- and delta-opioid receptors (MOR and DOR) differ significantly in their intracellular trafficking. MORs recycle back to the cell surface upon agonist treatment, whereas most internalized DORs are targeted to lysosomes for degradation. By exchanging the carboxyl tail domains of MOR and DOR and expressing the receptor chimeras in mouse neuroblastoma Neuro2A cells, it could be demonstrated that the carboxyl tail domain is not the sole determinant in directing the intracellular trafficking in these Neuro2A cells. Deletion of the dileucine motif (Leu245-Leu246) within the third intracellular loop of DOR or the mutation of Leu245 to Met slowed the lysosomal targeting of these delta-opioid receptors. Meanwhile the mutation of Met264 to Leu increased the rate of agonist-induced receptor internalization and the lysosomal targeting of the wild type and the delta-opioid receptor carboxyl tail chimera of the mu-opioid receptor. These studies suggest interplay between a di-leucine motif and the carboxyl tail in the lysosomal targeting of the receptor.  相似文献   

15.
Autoproteolytic activation and processing of human polymorphonuclear leucocyte (PMNL) type IV procollagenase (gelatinase) was initiated by HgCl2 and was investigated by kinetic analysis and N-terminal sequence determination of the reaction products. In the first instance the propeptide domain was lost by subsequent cleavage of the Asp15-Leu16, Glu40-Met41, Leu52-Leu53 and Ala74-Met75 peptide bonds. The PRCGVPD sequence motif (residues Pro78-Asp84), which is conserved in all metalloproteinases and expected to be relevant for latency, remained uncleaved at the activated enzyme. The generated intermediate was further processed by three C-terminal cleavages. The Glu666-Leu667, Ala506-Glu507 and Ala398-Leu399 bonds were hydrolysed successively. From the fragmentation products we were able to conclude that three released fragment peptides contained unpaired free cysteine with the residues Cys497, Cys653, Cys683. Cleavage of the first C-terminal peptide bond resulted in the loss of one of the conserved Cys residues of the hemopexin-like domain, whereas the Cys residue of the PRCGVPD motif was retained at the fully active enzyme. The possibility of an entirely different activation mechanism for PMNL type IV procollagenase is discussed.  相似文献   

16.
The solution structures of three related peptides (A1, A2, and A9) corresponding to the Thr(671)-Leu(690) region of the skeletal muscle dihydropyridine receptor II-III loop have been investigated using nuclear magnetic resonance spectroscopy. Peptide A1, the native sequence, is less effective in activating ryanodine receptor calcium release channels than A2 (Ser(687) to Ala substitution). Peptide A9, Arg(681)-Ser(687), does not activate ryanodine receptors. A1 and A2 are helical from their N terminus to Lys(685) but are generally unstructured from Lys(685) to the C terminus. The basic residues Arg(681)-Lys(685), essential for A1 activation of ryanodine receptors, are located at the C-terminal end of the alpha-helix. Peptide A9 was found to be unstructured. Differences between A1 and A2 were observed in the C-terminal end of the helix (residues 681-685), which was less ordered in A1, and in the C-terminal region of the peptide, which exhibited greater flexibility in A1. Predicted low energy models suggest that an electrostatic interaction between the hydroxyl oxygen of Ser(687) and the guanidino moiety of Arg(683) is lost with the Ser(687)Ala substitution. The results show that the more structured peptides are more effective in activating ryanodine receptors.  相似文献   

17.
The interactions between the substrates of the 2E1 isoform of the human cytochrome P450 and receptor were simulated. It was found that the CP4 isoform of the cytochrome of the bacterial cell is highly homologous to the 2E1 isoform of the human cytochrome P450. The orientation of the substrates of the 2E1 isoform in the CP4 isoform of the bacterial cell cytochrome was performed. A cavity in the receptor was found that is responsible for the binding of the substrate. Amino acid residues Phe87, Pro89, Val119, Thr185, Leu244, Leu245, Leu246, Val247, Gly248, Gly249, Thr252, Val295, Asp297, Cys357, Ile395, and Val396, the heme, and water molecules are involved in the formation of the cavity. The mode of the interactions of the substrate molecule with cytochrome was analyzed. Active sites of the receptor, and a part of the substrate molecule responsible for the binding to cytochrome were found. Equations for the dependence of the Michaelis constant on the structural parameters of complexes of substrates with cytochrome were derived.  相似文献   

18.
Macrophage migration inhibitory factor (MIF) displays both cytokine and enzyme activities, but its molecular mode of action is still unclear. MIF contains three cysteine residues and we showed recently that the conserved Cys57-Ala-Leu-Cys60 (CALC) motif is critical for the oxidoreductase and macrophage-activating activities of MIF. Here we probed further the role of this catalytic centre by expression, purification, and characterization of the cysteine-->serine mutants Cys60Ser, Cys57Ser/Cys60Ser, and Cys81Ser of human MIF and of mutants Ala58Gly/Leu59Pro and Ala58Gly/Leu59His, containing a thioredoxin (Trx)-like and protein disulphide isomerase (PDI)-like dipeptide, respectively. The catalytic centre mutants formed inclusion bodies and the resultant mutant proteins Cys57Ser/Cys60Ser, Ala58Gly/Leu59Pro, and Als58Gly/Leu59His were only soluble in organic solvent or 6 m GdmHCl when reconstituted at concentrations above 1 microgram.mL-1. This made it necessary to devise new purification methods. By contrast, mutant Cys81Ser was soluble. Effects of pH, solvent, and ionic strength conditions on the conformation of the mutants were analysed by far-UV CD spectropolarimetry and mutant stability was examined by denaturant-induced unfolding. The mutants, except for mutant Cys81Ser, showed a close conformational similarity to wild-type (wt) MIF, and stabilization of the mutants was due mainly to acid pH conditions. Intramolecular disulphide bond formation at the CALC region was confirmed by near-UV CD of mutant Cys60Ser. Mutant Cys81Ser was not involved in disulphide bond formation, yet had decreased stability. Analysis in the oxidoreductase and a MIF-specific cytokine assay revealed that only substitution of the active site residues led to inactivation of MIF. Mutant Cys60Ser had no enzyme and markedly reduced cytokine activity, whereas mutant Cys81Ser was active in both tests. The Trx-like variant showed significant enzyme activity but was less active than wtMIF; PDI-like MIF was enzymatically inactive. However, both variants had full cytokine activity. Together with the low but nonzero cytokine activity of mutant Cys60Ser, this indicated that the cytokine activity of MIF may not be tightly regulated by redox effects or that a distinguishable receptor mechanism exists. This study provides evidence for a role of the CALC motif in the oxidoreductase and cytokine activities of MIF, and suggests that Cys81 could mediate conformational effects. Availability and characterization of the mutants should greatly aid in the further elucidation of the mechanism of action of the unusual cytokine MIF.  相似文献   

19.
20.
The luteinizing hormone receptor (LHR) consists of an approximately 350-amino acid-long N-terminal extracellular exodomain and a membrane-associated endodomain of similar size. Human chorionic gonadotropin (hCG) binds to the exodomain, and then hCG/exodomain complex is thought to make a secondary contact with the endodomain and generate hormone signals. The sequence alignment of the exodomain shows imperfectly matching eight to nine Leu-rich repeats (LRRs). In the preceding article (Song, Y., Ji, I., Beauchamp, J., Isaacs, N., and Ji, T. (2001) J. Biol. Chem. 276, 3426-3435), we have shown that LRR2 and LRR4 are crucial for hormone binding. In this work, we have examined the residues of LRR4, in particular Leu(103) and Ile(105) in the putative beta strand. Our data show that Leu(103) and Ile(105) are involved in the specific, hydrophobic interaction of the LRR4 loop, likely to form the hydrophobic core. This loop is crucial for the structural integrity of all of the LRRs. In contrast, the downstream sequence consisting of Asn(107), Thr(108), Gly(109), and Ile(110) of LRR4 is crucial for cAMP induction but not for hormone binding, folding, and surface expression. This implicates, for the first time, its involvement in the interaction with the endodomain and signal generation. The evidence for the interaction is presented in the following article.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号