首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytotoxic lymphocytes (CLs) induce caspase activation and apoptosis of target cells either through Fas activation or through release of granule cytotoxins, particularly granzyme B. CLs themselves resist granule-mediated apoptosis but are eventually cleared via Fas-mediated apoptosis. Here we show that the CL cytoplasmic serpin proteinase inhibitor 9 (PI-9) can protect transfected cells against apoptosis induced by either purified granzyme B and perforin or intact CLs. A PI-9 P1 mutant (Glu to Asp) is a 100-fold-less-efficient granzyme B inhibitor that no longer protects against granzyme B-mediated apoptosis. PI-9 is highly specific for granzyme B because it does not inhibit eight of the nine caspases tested or protect transfected cells against Fas-mediated apoptosis. In contrast, the P1(Asp) mutant is an effective caspase inhibitor that protects against Fas-mediated apoptosis. We propose that PI-9 shields CLs specifically against misdirected granzyme B to prevent autolysis or fratricide, but it does not interfere with homeostatic deletion via Fas-mediated apoptosis.  相似文献   

2.
Granzyme B (grB) is a serine proteinase released by cytotoxic lymphocytes (CLs) to kill abnormal cells. GrB-mediated apoptotic pathways are conserved in nucleated cells; hence, CLs require mechanisms to protect against ectopic or misdirected grB. The nucleocytoplasmic serpin, proteinase inhibitor 9 (PI-9), is a potent inhibitor of grB that protects cells from grB-mediated apoptosis in model systems. Here we show that PI-9 is present in CD4(+) cells, CD8(+) T cells, NK cells, and at lower levels in B cells and myeloid cells. PI-9 is up-regulated in response to grB production and degranulation, and associates with grB-containing granules in activated CTLs and NK cells. Intracellular complexes of PI-9 and grB are evident in NK cells, and overexpression of PI-9 enhances CTL potency, suggesting that cytoplasmic grB, which may threaten CL viability, is rapidly inactivated by PI-9. Because dendritic cells (DCs) acquire characteristics similar to those of target cells to activate naive CD8(+) T cells and therefore may also require protection against grB, we investigated the expression of PI-9 in DCs. PI-9 is evident in thymic DCs (CD3(-), CD4(+), CD8(-), CD45(+)), tonsillar DCs, and DC subsets purified from peripheral blood (CD16(+) monocytes and CD123(+) plasmacytoid DCs). Furthermore, PI-9 is expressed in monocyte-derived DCs and is up-regulated upon TNF-alpha-induced maturation of monocyte-derived DCs. In conclusion, the presence and subcellular localization of PI-9 in leukocytes and DCs are consistent with a protective role against ectopic or misdirected grB during an immune response.  相似文献   

3.
Human proteinase inhibitor 9 (PI-9/serpinB9) and the murine ortholog, serine proteinase inhibitor 6 (SPI-6/serpinb9) are members of a family of intracellular serine proteinase inhibitors (serpins). PI-9 and SPI-6 expression in immune-privileged cells, APCs, and CTLs protects these cells against the actions of granzyme B, and when expressed in tumor cells or virally infected hepatocytes, confers resistance to killing by CTL and NK cells. The present studies were designed to assess the existence of any correlation between granzyme B activity in intrahepatic lymphocytes and induction of hepatic SPI-6 expression. To this end, SPI-6, PI-9, and serpinB9 homolog expression was examined in response to IFN-alpha treatment and during in vivo adenoviral infection of the liver. SPI-6 mRNA expression increased 10- to 100-fold in the liver after IFN-alpha stimulation and during the course of viral infection, whereas no significant up-regulation of SPI-8 and <5-fold increases in other PI-9/serpinB9 homolog mRNAs was observed. Increased SPI-6 gene expression during viral infection correlated with influxes of NK cells and CTL. Moreover, IFN-alpha-induced up-regulation of hepatocyte SPI-6 mRNA expression was not observed in NK cell-depleted mice. Additional experiments using genetically altered mice either deficient in perforin or unable to process or express granzyme B indicated that SPI-6 is selectively up-regulated in hepatocytes in response to infiltration of the liver by NK cells that express perforin and enzymatically active granzyme B.  相似文献   

4.
Proteinase inhibitor 9 (PI-9, SerpinB9) is the only known human intracellular granzyme B inhibitor. Whether expression of PI-9 is sufficient to block cytolysis induced by cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells remains controversial. To evaluate the roles of PI-9, we isolated and tested three lines of stably transfected HeLa cells expressing wild-type PI-9 and one line expressing an inactive mutant PI-9. Expressions of wild-type PI-9, but not the inactive mutant PI-9, inhibited cytolysis induced by human NK92 and NKL natural killer cells. Expression of high levels of PI-9 is therefore sufficient to protect human cells against NK cell-mediated cell death. Using two assays, we show that expressing wild-type PI-9, but not the inactive mutant PI-9, blocks Fas/Fas ligand (Fas/FasL)-mediated apoptosis. PI-9 expression has no effect on etoposide-induced apoptosis. HeLa cells exhibiting substantial resistance to Fas/FasL-mediated apoptosis contain 2- to 3-fold higher PI-9 levels than HCT116 human colon cancer cells and 2- to 3-fold lower PI-9 levels than MCF7/ERHA breast cancer cells, in which PI-9 is strongly induced by estrogens, and by tamoxifen. Expression of increasing levels of PI-9 in target cells may progressively inhibit immune surveillance by blocking NK and CTL-induced cytotoxicity through the perforin/granzyme pathway and then through the Fas/FasL pathway.  相似文献   

5.
Proteinase inhibitor 9 (PI-9) is a human serpin present in the cytoplasm of cytotoxic lymphocytes and epithelial cells. It inhibits the cytotoxic lymphocyte granule proteinase granzyme B (graB) and is thought to protect cytotoxic lymphocytes and bystander cells from graB-mediated apoptosis. Following uptake into cells, graB promotes DNA degradation, rapidly translocating to the nucleus, where it binds a nuclear component. PI-9 should therefore be found in cytotoxic lymphocyte and bystander cell nuclei to ensure complete protection against graB. Here we demonstrate by microscopy and subcellular fractionation experiments that PI-9 is present in the nuclei of human cytotoxic cells, endothelial cells, and epithelial cells. We also show that the related serpins, PI-6, monocyte neutrophil elastase inhibitor (MNEI), PI-8, plasminogen activator inhibitor 2 (PAI-2), and the viral serpin CrmA exhibit similar nucleocytoplasmic distributions. Because these serpins lack classical nuclear localization signals and are small enough to diffuse through nuclear pores, we investigated whether import occurs actively or passively. Large (approximately 70 kDa) chimeric proteins comprising PI-9, PI-6, PI-8, MNEI, or PAI-2 fused to green fluorescent protein (GFP) show similar nucleocytoplasmic distributions to the parent proteins, indicating that nuclear import is active. By contrast, CrmA-GFP is excluded from nuclei, indicating that CrmA is not actively imported. In vitro nuclear transport assays show that PI-9 accumulates at a rate above that of passive diffusion, that it requires cytosolic factors but not ATP, and that it does not bind an intranuclear component. Furthermore, PI-9 is exported from nuclei via a leptomycin B-sensitive pathway, implying involvement of the export factor Crm1p. We conclude that the nucleocytoplasmic distribution of PI-9 and related serpins involves a nonconventional nuclear import pathway and Crm1p.  相似文献   

6.
7.
Expression of the granzyme B inhibitors, human proteinase inhibitor 9 (PI-9), or the murine orthologue, serine proteinase inhibitor 6 (SPI-6), confers resistance to CTL or NK killing by perforin- and granzyme-dependent effector mechanisms. In light of prior studies indicating that virally infected hepatocytes are selectively resistant to this CTL effector mechanism, the present studies investigated PI-9 and SPI-6 expression in hepatocytes and hepatoma cells in response to adenoviral infection and to cytokines produced during antiviral immune responses. Neither PI-9 nor SPI-6 expression was detected by immunoblotting in uninfected murine or human hepatocytes. Similarly, human Huh-7 hepatoma cells were found to express only very low levels of PI-9 relative to levels detected in perforin- and granzyme-resistant CTL or lymphokine-activated killer cells. Following in vivo adenoviral infection or in vitro culture with IFN-alphabeta or IFN-gamma, SPI-6 expression was induced in murine hepatocytes. Similarly, after culture with IFN-alpha, induction of PI-9 mRNA and protein expression was observed in human hepatocytes and Huh-7 cells. IFN-gamma and TNF-alpha also induced 4- to 10-fold higher levels of PI-9 mRNA expression in Huh-7 cells, whereas levels of mRNA encoding a related serine proteinase inhibitor, proteinase inhibitor 8, were unaffected by culture of Huh-7 cells with IFN-alpha, IFN-gamma, or TNF-alpha. These findings indicate that cytokines that promote antiviral cytopathic responses also regulate expression of the cytoprotective molecules, PI-9 and SPI-6, in hepatocytes that are potential targets of CTL and NK effector mechanisms.  相似文献   

8.
In clinical transplantation host CTL are major effectors of acute rejection, and graft endothelial cells (EC) are major targets of the CTL response. It is unclear what roles CTL will play in pig-into-human xenotransplantation. We compared the mechanisms of killing used by human CTL (huCTL) vs allogeneic and pig xenogeneic EC targets. Both responses show MHC class I restriction of target cell recognition. A granzyme B inhibitor peptide completely blocks anti-human and partially blocks anti-pig responses, while inhibitory Fas ligand Ab only blocks killing of porcine cells despite similar levels of Fas expression in both target cell types. Transduction of Bcl-2 completely protects human EC from huCTL, but has no effect on huCTL-mediated killing of porcine EC despite its efficacy vs drug-induced apoptosis. Bcl-2 effectively protects human EC rendered sensitive to Fas ligand by overexpressing Fas from huCTL, yet fails to protect porcine aortic endothelial cells from huCTL in the presence of anti-Fas ligand Ab. These data reveal differences in the susceptibility of human and porcine targets to huCTL.  相似文献   

9.
Granzyme B is released from CTLs and NK cells and an important mediator of CTL/NK-induced apoptosis in target cells. The human intracellular serpin proteinase inhibitor (PI)9 is the only human protein able to inhibit the activity of granzyme B. As a first step to elucidate the physiological role of PI9, PI9 protein expression in various human tissues was studied. A mAb directed against human PI9 was developed, which specifically stained PI9-transfected COS-7 cells, and was used for immunohistochemistry. Both in primary lymphoid organs and in inflammatory infiltrates, PI9 was present in different subsets of dendritic cells. Also T-lymphocytes in primary and organ-associated lymphoid tissues were PI9 positive. Endothelial cells of small vessels in most organs tested as well as the endothelial layer of large veins and arteries showed strong PI9 staining. Surprisingly, high PI9 protein expression was also found at immune-privileged sites like the placenta, the testis, the ovary, and the eye. These data fit with the hypothesis that PI9 is expressed at sites where degranulation of CTL or NK cells is potentially deleterious.  相似文献   

10.
Memory CD8+ T cells protect dendritic cells from CTL killing   总被引:1,自引:0,他引:1  
CD8(+) T cells have been shown to be capable of either suppressing or promoting immune responses. To reconcile these contrasting regulatory functions, we compared the ability of human effector and memory CD8(+) T cells to regulate survival and functions of dendritic cells (DC). We report that, in sharp contrast to the effector cells (CTLs) that kill DCs in a granzyme B- and perforin-dependent mechanism, memory CD8(+) T cells enhance the ability of DCs to produce IL-12 and to induce functional Th1 and CTL responses in naive CD4(+) and CD8(+) T cell populations. Moreover, memory CD8(+) T cells that release the DC-activating factor TNF-alpha before the release of cytotoxic granules induce DC expression of an endogenous granzyme B inhibitor PI-9 and protect DCs from CTL killing with similar efficacy as CD4(+) Th cells. The currently identified DC-protective function of memory CD8(+) T cells helps to explain the phenomenon of CD8(+) T cell memory, reduced dependence of recall responses on CD4(+) T cell help, and the importance of delayed administration of booster doses of vaccines for the optimal outcome of immunization.  相似文献   

11.
Dysregulated angiogenesis contributes to the pathogenesis of chronic inflammatory diseases. Modulation of the extracellular matrix by immune-derived proteases can alter endothelial cell–matrix interactions as well as endothelial cell sprouting, migration and capillary formation. Granzyme B is a serine protease that is expressed by a variety of immune cells, and accumulates in the extracellular milieu in many chronic inflammatory disorders that are associated with dysregulated angiogenesis. Although granzyme B is known to cleave fibronectin, an essential glycoprotein in vascular morphogenesis, the role of granzyme B in modulating angiogenesis is unknown. In the present study, granzyme B cleaved both plasma fibronectin and cell-derived fibronectin, resulting in the release of multiple fibronectin fragments. Granzyme B cleavage of fibronectin resulted in a dose-dependent reduction in endothelial cell adhesion to fibronectin as well as reduced endothelial cell migration and tubular formation. These events were prevented when granzyme B activity was inhibited by a small molecule inhibitor. In summary, granzyme B-mediated cleavage of fibronectin contributes to attenuated angiogenesis through the disruption of endothelial cell — fibronectin interaction resulting in impaired endothelial cell migration and tubular formation.  相似文献   

12.
The cytotoxic lymphocyte serine proteinase granzyme B induces apoptosis of abnormal cells by cleaving intracellular proteins at sites similar to those cleaved by caspases. Understanding the substrate specificity of granzyme B will help to identify natural targets and develop better inhibitors or substrates. Here we have used the interaction of human granzyme B with a cognate serpin, proteinase inhibitor 9 (PI-9), to examine its substrate sequence requirements. Cleavage and sequencing experiments demonstrated that Glu(340) is the P1 residue in the PI-9 RCL, consistent with the preference of granzyme B for acidic P1 residues. Ala-scanning mutagenesis demonstrated that the P4-P4' region of the PI-9 RCL is important for interaction with granzyme B, and that the P4' residue (Glu(344)) is required for efficient serpin-proteinase binding. Peptide substrates based on the P4-P4' PI-9 RCL sequence and containing either P1 Glu or P1 Asp were cleaved by granzyme B (k(cat)/K(m) 9.5 x 10(3) and 1.2 x 10(5) s(-1) M(-1), respectively) but were not recognized by caspases. A substrate containing P1 Asp but lacking P4' Glu was cleaved less efficiently (k(cat)/K(m) 5.3 x 10(4) s(-1) M(-1)). An idealized substrate comprising the previously described optimal P4-P1 sequence (Ile-Glu-Pro-Asp) fused to the PI-9 P1'-P4' sequence was efficiently cleaved by granzyme B (k(cat)/K(m) 7.5 x 10(5) s(-1) M(-1)) and was also recognized by caspases. This contrasts with the literature value for a tetrapeptide comprising the same P4-P1 sequence (k(cat)/K(m) 6.7 x 10(4) s(-1) M(-1)) and confirms that P' residues promote efficient interaction of granzyme B with substrates. Finally, molecular modeling predicted that PI-9 Glu(344) forms a salt bridge with Lys(27) of granzyme B, and we showed that a K27A mutant of granzyme B binds less efficiently to PI-9 and to substrates containing a P4' Glu. We conclude that granzyme B requires an extended substrate sequence for specific and efficient binding and propose that an acidic P4' substrate residue allows discrimination between early (high affinity) and late (lower affinity) targets during the induction of apoptosis.  相似文献   

13.
Sertoli cells have long since been recognized for their ability to suppress the immune system and protect themselves as well as other cell types from harmful immune reaction. However, the exact mechanism or product produced by Sertoli cells that affords this immunoprotection has never been fully elucidated. We examined the effect of mouse Sertoli cell-conditioned medium on human granzyme B-mediated killing and found that there was an inhibitory effect. We subsequently found that a factor secreted by Sertoli cells inhibited killing through the inhibition of granzyme B enzymatic activity. SDS-PAGE analysis revealed that this factor formed an SDS-insoluble complex with granzyme B. Immunoprecipitation and mass spectroscopic analysis of the complex identified a proteinase inhibitor, serpina3n, as a novel inhibitor of human granzyme B. We cloned serpina3n cDNA, expressed it in Jurkat cells, and confirmed its inhibitory action on granzyme B activity. Our studies have led to the discovery of a new inhibitor of granzyme B and have uncovered a new mechanism used by Sertoli cells for immunoprotection.  相似文献   

14.
Host defense to the apicomplexan parasite Toxoplasma gondii is critically dependent on CD8+ T cells, whose effector functions include the induction of apoptosis in target cells following the secretion of granzyme proteases. Here we demonstrate that T. gondii induces resistance of host cells to apoptosis induced by recombinant granzyme B. Granzyme B induction of caspase-independent cytochrome c release was blocked in T. gondii-infected cells. Prevention of apoptosis could not be attributed to altered expression of the Bcl-2 family of apoptotic regulatory proteins, but was instead associated with reduced granzyme B-mediated, caspase-independent cleavage of procaspase 3 to the p20 form in T. gondii-infected cells, as well as reduced granzyme B-mediated cleavage of the artificial granzyme B substrate, GranToxiLux. The reduction in granzyme B proteolytic function in T. gondii-infected cells could not be attributed to altered granzyme B uptake or reduced trafficking of granzyme B to the cytosol, implying a T. gondii-mediated inhibition of granzyme B activity. Apoptosis and GranToxiLux cleavage were similarly inhibited in T. gondii-infected cells exposed to the natural killer-like cell line YT-1. The endogenous granzyme B inhibitor PI-9 was not up-regulated in infected cells. We believe these findings represent the first demonstration of granzyme B inhibition by a cellular pathogen and indicate a new modality for host cell protection by T. gondii that may contribute to parasite immune evasion.  相似文献   

15.
Cytotoxic lymphocytes (CLs) contain lysosome-related organelles (LROs) that perform the normal degradative functions of the lysosome, in addition to storage and release of powerful cytotoxins employed to kill virally infected or abnormal cells. Among these cytotoxins is granzyme B (GrB), a protease that has also been implicated in activation (restimulation)-induced cell death of natural killer (NK) and T cells, but the underlying mechanism and its regulation are unclear. Here we show that restimulation of previously activated human or mouse lymphocytes induces lysosomal membrane permeabilisation (LMP), followed by GrB release from LROs into the CL cytosol. The model lysosomal stressors sphingosine and Leu-Leu-methyl-ester, and CLs from gene-targeted mice were used to show that LMP releases GrB in both a time- and concentration-dependent manner, and that the liberated GrB is responsible for cell death. The endogenous GrB inhibitor Serpinb9 (Sb9) protects CLs against LMP-induced death but is decreasingly effective as the extent of LMP increases. We also used these model stressors to show that GrB is the major effector of LMP-mediated death in T cells, but that in NK cells additional effectors are released, making GrB redundant. We found that limited LMP and GrB release occurs constitutively in proliferating lymphocytes and in NK cells engaged with targets in vitro. In Ectromelia virus-infected lymph nodes, working NK cells lacking Sb9 are more susceptible to GrB-mediated death. Taken together, these data show that a basal level of LMP occurs in proliferating and activated lymphocytes, and is increased on restimulation. LMP releases GrB from LROs into the lymphocyte cytoplasm and its ensuing interaction with Sb9 dictates whether or not the cell survives. The GrB-Sb9 nexus may therefore represent an additional mechanism of limiting lymphocyte lifespan and populations.  相似文献   

16.
Summary The mesothelial cells obtained from human omental adipose tissue showed a typical cobblestone monolayer and reacted strongly with keratin, but did not have Von Willebrand factor. Ultrastructurally these cells revealed the existence of desmosome-like cell junctions as well as intracellular canaliculi, tubular structures surrounded by microvilli, and tonofilament-like filaments. The mesothelial cells grew much faster in the medium containing epidermal growth factor, actively took up acetylated-low density lipoprotein into their cytoplasm, and released angiotensin-converting enzyme. They also released urokinase-type plasminogen activator, but only half as much as do human umbilical vein endothelial cells; release of tissue-type plasminogen activator was not observed. Inasmuch as the mesothelial cells also released plasminogen activator inhibitor-1, as do human umbilical vein endothelial cells, we could not detect u-PA activity in culture medium. u-PA may play a role in the protection against adhesion among visceral organs. These observations indicate that cultured human mesothelial cells have characteristics closely related to those found in human endothelial cells.  相似文献   

17.
LEI (Leukocyte Elastase Inhibitor), the precursor of the pro-apoptotic molecule L-DNase II, belongs to the ovalbumin subgroup of serpins. Several serpins can inhibit apoptosis: the viral serpin Crm A inhibits Fas or TNFalpha-induced apoptosis, and overexpression of PAI-2 or PI-9 protects cells from TNFalpha or granzyme B induced apoptosis. We have previously shown that LEI overexpression protects cells from etoposide-induced apoptosis. The molecular reason of this anti-apoptotic activity is now investigated. We show that, in BHK-21 and HeLa cells, LEI anti-protease activity is essential for its anti-apoptotic effect. The protease inhibited is cathepsin D, released from the lysosome during etoposide treatment. Cathepsin D enhances caspase activity in the cell by cleaving procaspase-8 and LEI overexpression slows down this cleavage, protecting cells from apoptosis. This let us presume that high expression of LEI in tumor cells may reduce the efficiency of etoposide as a chemotherapeutic agent.  相似文献   

18.
Proteinase inhibitor 9 (PI-9) inhibits caspase-1 (interleukin (IL)-1beta-converting enzyme) and granzyme B, thereby regulating production of the pro-inflammatory cytokine IL-1beta and susceptibility to granzyme B-induced apoptosis. We show that cellular PI-9 mRNA and protein are induced by IL-1beta, lipopolysaccharide, and 12-O-tetradecanoylphorbol-13-acetate. We identified functional imperfect nuclear factor-kappaB (NF-kappaB) sites at -135 and -88 and a consensus activator protein-1 (AP-1) site at -308 in the PI-9 promoter region. Using transient transfections in HepG2 cells to assay PI-9 promoter mutations, we find that mutational ablation of the AP-1 site or of either NF-kappaB site reduces IL-1beta-induced expression of PI-9 by approximately 60%. Mutational ablation of the two NF-kappaB sites and of the AP-1 site nearly abolishes both basal and IL-1beta-induced expression of PI-9. Nuclear extracts from IL-1beta-treated HepG2 cells exhibited strong, IL-1beta-inducible binding to the NF-kappaB sites and to the AP-1 site. Electrophoretic mobility shift assays show that after IL-1beta treatment c-Jun/c-Fos and JunD bind to the AP-1 site, whereas the p50/p65 heterodimer binds to the two NF-kappaB sites. Estrogens induce PI-9, but induction of PI-9 by estrogens and IL-1beta is not synergistic. In transiently transfected, estrogen receptor-positive HepG2ER7 cells, estrogens do not interfere with IL-1beta induction, whereas IL-1beta exhibits dose-dependent repression of estrogen-inducible PI-9 expression. Our surprising finding that the pro-inflammatory cytokine IL-1beta strongly induces PI-9 suggests a novel mechanism for regulating inflammation and apoptosis through a negative feedback loop controlling expression of the anti-inflammatory and anti-apoptotic protein, PI-9.  相似文献   

19.
Clinical trials using allogeneic mesenchymal stem cells (MSCs) are ongoing for the purpose of providing therapeutic benefit for a variety of human disorders. Pertinent to their clinical use are the accessibility to sufficient quantities of these cells allowing for repetitive administration, as well as a better understanding of the specific mechanisms by which allogeneic MSCs evade host immune responses that in turn influence their life span following administration. In this report, we sought to characterize and compare human peripheral blood MSCs (hPB-MSCs) with bone marrow-derived MSCs. hPB-MSCs met the established criteria to characterize this cellular lineage, including capacity for self-renewal, differentiation into tissues of mesodermal origin, and expression of phenotypic surface markers. In addition, hPB-MSCs suppressed alloreactive proliferation as well as the production of proinflammatory cytokines. Examination of the mechanisms by which allogeneic MSCs evade the host immune response, which is crucial for their therapeutic use, demonstrated that constitutive expression of serine protease inhibitor 9 (PI-9) on hPB-MSCs and bone marrow-derived MSCs is a major defense mechanism against granzyme B-mediated destruction by NK cells. Similarly, MSCs treated with small interfering RNA for PI-9 increased MSC cellular death, whereas expression of transgenic PI-9 following retroviral transduction protected MSCs. These data significantly advance our understanding of the immunomodulatory role for hPB-MSCs as well as the mechanisms by which they evade host immune responses. These findings contribute to the development of MSC-based therapies for diseases.  相似文献   

20.
We have used intracellular cytokine staining and MHC class I tetramer binding in conjunction with granzyme B protease expression and in vivo BrdU uptake to characterize the primary murine CD8(+) T cell response to pulmonary influenza virus infection. We have observed that the majority (>90%) of the CD8(+) T cell response to the A/Japan/305/57 virus in the lung at the peak of the response (days 9-11) is directed to four epitopes (three dominant and one subdominant). Using induction of granzyme B as a surrogate to identify specific activated CD8(+) T cells, we found that an unexpectedly large fraction ( approximately 70%) of lung-infiltrating CD8(+) T cells expressed granzyme B on day 6 of infection when estimates by MHC tetramer/intracellular cytokine staining yielded substantially lower frequencies ( approximately 30%). In addition, by using intranasal administration of BrdU during infection, we obtained evidence for proliferative expansion of activated CD8(+) T cells in the infected lung early (days 5-7) in the primary response. These results suggest that the frequency and number of specific CTL present in the lung early in infection may be underestimated by standard detection methods, and primary CD8(+) T cell expansion may occur in both secondary lymphoid organs and the infected lung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号