首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
E. coli ribosomal DNA has been used to probe maize mitochondrial DNA. It hybridizes primarily with chloroplast ribosomal DNA sequences and with fungal and bacterial sequences which may contaminate the mtDNA preparations. It also hybridizes to the chloroplast 16S ribosomal RNA gene sequence present in the mitochondrial genome (1) as well as to the mitochondrial 18S ribosomal RNA gene sequence. Weak sequence homology was detected between E. coli rDNA and the mitochondrial 26S ribosomal RNA gene.  相似文献   

2.
The complete nucleotide sequence of a 16S ribosomal RNA gene from tobacco chloroplasts has been determined. This nucleotide sequence has 96% homology with that of maize chloroplast 16S rRNA gene and 74% homology with that of Escherichia coli16S gene.The 3′ terminal region of this gene contains the sequence ACCTCC which is complementary to sequences found at the 5′ termini of prokaryotic mRNAs.The large stem and loop structure can be constructed from the sequences surrounding the 5′ and 3′ ends of the 16S gene. These observations demonstrate the prokaryotic nature of chloroplast 16S rRNA.  相似文献   

3.
The complete nucleotide sequence of Citrus limon 26S rDNA has been determined. The sequence has been aligned with large ribosomal RNA (L-rRNA) sequences of Escherichia coli, Saccharomyces cerevisiae and Oryza sativa. Nine extensive expansion segments in dicot 26S rRNA relative to E. coli 23S rRNA have been identified and compared with analogous segments of monocot, yeast, amphibian and human L-rRNAs. A secondary structure model for lemon 26S rRNA has been derived based on the refined model of E. coli 23S rRNA. It has been compared with other eukaryotic L-rRNAs models in terms of location of functionally important regions. Origin and evolution of L-rRNA expansion segments are discussed.  相似文献   

4.
A gene (rps2) coding for ribosomal protein S2 (RPS2) is present in the mitochondrial (mt) genome of several monocot plants, but absent from the mtDNA of dicots. Confirming that in dicot plants the corresponding gene has been transferred to the nucleus, a corresponding Arabidopsis thaliana nuclear gene was identified that codes for mitochondrial RPS2. As several yeast and mammalian genes coding for mt ribosomal proteins, the Arabidopsis RPS2 apparently has no N-terminal targeting sequence. In the maize mt genome, two rps2 genes were identified and both are transcribed, although at different levels. As in wheat and rice, the maize genes code for proteins with long C-terminal extensions, as compared to their bacterial counterparts. These extensions are not conserved in sequence. Using specific antibodies against one of the maize proteins we found that a large protein precursor is indeed synthesized, but it is apparently processed to give the mature RPS2 protein which is associated with the mitochondrial ribosome.  相似文献   

5.

Background and Aims

Most molecular phylogenetic studies of Orchidaceae have relied heavily on DNA sequences from the plastid genome. Nuclear and mitochondrial loci have only been superficially examined for their systematic value. Since 40% of the genera within Vanilloideae are achlorophyllous mycoheterotrophs, this is an ideal group of orchids in which to evaluate non-plastid gene sequences.

Methods

Phylogenetic reconstructions for Vanilloideae were produced using independent and combined data from the nuclear 18S, 5·8S and 26S rDNA genes and the mitochondrial atpA gene and nad1b-c intron.

Key Results

These new data indicate placements for genera such as Lecanorchis and Galeola, for which plastid gene sequences have been mostly unavailable. Nuclear and mitochondrial parsimony jackknife trees are congruent with each other and previously published trees based solely on plastid data. Because of high rates of sequence divergence among vanilloid orchids, even the short 5·8S rDNA gene provides impressive levels of resolution and support.

Conclusions

Orchid systematists are encouraged to sequence nuclear and mitochondrial gene regions along with the growing number of plastid loci available.Key words: 26S rDNA, 18S rDNA, 5·8S rDNA, atpA, nad1, orchids, plastid, Vanilla, vanilloid orchids, Vanilloideae  相似文献   

6.
7.
Previously, we cloned a DNA fragment from a genomic library of a methylotrophic yeast, Candida boidinii. This 3.5-kb SalI fragment was capable of complementing the pyrF mutation in Escherichia coli. In this report, we identify this fragment as that harboring an orotidine-5′-phosphate decarboxylase (ODCase) gene (C. boidinii URA3); we have also determined the complete DNA sequence of the C. boidinii URA3 gene. The deduced amino acid sequence of the gene showed homology to ODCase genes from other sources, and it could complement the ura3 mutation of Saccharomyces cerevisiae. The DNA fragment, which harbored the C. boidinii URA3 gene, was able to express ODCase activity in the E. coli pyrF mutant strain without an exogenous E. coli promoter. From nested-deletion analysis, both the 5′-(136 bp) and 3′-(58 bp) flanking regions were shown to be required for pyrF-complementation of the E. coli mutant. The 5′-flanking region had sequences homologous to E. coli promoter consensus sequences (−35 and −10 regions) which may function in the expression of the C. boidinii URA3 gene in E. coli.  相似文献   

8.
Nucleotide sequence of ATPase subunit 6 gene of maize mitochondria   总被引:22,自引:2,他引:20       下载免费PDF全文
The ATPase subunit 6, located in the inner mitochondrial membrane, is encoded by mitochondrial genomes in animals and fungi. We have isolated and characterized a mitochondrial gene, designated atp 6, that encodes the subunit 6 polypeptide of Zea mays. Nucleotide and predicted amino acid sequence comparisons have revealed a homology of 44.6 and 33.2% with the yeast ATPase subunit 6 gene and polypeptide, respectively. The predicted protein in maize contains 291 amino acids with a molecular weight of 31,721. Hydropathy profiles generated for the maize and yeast polypeptides are very similar and contain large hydrophobic domains, characteristic of membrane bound proteins. RNA transfer blot analysis indicates that atp 6 is actively transcribed. Interestingly, 122 base pairs of nucleotide sequence interior to atp 6 have extensive homology with the 5′ end of the cytochrome oxidase subunit II gene of maize mitochondria, suggesting recombination between the two genes.  相似文献   

9.
A gene coding for a protein that shows homologies to prokaryotic ribosomal protein S2 is present in the mitochondrial (mt) genome of wheat (Triticum aestivum). The wheat gene is transcribed as a single mRNA which is edited by C-to-U conversions at seven positions, all resulting in alteration of the encoded amino acid. Homologous gene sequences are also present in the mt genomes of rice and maize, but we failed to identify the corresponding sequences in the mtDNA of all dicotyledonous species tested; in these species the mitochondrial RPS2 is probably encoded in the nucleus. The protein sequence deduced from the wheat rps2 gene sequence has a long C-terminal extension when compared to other prokaryotic RPS2 sequences. This extension presents no similarity with any known sequence and is not conserved in the maize or rice mitochondrial rps2 gene. Most probably, after translation, this peptide extension is processed by a specific peptidase to give rise to the mature wheat mitochondrial RPS2.  相似文献   

10.
11.
We have determined the complete nucleotide sequence of Xenopus laevis 28S rDNA (4110 bp). In order to locate evolutionarily conserved regions within rDNA, we compared the Xenopus 28S sequence to homologous rDNA sequences from yeast, Physarum, and E. coli. Numerous regions of sequence homology are dispersed throughout the entire length of rDNA from all four organisms. These conserved regions have a higher A + T base composition than the remainder of the rDNA. The Xenopus 28S rDNA has nine major areas of sequence inserted when compared to E. coli 23S rDNA. The total base composition of these inserts in Xenopus is 83% G + C, and is generally responsible for the high (66%) G + C content of Xenopus 28S rDNA as a whole. Although the length of the inserted sequences varies, the inserts are found in the same relative positions in yeast 26S, Physarum 26S, and Xenopus 28S rDNAs. In one insert there are 25 bases completely conserved between the various eukaryotes, suggesting that this area is important for eukaryotic ribosomes. The other inserts differ in sequence between species and may or may not play a functional role.  相似文献   

12.
13.
Fragments of rDNA3 from Drosophila melanogaster produced by the restriction endonuclease EcoRI were cloned in the form of recombinant plasmids in Escheriehia coli. Maps were prepared showing the location of the coding regions and of several restriction endonuclease sites. Most rDNA repeats have a single EcoRI site in the 18 S gene region. Thus, 19 of 24 recombinant clones contained a full repeat of rDNA. Ten repeats with continuous 28 S genes and repeats containing insertions in the 28 S gene of 0.5, 1 and 5 kb were isolated. The 0.5 and 1 kb insertion sequences are homologous to segments of the 5 kb insertions; because of this homology they are grouped together and identified as type 1 insertions. Four recombinant clones contain an rDNA fragment that corresponds to only a portion of a repeating unit. In these fragments the 28 S gene is interrupted by a sequence which had been cleaved by EcoRI. The interrupting sequences in these clones are not homologous to any portion of type 1 insertions and are therefore classified as type 2. In one of the above clones the 28 S gene is interrupted at an unusual position; such a structure is rare or absent in genomic rDNA from the fly. Another unusual rDNA fragment was isolated as a recombinant molecule. In this fragment the entire 18 S gene and portions of the spacer regions surrounding it are missing from one repeat. A molecule with the same structure has been found in uncloned genomic rDNA by electron microscopic examination of RNA/DNA hybrids.  相似文献   

14.
15.
A new erythritol-producing yeast (strain BH010) was isolated in this study. Analysis of the D1/D2 domain of the 26S rDNA sequence, the ITS/5.8S rDNA sequence, and the 18S rDNA sequence allowed the taxonomic position of strain BH010 to be discussed and it was identified and named Moniliella sp. BH010. Physiological characteristics were described. Scanning electron micrography clearly indicated that the cells were cylindrical to elliptical with an average size of 5?×?10?μm when growing in liquid medium, and that pseudohyphae and blastoconidia were observed when cultivated in agar plates. The erythritol reductase genes were cloned, sequenced, and analyzed. BLAST analysis and multiple sequence alignment demonstrated that erythritol reductase genes of Moniliella sp. BH010 shared very high homology with that of Trichosporonoides megachiliensis SNG-42 except for the presence of introns. The deduced amino acid sequences showed high homology to the aldo–keto reductase superfamily.  相似文献   

16.
In petunia, a mitochondrial (mt) locus,S-Pcf, has been found to be strongly associated with cytoplasmic male sterility (CMS). TheS-Pcf locus consists of three open reading frames (ORF) that are co-transcribed. The first ORF,Pcf, contains parts of theatp9 andcoxII genes and an unidentified reading frame,urf-s. The second and third ORFs contain NADH dehydrogenase subunit 3 (nad3) and ribosomal protein S12 (rps12) sequences, respectively. Thenad3 andrps12 sequences included in theS-Pcf locus are identical to the corresponding sequences on the mt genome of fertile petunia. In both CMS and fertile petunia, only a single copy ofnad3 andrps12 has been detected on the physical map of the main mt genome. The origin of theurf-s sequence and the molecular events leading to the formation of the chimericS-Pcf locus are not known. This paper presents evidence indicating that two different mt sequences, related tourf-s and found in fertile petunia lines (orf-h and Rf-1), might have been involved in the molecular evolution of theS-Pcf locus. Southern analysis of mtDNA derived from both fertile and sterile petunia plants suggests that one of theseurf-s related sequences (showing 100% homology tourf-s and termedorf-h) is located on a sublimon. An additional, low-homologyurf-s related sequence (Rf-1) is shown to be located on the main mt genome 5′ to thenad3 gene. It is, thus, suggested that the sequence of events leading to the generation of theS-Pcf locus might have involved introduction of theorf-h sequence, via homologous recombination, into the main mt genome 5′ tonad3 at the region where the Rf-1 sequence is located.  相似文献   

17.
Summary The genes coding for rRNAs from mustard chloroplasts were mapped within the inverted repeat regions of intact ctDNA and on ctDNA fragments cloned in pBR322. R-loop analysis and restriction endonuclease mapping show that the genes for 16S rRNA map at distances of 17 kb from the junctions of the repeat regions with the large unique region. The genes for 23S rRNA are located at distances of 2.8 kb from the junctions with the small unique region. Genes for 4.5S and 5S rRNA are located in close proximity to the 23S rRNA genes towards the small unique region. DNA sequencing of portions of the 5 terminal third from the mustard 16S rRNA gene shows 96–99% homology with the corresponding regions of the maize, tobacco and spinach chloroplast genes. Sequencing of the region proximal to the 16S rRNA gene reveals the presence of a tRNAVal gene in nearly the same position and with identical sequence as in maize, tobacco and spinach. Somewhat less but still strong homology is also observed for the tDNA Val/16S rDNA intercistronic regions and for the regions upstream of the tRNAVal gene. However, due to many small and also a few larger deletions and insertions in the leader region, common reading frames coding for homologous peptides larger than 44 amino acids can not be detected; it is therefore unlikely that this region contains a protein coding gene.  相似文献   

18.
The nucleotide sequence of 23S rDNA from Zea mays chloroplasts has been determined. Alignment with 23S rDNA from E.coli reveals 71 percent homology when maize 4.5S rDNA is included as an equivalent of the 3' end of E.coli 23S rDNA. Among the conserved sequences are sites for base modification. Chloramphenicol sensitivity and ribosomal subunit interaction. A proposal for the base pairs formed between 16S and 23S rRNAs during the 30S/50S subunit interaction is presented. The alignment of maize 23S rDNA with that of E.coli reveals three small insertion sequences of 25, 65 and 78 base pairs, whereas maize 16S rDNA shows only deletions when compared with the E.coli species.  相似文献   

19.
A fine mapping study of the ribosomal RNA region of HeLa cell mitochondrial DNA has been carried out by using as an approach the protection by hybridized 12 S and 16 S rRNA of the complementary sequences in DNA against digestion with the single strand-specific Aspergillus nuclease S1 or Escherichia coli exonuclease VII. No inserts have been detected in the main body of the 12 S and 16 S rRNA cistrons, in contrast to the situation described in the large mitochondrial ribosomal RNA gene of some strains of yeast and of Neurospora crassa. Furthermore, it has been possible to assign more precisely than previously the positions of the 5′ and 3′-ends of the 12 S rRNA and 16 S rRNA genes in the HpaII restriction map of HeLa cell mitochondrial DNA.  相似文献   

20.
Summary DNA sequence analysis and the localization of the 5 and 3 termini by S1 mapping have shown that the mitochondrial (mt) small subunit rRNA coding region fromPodospora anserina is 1980 bp in length. The analogous coding region for mt rRNA is 1962 bp in maize, 1686 bp inSaccharomyces cerevisiae, and 956 bp in mammals, whereas its counterpart inEscherichia coli is 1542 bp. TheP. anserina mt 16S-like rRNA is 400 bases longer than that fromE. coli, but can be folded into a similar secondary structure. The additional bases appear to be clustered at specific locations, including extensions at the 5 and 3 termini. Comparison with secondary structure diagrams of 16S-like RNAs from several organisms allowed us to specify highly conserved and variable regions of this gene. Phylogenetic tree construction indicated that this gene is grouped with other mitochondrial genes, but most closely, as expected, with the fungal mitochondrial genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号