首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Single-channel properties of a delayed rectifier voltage-gated K+ channel (I-type) were investigated in peripheral myelinated axons from Xenopus laevis. Channels activated between −60 and −40 mV with a potential of half-maximal activation, E50, at −47.5 mV. Averaged single-channel currents activated with a time delay at all membrane potentials tested. Time to half-maximal activation decreased from 80 to 1.6 msec between −60 and +40 mV. The channel inactivated monoexponentially with a time constant of 10.9 sec at −40 mV. The time constant of deactivation was 126 msec at −80 mV and 16.9 msec at −110 mV. In symmetrical 105 mm K+, the single-channel conductance (γ) was 22 and 13 pS at negative and positive membrane potentials, respectively, at 13–15°C. In Na+-rich solution with 2.5 mm extracellular K+γ was 7 pS and the reversal potential was negative to −80 mV, indicating a high selectivity for K+ over Na+. γ depended on extracellular K+ concentration (K D = 19.6 mm) and temperature (Q 10= 1.45). External tetraethylammonium (TEA) reduced the apparent single-channel current amplitude at all potentials tested with a half-maximal inhibiting concentration (IC50) of 0.6 mm. Open probability of the channel, but not single-channel current amplitude was decreased by extracellular dendrotoxin (DTX, IC50= 6.8 nm) and mast cell degranulating peptide (MCDP, IC50= 41.9 nm). In Ringer solution the membrane potential of macroscopic I-channel patches was about −65 mV and depolarized under TEA and DTX. It is concluded that besides their activation during action potentials, I-channels may also stabilize the resting membrane potential. Received: 2 June 1995/Revised: 13 October 1995  相似文献   

3.
Excised patches were used to study the kinetics of a Cl channel newly identified in cultured human fibroblasts (L132). The conductance of ca. 70 pS in 150 mm symmetrical Cl, and the marked outward rectification ascribe this channel to the ICOR family. Long single-channel recordings (>30 min) revealed that the channel spontaneously switches from a kinetic mode characterized by high voltage dependence (with activity increasing with depolarization; mode 1), into a second mode (mode 2) insensitive to voltage, and characterized by a high activity in the voltage range ±120 mV. On patch excision the channel always appeared in mode 1, which was maintained for a variable time (5–20 min). In most instances the channels then switched into mode 2, and never were seen to switch back, in spite of the eight patches that cumulatively dwelled in this mode 2.33-fold as compared to mode 1. Stability plots of long recordings showed that the channel was kinetically stable in both modes, allowing standard analysis of steady-state kinetics to be performed. Open and closed time distributions of mode 1 and mode 2 revealed that the apparent number of kinetic states of the channel was the same in the two modes. The transition from mode 1 into mode 2 was not instantaneous, but required a variable time in the range 5–60 sec. During the transition the channel mean open time was intermediate between mode 1 and mode 2. The intermediate duration in the stability plot however is not to be interpreted as if the channel, during the transition, rapidly switches between mode 1 and mode 2, but represents a distinct kinetic feature of the transitional channel. Received: 31 December 1998/Revised: 13 April 1999  相似文献   

4.
A 94 kDa large subunit thiol-protease, as identified by anti-calpain antibodies, has been isolated from skeletal muscle junctional sarcoplasmic reticulum (SR). This protease cleaves specifically the skeletal muscle ryanodine receptor (RyR)/Ca2+ release channel at one site resulting in the 375 kDa and 150 kDa fragments. The 94 kDa thiol-protease degrades neither other SR proteins nor the ryanodine receptor of cardiac nor brain membranes. The partially purified 94 kDa protease, like the SR associated protease, had an optimal pH of about 7.0, was absolutely dependent on the presence of thiol reducing reagents, and was completely inhibited by HgCl2, leupeptin and the specific calpain I inhibitor. However, while the SR membrane-associated protease requires Ca2+ at a submicromolar concentration, the isolated thiol-protease has lost the Ca2+ requirement. The 94 kDa thiol-protease had no effect on ryanodine binding but modified the channel activity of RyR reconstituted into planar lipid bilayer: in a time-dependent manner, the channel activity decreases and within several minutes the channel is converted into a subconducting state. The protease-modified channel activity is still Ca2+-dependent and ryanodine sensitive. This 94 kDa thiol-protease cross react with anti-calpain antibodies thus, may represent the novel large subunit of the skeletal muscle specific calpain p94. Received: 10 December 1996/Revised: 11 August 1997  相似文献   

5.
Current-voltage relationships of a cation channel in the tonoplast of Beta vulgaris, as recorded in solutions with different activities of Ca2+ and K+ (from Johannes & Sanders 1995, J. Membrane Biol. 146:211–224), have been reevaluated for Ca2+/K+ selectivity. Since conversion of reversal voltages to permeability ratios by constant field equations is expected to fail because different ions do not move independently through a channel, the data have been analyzed with kinetic channel models instead. Since recent structural information on K+ channels show one short and predominant constriction, selectivity models with only one binding site are assumed here to reflect this region kinetically. The rigid-pore model with a main binding site between two energy barriers (nine free parameters) had intrinsic problems to describe the observed current-saturation at large (negative) voltages. The alternative, dynamic-pore model uses a selectivity filter in which the binding site alternates its orientation (empty, or occupied by either Ca2+ or K+) between the cytoplasmic side and the luminal side within a fraction of the electrical distance and in a rate-limiting fashion. Fits with this model describe the data well. The fits yield about a 10% electrical distance of the selectivity filter, located about 5% more cytoplasmic than the electrical center. For K+ translocation, reorientation of the unoccupied binding site (with a preference of about 6:5 to face the lumenal side) is rate limiting. For Ca2+, the results show high affinity to the binding site and low translocation rates (<1% of the K+ translocation rate). With the fitted model Ca2+ entry through the open channel has been calculated for physiological conditions. The model predicts a unitary open channel current of about 100 fA which is insensitive to cytoplasmic Ca2+ concentrations (between 0.1 and 1 μm) and which shows little sensitivity to the voltage across the tonoplast. Received: 19 February 1997/Revised: 19 May 1997  相似文献   

6.
The rate-limiting step for the maternofetal exchange of low molecular-weight solutes in humans is constituted by transport across a single epithelial layer (syncytiotrophoblast) of the placenta. Other than the well-established presence of a large-conductance, multisubstate Cl channel, the ionic channels occurring in this syncytial tissue are, for the most part, unknown. We have found that fusion of apical plasma membrane-enriched vesicle fractions with planar lipid bilayers leads, mainly (96% of 353 reconstitutions), to the reconstitution of nonselective cation channels. Here we describe the properties of this novel placental conductance at the single-channel level. The channel has a large (>200 pS) and variable conductance, is cation selective (P Cl /P K ≅ 0.024), is reversibly inhibited (presumably blocked) by submillimolar La3+, has very unstable kinetics, and displays a large number (>10) of current sublevels with a ``promiscuous' connectivity pattern. The occurrence of both ``staircaselike' and ``all-or-nothing' transitions between the minimum and maximum current levels was intriguing, particularly considering the large number of conductance levels spanned at a time during the concerted current steps. Single-channel data simulated according to a multistate linear reaction scheme, with rate constants that can vary spontaneously in time, reproduce many aspects of the recorded subconductance behavior. The channel's sensitivity to lanthanides is reminiscent of stretch-sensitive channels which, in turn, suggests a physiological role for this ion channel as a mechanotransducer during syncytiotrophoblast-volume regulation. Received: 30 August 1999/Revised: 12 November 1999  相似文献   

7.
SqKv1A is a cDNA that encodes a Kv1 (Shaker-type) α-subunit expressed only in the giant axon and the parental giant fiber lobe (GFL) neurons of the squid stellate ganglion. We incorporated SqKv1A into a recombinant baculovirus for expression in the insect Sf9 cell line. Whole-cell patch-clamp recordings reveal that very few cells display functional potassium current (I K) if cultured at the standard postinfection temperature of 27°C. At 18°C, less SqKv1A protein is produced than at 27°C, but cells with I K currents are much more numerous and can survive for at least 20 days postinfection (vs. ∼5 days at 27°C). Activation and deactivation kinetics of SqKv1A in Sf9 cells are slower (∼3- and 10-fold, respectively) than those of native channels in GFL neurons, but have similar voltage dependencies. The two cell types show only subtle differences in steady-state voltage-dependence of conductance and inactivation. Rates of I K inactivation in 20 mm external K are identical in the two cell types, but the sensitivity of inactivation to external tetraethylammonium (TEA) and K ions differ: inactivation of SqKv1A in Sf9 cells is slowed by external TEA and K ions, whereas inactivation of GFL I K is largely insensitive. Functional differences are discussed in terms of factors that may be specific to cell-type, including the presence of presently unidentified Kv1 subunits in GFL neurons that might form heteromultimers with SqKv1A.  相似文献   

8.
The action of Mg2+ on the putative xKv1.1 channel in the myelinated axon of Xenopus laevis was analyzed in voltage clamp experiments. The main effect was a shift in positive direction of the open probability curve (16 mV at 20 mm Mg2+), calculated from measurements of the instantaneous current at Na reversal potential after 50–100 msec steps to different potentials. The shift was measured at an open probability level of 25% to separate it from shifts of other K channel populations in the nodal region. The results could be explained in terms of screening effects on fixed charges located on the surface of the channel protein. Using the Grahame equation the functional charge density was estimated to −0.45 e nm−2. Analyzing this value, together with previously estimated values from other K channels, with reference to the charge of different extracellular loops of the channel protein, we conclude that the loop between the transmembrane S5 segment and the pore forming P segment determines the functional charge density of voltage-gated K channels. Received: 11 December 1997/Revised: 24 April 1998  相似文献   

9.
p64 is a protein identified as a chloride channel by biochemical purification from kidney microsomes. We expressed p64 in HeLa cells using a recombinant vaccinia virus/T7 RNA polymerase driven system. Total cell membranes were prepared from infected/transfected cells and fused to a planar lipid bilayer. A novel chloride channel activity was found in cells expressing p64 and not in control cells. The p64-associated activity shows strong anion over cation selectivity. Single channels show prominent outward rectification with single channel conductance at positive potentials of 42 pS. The chloride channel activity is activated by treatment of the membranes with alkaline phosphatase and inhibited by DNDS and by TS-TM calix(4)arene. Whole membrane anion permeability was determined by a chloride efflux assay, revealing that membranes from cells expressing p64 showed a small but highly significant increase in chloride permeability, consistent with expression of a novel chloride channel activity. Received: 17 November 1997/Revised: 9 February 1998  相似文献   

10.
Summary Bumetanide-sensitive Na-K-Cl cotransporters and thiazide-sensitive Na-Cl cotransporters comprise a family of integral membrane transport proteins, the Na-K-Cl cotransporter (NKCC) family. Each of the members of this family is over 1,000 amino acids in length. We have multiply aligned the ten currently sequenced members of this family from human, rabbit, rodent, shark, flounder, moth, worm and yeast sources. Phylogenetic analyses suggest the presence of at least six isoforms of these full length proteins in eukaryotes. Average hydropathy and average similarity plots have been derived revealing that each of these proteins possesses a central, well conserved, hydrophobic domain of almost invariant length, possibly consisting of twelve transmembrane α-helical spanners, an N-terminal, poorly conserved, hydrophilic domain of variable length, and a C-terminal, moderately conserved, hydrophilic domain of moderately constant length. A functionally uncharacterized homologue of this family occurs in the cyanobacterium Synechococcus sp. Limited sequence similarity of these proteins with members of a family of basic amino acid transporters suggests that the NKCC family may be distantly related to the previously characterized, ubiquitous, amino acid-polyamine-choline (APC) family of facilitators. These observations suggest that the NKCC family is an old family that has its roots in the prokaryotic kingdom. Received: 27 July 1995/Revised: 8 November 1995  相似文献   

11.
The four-state simple carrier model (SCM) is employed to describe ligand translocation by diverse passive membrane transporters. However, its application to systems like facilitative sugar transporters (GLUTs) is controversial: unidirectional fluxes under zero-trans and equilibrium-exchange experimental conditions fit a SCM, but flux data from infinite-cis and infinite-trans experiments appear not to fit the same SCM. More complex kinetic models have been proposed to explain this ``anomalous' behavior of GLUTs, but none of them accounts for all the experimental findings. We propose an alternative model in which GLUTs are channels subject to conformational transitions, and further assume that the results from zero-trans and equilibrium-exchange experiments as well as trans-effects corresponds to a single-occupancy channel regime, whereas the results from the infinite-cis and infinite-trans experiments correspond to a regime including higher channel occupancies. We test the plausibility of this hypothesis by studying a kinetic model of a two-site channel with two conformational states. In each state, the channel can bind the ligand from only one of the compartments. Under single-occupancy, for conditions corresponding to zero-trans and equilibrium-exchange experiments, the model behaves as a SCM capable of exhibiting trans-stimulations. For a regime including higher degrees of occupancy and infinite-cis and infinite-trans conditions, the same channel model can exhibit a behavior qualitatively similar to a SCM, albeit with kinetic parameters different from those for the single-occupancy regime. Numerical results obtained with our model are consistent with available experimental data on facilitative glucose transport across erythrocyte membranes. Hence, if GLUTs are multiconformational channels, their particular kinetic properties can result from transitions between single and double channel occupancies. Received: 12 April 1995/Revised: 28 August 1995  相似文献   

12.
13.
We have characterized the conduction and blocking properties of a chloride channel from rough endoplasmic reticulum membranes of rat hepatocytes after incorporation into a planar lipid bilayer. Our experiments revealed the existence of a channel with a mean conductance of 164 ± 5 pS in symmetrical 200 mm KCl solutions. We determined that the channel was ten times more permeable for Cl than for K+, calculated from the reversal potential using the Goldman-Hodgkin-Katz equation. The channel was voltage dependent, with an open probability value ranging from 0.9 at −20 mV to 0.4 at +60 mV. In addition to its fully open state, the channel could also enter a flickering state, which appeared to involve rapid transitions to zero current level. Our results showed a decrease of the channel mean open time combined with an increase of the channel mean closed time at positive potentials. An analysis of the dwell time distributions for the open and closed intervals led to the conclusion that the observed fluctuation pattern was compatible with a kinetic scheme containing a single open state and a minimum of three closed states. The permeability sequence for test halides determined from reversal potentials was Br > Cl > I≈ F. The voltage dependence of the open probability was modified by the presence of halides in trans with a sequence reflecting the permeability sequence, suggesting that permeant anions such as Br and Cl have access to an internal site capable of controlling channel gating. Adding NPPB to the cis chamber inhibited the channel activity by increasing fast flickering and generating long silent periods, whereas channel activity was not affected by 50 μm DNDS in trans. The channel was reversibly inhibited by adding phosphate to the trans chamber. The inhibitory effect of phosphate was voltage-dependent and could be reversed by addition of Cl. Our results suggest that channel block involves the interaction of HPO2− 4 with a site located at 70% of the membrane span. Received: 10 January 1997/Revised: 29 May 1997  相似文献   

14.
The effects of the divalent cations strontium and magnesium on Shaker K channels expressed in Xenopus oocytes were investigated with a two-electrode voltage-clamp technique. 20 mm of the divalent cation shifted activation (conductance vs. potential), steady-state inactivation and inactivation time constant vs. potential curves 10–11 mV along the potential axis. The results were interpreted in terms of the surface charge theory, and the surface charge density was estimated to be −0.27 e nm−2. A comparison of primary structure data and experimental data from the present and previous studies suggests that the first five residues on the extracellular loop between transmembrane segment 5 and the pore region constitutes the functional surface charges. The results further suggest that the surface charge density plays an important role in controlling the activation voltage range. Received: 12 November 1997/Revised: 1 June 1998  相似文献   

15.
A plant hyperpolarization-activating K+ channel, KAT1, is highly selective for K+ over Na+ and is little affected by external Na+, which is crucial to take up K+ effectively in a Na+-containing environment. It has been shown that a mutation at the location (Thr256) preceding the selectivity signature sequence dramatically enhanced the sensitivity of the KAT1 channel to external Na+. We report here electrophysiological experiments for the mechanism of action of external Na+ on KAT1 channels. The Thr256 residue was substituted with either glutamine (Q) or glutamate (E). The wild-type channel was insensitive to external Na+. However, the activity of both mutant channels was significantly depressed by Na+ with apparent dissociation constants of 6.7 mm and 11.3 mm for T256Q and T256E, respectively. The instantaneous current-voltage relationships revealed distinct blocking mechanisms for these mutants. For T256Q a typical voltage-dependent fast blocking was shown. On the other hand, the blocking for the T256E mutant was voltage-independent at low Na+ concentrations and became voltage-dependent at higher concentrations. At extreme hyperpolarization the blocking was relieved significantly. These data strongly suggest that the mutation at the end of the pore helix rearranged the selectivity filter and allows Na+ to penetrate into the pore. Received: 16 October 2000/Revised: 20 February 2001  相似文献   

16.
A number of peptide toxins derived from marine snails and various spiders have been shown to potently inhibit voltage-dependent calcium channels. Here, we describe the effect of calcicludine, a 60 amino-acid peptide isolated from the venom of the green mamba (Dendroaspis angusticeps), on transiently expressed high voltage-activated calcium channels. Upon application of calcicludine, L-type (α1 C ) calcium channels underwent a rapid, irreversible decrease in peak current amplitude with no change in current kinetics, or any apparent voltage-dependence. However, even at saturating toxin concentrations, block was always incomplete with a maximum inhibition of 58%, indicating either partial pore block, or an effect on channel gating. Block nonetheless was of high affinity with an IC50 value of 88 nm. Three other types of high voltage activated channels tested (α1 A , α1 B , and α1 E ) exhibited a diametrically different response to calcicludine. First, the maximal inhibition observed was around 10%, furthermore, the voltage-dependence of channel activation was shifted slightly towards more negative potentials. Thus, at relatively hyperpolarized test potentials, calcicludine actually upregulated current activity of (N-type) α1 B channels by as much as 50%. Finally, the use of several chimeric channels combining the major transmembrane domains of α1 C and α1 E revealed that calcicludine block of L-type calcium channels involves interactions with multiple structural domains. Overall, calcicludine is a potent and selective inhibitor of neuronal L-type channels with a unique mode of action. Received: 22 September 1999/Revised: 1 December 1999  相似文献   

17.
The calcium-dependent modulation of the affinity of the cyclic nucleotide-gated (CNG) channels for adenosine 3′,5′-cyclic monophosphate (cAMP) was studied in enzymatically dissociated rat olfactory receptor neurons, by recording macroscopic cAMP-activated currents from inside-out patches excised from their dendritic knobs. Upon intracellular addition of 0.2 mm Ca2+ (0.2 Ca) the concentration of cAMP required for the activation of half-maximal current (EC50) was reversibly increased from 3 μm to about 30 μm. This Ca2+-induced affinity shift was insensitive to the calmodulin antagonist, mastoparan, was abolished irreversibly by a 2-min exposure to 3 mm Mg2++ 2 mm EGTA (Mg + EGTA), and was not restored by the application of calmodulin (CAM). Addition of CAM plus 0.2 mm Ca2+ (0.2 Ca + CAM), further reversibly shifted the cAMP affinity from 30 μm to about 200 μm. This affinity shift was not affected by Mg + EGTA exposure, but was reversed by mastoparan. Thus, the former Ca2+-only effect must be mediated by an unknown endogenous factor, distinct from CAM. Removal of this factor also increased the affinity of the channel for CAM. The affinity shift induced by Ca2+-only was maintained in the presence of the nonhydrolyzable cAMP analogue, 8-bromo-cAMP and the phosphatase inhibitor, microcystin-LR, ruling out modulation by phosphodiesterases or phosphatases. Our results indicate that the olfactory CNG channels are modulated by an as yet unidentified factor distinct from CAM. Received: 26 December 1995/Revised: 14 March 1996  相似文献   

18.
We have investigated the interaction of two peptides (ShB — net charge +3 and ShB:E12KD13K — net charge +7) derived from the NH2-terminal domain of the Shaker K+ channel with purified, ryanodine-modified, cardiac Ca2+-release channels (RyR). Both peptides produced well resolved blocking events from the cytosolic face of the channel. At a holding potential of +60 mV the relationship between the probability of block and peptide concentration was described by a single-site binding scheme with 50% saturation occurring at 5.92 ± 1.06 μm for ShB and 0.59 ± 0.14 nm for ShB:E12KD13K. The association rates of both peptides varied with concentration (4.0 ± 0.4 sec−1μm −1 for ShB and 2000 ± 200 sec−1μm −1 for ShB:E12KD13K); dissociation rates were independent of concentration. The interaction of both peptides was influenced by applied potential with the bulk of the voltage-dependence residing in Koff. The effectiveness of the inactivation peptides as blockers of RyR is enhanced by an increase in net positive charge. As is the case with inactivation and block of K+ channels, this is mediated by a large increase in Kon. These observations are consistent with the proposal that the conduction pathway of RyR contains negatively charged sites which will contribute to the ion handling properties of this channel. Received: 15 December 1997/Revised: 13 March 1998  相似文献   

19.
Neurons from the giant fiber lobe (GFL) of squid Loligo bleekeri were dissociated and cultured. The ionic currents were recorded using whole-cell patch clamp methods. The sodium current and the noninactivating potassium current like those elicited by the giant axon were among the currents expressed in axonal bulbs and bulblike structures upon dissociation. Meanwhile axonless cell bodies did not elicit such currents. Axonless cell bodies and some bulblike structures elicited two kinds of inactivating potassium currents, the slow- and the fast-inactivating current, which differed in their inactivation kinetics and pharmacology. Within 24 hr of plating, the current composition remained the same. While the noninactivating current was not sensitive to 4-aminopyridine, the two inactivating currents were sensitive, the slow-inactivating current being more sensitive. Selective combinations of the sodium current and the three potassium currents expressed in different structures of the acutely dissociated GFL could have resulted from cellular control of synthesis and transportation of the channel proteins to the somatic and the axonal membrane. The sodium current and the noninactivating potassium current could be recorded from some axonless cell bodies maintained in culture for over three days, indicating that the separation of the giant axon from its somata could result in the transportation of the channels normally expressed on the giant axon membrane to the somatic membrane. Received: 24 October 1995/Revised: 5 March 1996  相似文献   

20.
Calcium (Ca2+)-mediated signaling is fueled by two sources for Ca2+: Ca2+ can enter through Ca2+ channels located in the plasma membrane and can also be released from intracellular stores. In the present study the intracellular Ca2+ release channel/ryanodine receptor (RyR) from zebrafish skeletal muscle was characterized. Two RyR isoforms could be identified using immunoblotting and single-channel recordings. Biophysical properties as well as the regulation by modulators of RyR, ryanodine, ruthenium red and caffeine, were measured. Comparison with other RyRs showed that the zebrafish RyRs have features observed with all RyRs described to date and thus, can serve as a model system in future genetic and physiological studies. However, some differences in the biophysical properties were observed. The slope conductance for both isoforms was higher than that of the mammalian RyR type 1 (RyR1) measured with divalent ions. Also, inhibition by millimolar Ca2+ concentrations of the RyR isoform that is inhibited by high Ca2+ concentrations (teleost α RyR isoform) was attenuated when compared to mammalian RyRs. Due to the widespread expression of RyR these findings have important implications for the interpretation of the role of the RyR in Ca2+ signaling when comparing zebrafish with mammalian physiology, especially when analyzing mutations underlying physiological changes in zebrafish. Received: 15 February 2001/Revised: 1 June 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号