首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An improved method to analyze the (13)C NMR spectra of native starches, which considers the contribution of the V-type conformation and the nature of the amorphous component, has been developed. Starch spectra are separated into amorphous and ordered subspectra, using intensity at 84 ppm as a reference point. The ordered subspectra of high amylose starches show the presence of both V-type single helices and B-type double helices. Relative proportions of amorphous, single, and double-helical conformations are estimated by apportioning intensity of C1 peak areas between conformational types on the basis of ordered and amorphous subspectra of the native starch. Quantitative analysis shows that the V-type single-helical component increases with amylose content of starches. Different amorphous subspectra are needed to provide a consistent analysis of granular starches from diverse sources. The method of preparation was found to be more important than the starch botanical origin in determining (13)C NMR spectral features of amorphous samples.  相似文献   

2.
3.
Acid modification of tapioca starch earlier reported to increase the mechanical strength of tablets. The development of ordered structure (double helices) of these starches was monitored after equilibrating at 0.90 aw (25 °C) using 13C CP/MAS NMR and X-ray diffraction. As the hydrolysis time increased, the intensity of the resonance for C1 and C4 amorphous fractions decreased while that for C1 and C4 double helix fractions increased. Relative crystallinity (%) obtained from 13C CP/MAS NMR and X-ray diffraction methods both increased sharply initially and then levelled off with hydrolysis time. The initial increase in relative double helix content and crystallinity was due to a hydrolytic destruction in the amorphous domain, retrogradation of the partially hydrolyzed amylose and crystallization of free amylopectin double helices. After 192 h, these two parameters were not significantly different (=0.05) indicating that the double helices that were not arranged into crystalline regions either had been hydrolyzed or crystallized.  相似文献   

4.
Structural studies of starches with different water contents   总被引:1,自引:0,他引:1  
The proportion of double helices in starches from a series of pea [rb, rug4-b, rug3-a, and lam-c mutants, and the wild type (WT) parental line], potato and maize (normal and low amylose), and wheat (normal) lines, ranged from about 30-50% on a dry weight basis. In relatively dry starch powders, only about half of the double helices were in crystalline order, this proportion being higher for A-type than for B-type starches. Using starch from WT pea as an example, it was found that increasing water content results in an increase in total crystallinity. When the water content was raised to a level similar to that in excess water, the proportion of crystallinity was close to the proportion of double helices (DH). Measuring crystallinity in starches with a high water content is difficult using traditional methods such as x-ray diffraction. A method was developed, therefore, for determining starch structural characteristics in excess water by measuring the enthalpy of gelatinization transition in quasi-equilibrium differential scanning calorimetry (DSC) experiments. It is suggested that DH% = DeltaH(sp)/DeltaH(DH) x 100%, where DeltaH(sp) and DeltaH(DH) represent the specific enthalpies of gelatinisation transition, DeltaH(sp) being measured as J/g dry starch weight and DeltaH(DH) as J/g DH, in starch. Studies on potato and maize starches in excess water and in 0.6M KCl showed, respectively, that DeltaH(DH) was 36.3 and 35.6 J/g for B-type polymorphs and 33.0 and 35.0 J/g for A-type polymorphs. For C-type starches, such as those from pea, intermediate values of DeltaH(DH), related to the proportions A-/B-polymorphs, should be used. The type of crystallinity in starch can be determined by the shift in peak temperature for thermograms in excess water and in excess 0.6M KCl. For B-polymorphs this shift was found to be approximately 2-3 degrees C and for A-polymorphs approximately 7-12 degrees C. The ratio between ordered areas with both A- and B-polymorphs can be determined from the enthalpies of disruption of each area. These enthalpies can be obtained by deconvolution of bimodal thermograms produced by C-type starches in excess 0.6M KCl. This methodical approach can be applied to all starches that give a sharp gelatinisation thermogram in excess water. Using a range of methods, including DSC, it was found that starch granules from the mutant peas are constructed in a similar way to those from the WT, with B-polymorphs in the centre and A-polymorphs at the periphery of all granules. The proportion of A/B-polymorphs, however, differed between the mutants. It was found that in addition to increasing the total crystallinity, increasing the water content within the granules also resulted in an increase in the proportion of B-polymorphs.  相似文献   

5.
For lintners with negligible amylose retrogradation, crystallinity related inversely to starch amylose content and, irrespective of starch source, incomplete removal of amorphous material was shown. The latter was more pronounced for B-type than for A-type starches. The two predominant lintner populations, with modal degrees of polymerization (DP) of 13-15 and 23-27, were best resolved for amylose-deficient and A-type starches. Results indicate a more specific hydrolysis of amorphous lamellae in such starches. Small-angle X-ray scattering showed a more intense 9-nm scattering peak for native amylose-deficient A-type starches than for their regular or B-type analogues. The experimental evidence indicates a lower contrasting density within the "crystalline" shells of the latter starches. A higher density in the amorphous lamellae, envisaged by the lamellar helical model, explains the relative acid resistance of linear amylopectin chains with DP > 20, observed in lintners of B-type starches. Because amylopectin chain length distributions were similar for regular and amylose-deficient starches of the same crystal type, we deduce that the more dense (and ordered) packing of double helices into lamellar structures in amylose-deficient starches is due to a different amylopectin branching pattern.  相似文献   

6.
Tang H  Hills BP 《Biomacromolecules》2003,4(5):1269-1276
To investigate the domain structure and dynamics of polysaccharides in the native starch granules, a variety of high resolution, solid-state (13)C NMR techniques have been applied to all three (A-, B-, and C-) types of starch with different water content. Both single-pulse-excitation magic-angle-spinning (SPEMAS) and cross-polarization-magic-angle-spinning (CPMAS) methods have been employed together with the PRISE (proton relaxation induced spectral-editing) techniques to distinguish polysaccharide fractions in different domains and having distinct dynamics. It has been found that, for all three types of dry starch granules, there are two sets of NMR signals corresponding to two distinct ordered polysaccharides. Hydration leads to substantial mobilization of the polysaccharides in the amorphous regions, but no fundamental changes in the rigidity of the polysaccharides in the crystalline (double) helices. Full hydration also leads to limited mobility changes to the polysaccharides in the amorphous lamellae (branching zone) within the amylopectin clusters and in the gaps between the arrays of the amylopectin clusters. Under magic-angle spinning, proton relaxation-time measurements showed a single component for T(1), two components for T(1rho), and three components for T(2). PRISE experiments permitted the neat separation of the (13)C resonances of polysaccharides in the crystalline lamellae from those in the amorphous lamellae and the amylose in the gaps between amylopectin clusters. It has been found that the long (1)H T(1rho) component ( approximately 30 ms) is associated with polysaccharides in the crystalline lamellae in the form of double helices, whereas the short T(1rho) component (2-4 ms) is associated with amylose in the gaps between amylopectin clusters. The short (1)H T(2) component ( approximately 14 micros) is associated with polysaccharides in the crystalline lamellae; the intermediate component (300-400 micros) is associated with polysaccharides in the amorphous lamellae and amylose in the gaps between amylopectin clusters. The long T(2) component is associated with both mobile starch protons and the residue water protons.  相似文献   

7.
Resistant glutarate starch from adlay: Preparation and properties   总被引:1,自引:0,他引:1  
Reaction conditions were optimized to increase the content of resistant starch in adlay starch using esterification with glutaric acid, and the physicochemical properties of the prepared glutarate starches were investigated. Different amounts of glutaric acid (0.1–0.5 g/g starch, dry weight basis) were reacted with adlay starch at various temperatures (70–130 °C) and reaction times (3–9 h). The resistant starch levels increased with increased glutaric acid content, reaction temperature, and reaction time. The color difference was mainly affected by reaction time. The highest resistant starch content (RS 66%) was obtained using conditions of 0.4 g glutaric acid/g starch, 115 °C, and 7.5 h, with a color difference of 10.24. After digestion with α-amylase and amyloglucosidase, the water-soluble fraction of glutarate starch had more oligosaccharides than high-amylose maize starch (RS 43%). FT-IR and solid-state NMR detected carbonyl groups in the glutarate starch, indicating the formation of cross-linkages through esterification. The granular structure of the glutarate starches was not destroyed and they retained birefringence. After heating with an excess of water, the granules kept their shape but lost their birefringence. The glutarate starches had low solubility in both cold and hot water, and the resistant starch contents were unchanged after heating due to the restriction of swelling by cross-linking. The glutarate starches had a similar chain-length distribution to raw starch, indicating that acid hydrolysis took place at branching points in the amorphous region. Furthermore, the glutarate starches possessed a weaker crystalline region, more diverse double helical chains, and lower enthalpy than raw starch.  相似文献   

8.
Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) was used to study the external regions of starch granules. Native starches (wheat, potato, maize, waxy maize and amylomaize) were analysed and compared to gelatinised and acid-hydrolysed starches. The IR spectra of potato and amylomaize starches were closer to that of highly ordered acid-hydrolysed starch than the other starches. FTIR was not able to differentiate between A- and B-type crystallinity so the difference observed between starches was not related to this factor. The variation between starch varieties was interpreted in terms of the level of ordered structure present on the edge of starch granules with potato and amylomaize being more ordered on their outer regions. This could explain the high resistance of both these starches to enzyme hydrolysis.  相似文献   

9.
Structural basis for the slow digestion property of native cereal starches   总被引:3,自引:0,他引:3  
Native cereal starches are ideal slowly digestible starches (SDS), and the structural basis for their slow digestion property was investigated. The shape, size, surface pores and channels, and degree of crystallinity of starch granules were not related to the proportion of SDS, while semicrystalline structure was critical to the slow digestion property as evidenced by loss of SDS after cooking. The high proportion of SDS in cereal starches, as compared to potato starch, was related to their A-type crystalline structure with a lower degree of perfection as indicated by a higher amount of shortest A chains with a degree of polymerization (DP) of 5-10. The A-type amorphous lamellae, an important component of crystalline regions of native cereal starches, also affect the amount of SDS as shown by a reduction of SDS in lintnerized maize starches. These observations demonstrate that the supramolecular A-type crystalline structure, including the distribution and perfection of crystalline regions (both crystalline and amorphous lamellae), determines the slow digestion property of native cereal starches.  相似文献   

10.
Eight commercial starches, including common corn, waxy corn, wheat, tapioca, potato, Hylon V, Hylon VII, and mung bean starch, were annealed by a multiple-step process, and their gelatinization characteristics were determined. Annealed starches had higher gelatinization temperatures, reduced gelatinization ranges, and increased gelatinization enthalpies than their native starches. The annealed starches with the highest gelatinization enthalpies were subjected to acid hydrolysis with 15.3% H2SO4, and Naegeli dextrins were prepared after 10 days' hydrolysis. Annealing increased the acid susceptibility of native starches in the first (rapid) and the second (slow) phases with potato starch showing the greatest and high amylose starches showing the least changes. Starches with a larger shift in onset gelatinization temperature also displayed a greater percent hydrolysis. The increase in susceptibility to acid hydrolysis was proposed to result from defective and porous structures that resulted after annealing. Although annealing perfected the crystalline structure, it also produced void space, which led to porous structures and possible starch granule defects. The molecular size distribution and chain length distribution of Naegeli dextrins of annealed and native starches were analyzed. The reorganization of the starch molecule during annealing occurred mainly within the crystalline lamellae. Imperfect double helices in the crystalline lamellae improved after annealing, and the branch linkages at the imperfect double helices became protected by the improved crystalline structure. Therefore, more long chains were observed in the Naegeli dextrins of annealed starches than in native starches.  相似文献   

11.
The analogy between starch and a chiral side-chain polymeric liquid crystal is examined in relation to the processes involved during gelatinisation. There are three important parameters for characterisation of the molecular phase behaviour of the amylopectin: the lamellar order parameter (psi), the orientational order parameter of the amylopectin double helices (phi), and the helicity of the sample (h, the helix/coil ratio, a measure of the helix-coil transition of the double helices). The coupling between the double helices and the backbone through the flexible spacers is affected dramatically by the water content and it is this factor which dictates the particular phase adopted by the amylopectin inside the starch granule as a function of temperature. SAXS, WAXS and 13C CP/MAS NMR are used to examine these phenomena in excess water. Furthermore, previous experimental evidence pertaining to the limiting water case is reviewed with respect to this new theoretical framework.  相似文献   

12.
The objective of this study was to provide new synthetic route to prepare starch as a potential carrier for controlled release of drugs. A starch was modified with bromoacetyl bromide in order to provide more reactive sites for coupling of bioactive estrone and a suitable spacer between the drug carrier and the hormone. The degree of substitution (D.S.) per anhydroglucose (AHG) unit was calculated from the bromine content and ranged from 0.11 to 2.29, depending on the ratio of bromoacetyl bromide to starch. The starch-estrone conjugate was then synthesized by reacting bromoacetylated starch with the sodium salt of estrone. The structures of bromoacetylated starch and starch-estrone conjugate were determined by means of FTIR,1H NMR,13C NMR and UV. Additionally, X-ray diffraction patterns showed the amorphous character of the bromoacetylated starches.  相似文献   

13.
The granular structure and gelatinisation properties of starches from a range of pea seed mutants were studied. Genes which affect the supply of substrate during starch synthesis (rb, rug3, rug4) affected the total crystallinity and possibly increased the content of A polymorphs in the starch. Conversely, genes directly affecting the synthesis of starch polymers (r, rug5, lam) increased the content of B polymorphs, but had a minimal effect on total crystallinity. During gelatinisation, starches from the rb, rug3, rug4 and lam mutants had narrow endothermic peaks which were similar to starch from the wild-type, although all the starches had different peak temperatures and enthalpy changes. Starches from r and rug5 mutants were very different to all other starches, having a very wide transition during gelatinisation. In addition, the amylopectin in starch from these mutants had altered chain lengths for those parts of the polymer which form the ordered structures in the granule.  相似文献   

14.
Most starch granules exhibit a natural crystallinity, with different diffraction patterns according to their botanical origin: A‐type from cereals and B‐type from tubers. The V polymorph results essentially from the complexing of amylose with compounds such as iodine, alcohols, or lipids. The intensity and nature of phase transitions (annealing, melting, polymorphic transitions, recrystallization, etc.) induced by hydrothermal treatments in crystalline structures are related to temperature and water content. Despite its small concentration, the lipid phase present mainly in cereal starches has a large influence on starch properties, particularly in complexing amylose. The formation of Vh crystalline structures was observed by synchrotron x‐ray diffraction in native maize starch heated at intermediate and high moisture contents (between 19 and 80%). For the first time, the crystallization of amylose–lipid complexes was evidenced in situ by x‐ray diffraction without any preliminary cooling, at heating rates corresponding to the usual conditions for differential scanning calorimetry experiments. For higher water contents, the crystallization of Vh complexes clearly occurred at 110–115°C. For intermediate water contents, mixed A + Vh (or B + Vh for high amylose starch) diffraction diagrams were recorded. Two mechanisms can be involved in amylose complexing: the first relating to crystallization of the amylose and lipid released during starch gelatinization, and the second to crystalline packing of separate complexed amylose chains (amorphous complexes) present in native cereal starches. © 1999 John Wiley & Sons, Inc. Biopoly 50: 99–110, 1999  相似文献   

15.
Influence of fiber on the phase transformations in the starch-water system   总被引:1,自引:0,他引:1  
High-sensitivity, temperature-controlled DSC measurements at a low heating rate and creation of differential DSC traces scaled with respect to the reference material (completely dehydrated starch or completely dehydrated fiber, or their respective blends) permitted investigation of the influence of fiber on phase transformations in the wheat-starch-water system in the course of thermal gelatinization. Thermal effects associated with water interactions over the temperature range from 283 to 384 K under atmospheric pressure were determined. These thermal effects and previous structural studies permit us to make the following observations: (1) The main endothermic transition associated with melting of the crystalline part of the starch granule followed by a helix-coil transition in amylopectin occurs over the temperature range 319-333 K independent of the water and fiber contents. Adding fiber causes that transition to disappear both in the native blends and in water suspensions at low water contents. After adding more water and heating, recrystallization is observed and the transition reappears. (2) The fiber content has practically no influence on the slow exothermic transformation, which follows melting and helix-coil transition in amylopectin, proving that the slow transformation has a specific chemical character. In this reaction, the free ends of the unwound helices of amylopectin reassociate with parts of amylopectin molecules other than their original helix duplex partner, forming physical junctions and creating more general amorphous hydrogen bonded associations. (3) The high-temperature transition and small, but reproducible, distortions on the peaks of the main endothermic transition for water contents near 70-80 wt % are associated with smectic and nematic transitions, respectively. These are significantly influenced by the fiber content; higher fiber content causes an almost complete disappearance of these transitions. (4) The slow exothermic effect appearing almost from the very beginning of the heating in the starch-water system, associated with softening and uptake of water in the amorphous growth rings of the starch granule, is significantly hindered by added fiber.  相似文献   

16.
This work focuses on the effect of annealing and pressure on microstructures of starch, in particular the crystal structure and crystallinity to further explore the mechanisms of annealing and pressure treatment. Cornstarches with different amylose/amylopectin ratios were used as model materials. Since the samples covered both A-type (high amylopectin starch: waxy and maize) and B-type (high amylose starch: G50 and G80) crystals, the results can be used to clarify some previous confusion. The effect of annealing and pressure on the crystallinity and double helices were investigated by X-ray diffraction (XRD) and 13C CP/MAS NMR spectroscopy. The crystal form of various starches remained unchanged after annealing and pressure treatment. XRD detection showed that the relative crystallinity (RC) of high amylopectin starches was increased slightly after annealing, while the RC of high amylose-rich starches remained unchanged. NMR measurement supported the XRD results. The increase can be explained by the chain relaxation. XRD results also indicated that some of the fixed region in crystallinity was susceptible to outside forces. The effect of annealing and pressure on starch gelatinization temperature and enthalpy are used to explore the mechanisms.  相似文献   

17.
Natural maize starches having a range of amylose contents have been characterised by CP/MAS NMR spectroscopy. Chemical shifts, relative resonance intensities, line-widths and spectral shapes were compared at different moisture contents. At 10% moisture content, these parameters showed few significant differences across a range of apparent amylose levels from 0 to 84%. After hydration of the granules to ≈30% moisture, it was found that the amylose content significantly affected the relative signal intensities and line-widths especially of C-1 and C-4 resonances. Narrower line-widths after hydration were attributed to (i) an increased degree of crystallinity, and (ii) disappearance of the signals of amorphous material which, on becoming more mobile, became invisible to the CP/MAS experiment. The enhanced resolution at higher moisture levels revealed signals which were assigned to the amylose–lipid complex, i.e. V-type amylose. The amount of V-amylose detected by NMR increased with both amylose content and lipid content of the granule. Prolonged treatment of the granules with iodine vapour significantly increased the amount of V-type amylose in the high amylose samples, but caused a decrease in their degree of crystallinity. Waxy-maize starch was barely affected by iodination. The results provide evidence that amylose tends to disrupt the structural order within amylopectin crystallities. This effect is enhanced by the formation of the amylose–iodine complex, indicating that V-amylose could be a major crystallite-disrupting agent in native starch granules.  相似文献   

18.
Banana, maize, potato and sagu starches were boiled in the presence or absence of plasticizer (glycerol), producing edible films. In vitro digestibility features, amylose content and amylopectin gel filtration behavior of films and parent starches were evaluated. Available starch contents were lower in glycerol-containing films, due to dilution by the plasticizer. Total resistant starch increased in the maize starch-based film but decreased markedly in those prepared from the other starches. Amylose content of banana starch (40%) was about double those of the other starches. Nonetheless, all starch films exhibited similar retrograded resistant starch content. Although film production led to increased -amylolysis rates, these were further augmented by additional film heating, thereby indicating that film-manufacture did not promote complete starch gelatinization. Gel filtration chromatography suggested amylopectin depolymerization after film-making, which may also increase digestion kinetics. The presence of glycerol in the films slowed down starch digestion, a feature of potential dietetic use.  相似文献   

19.
Iodine has been used as an effective tool for studying both the structure and composition of dispersed starch and starch granules. In addition to being employed to assess relative amylose contents for starch samples, it has been used to look at the molecular mobility of the glucose polymers within intact starch granules based on exposure to iodine vapor equilibrated at different water activities. Starches of different botanical origin including corn, high amylose corn, waxy corn, potato, waxy potato, tapioca, wheat, rice, waxy rice, chick pea and mung bean were equilibrated to 0.33, 0.75, 0.97 water activities, exposed to iodine vapor and then absorbance spectra and LAB color were determined. In addition, a new iodine quantification method sensitive to <0.1% iodine (w/w) was employed to measure bound iodine within intact granular starch. Amylose content, particle size distribution of granules, and the density of the starch were also determined to explore whether high levels of long linear glucose chains and the surface area-to-volume ratio were important factors relating to the granular iodine binding. Results showed, in all cases, starches complexed more iodine as water content increased and waxy starches bound less iodine than their normal starch counterparts. However, much more bound iodine could be measured chemically with waxy starches than was expected based on colorimetric determination. Surface area appeared to be a factor as smaller rice and waxy rice starch granules complexed more iodine, while the larger potato and waxy potato granules complexed less than would be expected based on measured amylose contents. Corn, high amylose corn, and wheat, known to have starch granules with extensive surface pores, bound higher levels of iodine suggesting pores and channels may be an important factor giving iodine vapor greater access to bind within the granules. Exposing iodine vapor to moisture-equilibrated native starches is an effective tool to explore starch granule architecture.  相似文献   

20.
Flours and isolated starches from three different cultivars (1544-8, 1658-11 and 1760-8) of pea grown under identical environmental conditions were evaluated for their physicochemical properties and in vitro digestibility. The protein content, total starch content and apparent amylose content of pea flour ranged from 24.4 to 26.3%, 48.8 to 50.2%, and 13.9 to 16.7%, respectively. In pea starches, the 1760-8 showed higher apparent amylose content and total starch content than the other cultivars. Pea starch granules were irregularly shaped, ranging from oval to round with a smooth surface. All pea starches showed C-type X-ray diffraction pattern with relative crystallinity ranging between 23.7 and 24.7%. Pea starch had only a single endothermic transition (12.1-14.2 J/g) in the DSC thermogram, whereas pea flour showed two separate endothermic transitions corresponding to starch gelatinization (4.54-4.71 J/g) and disruption of the amylose-lipid complex (0.36-0.78 J/g). In pea cultivars, the 1760-8 had significantly higher setback and final viscosity than the other cultivars in both pea flour (672 and 1170 cP, respectively) and isolated starch (2901 and 4811 cP). The average branch chain length of pea starches ranged from 20.1 to 20.3. The 1760-8 displayed a larger proportion of short branch chains, DP (degree of polymerization) 6-12 (21.1%), and a smaller proportion of long branch chains, DP ≥ 37 (8.4%). The RDS, SDS and RS contents of pea flour ranged from 23.7 to 24.1%, 11.3 to 12.8%, and 13.2 to 14.8%, respectively. In pea starches, the 1760-8 showed a lower RDS content but higher SDS and RS contents. The expected glycemic index (eGI), based on the hydrolysis index, ranged from 36.9 to 37.7 and 69.8 to 70.7 for pea flour and isolated pea starch, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号