首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We analyze integrodifference equations (IDEs) in patchy landscapes. Movement is described by a dispersal kernel that arises from a random walk model with patch dependent diffusion, settling, and mortality rates, and it incorporates individual behavior at an interface between two patch types. Growth follows a simple Beverton–Holt growth or linear decay. We obtain explicit formulae for the critical domain-size problem, and we illustrate how different individual behavior at the boundary between two patch types affects this quantity. We also study persistence conditions on an infinite, periodic, patchy landscape. We observe that if the population can persist on the landscape, the spatial profile of the invasion evolves into a discontinuous traveling periodic wave that moves with constant speed. Assuming linear determinacy, we calculate the dispersion relation and illustrate how movement behavior affects invasion speed. Numerical simulations justify our approach by showing a close correspondence between the spread rate obtained from the dispersion relation and from numerical simulations.  相似文献   

2.
1. Heterogeneity in food abundance allows a forager to concentrate foraging effort in patches that are rich in food. This might be problematic when food is cryptic, as the content of patches is unknown prior to foraging. In such case knowledge about the spatial pattern in the distribution of food might be beneficial as this enables a forager to estimate the content of surrounding patches. A forager can benefit from this pre-harvest information about the food distribution by regulating time in patches and/or movement between patches. 2. We conducted an experiment with mallard Anas platyrhynchos foraging in environments with random, regular, and clumped spatial configurations of full and empty patches. An assessment model was used to predict the time in patches for different spatial distributions, in which a mallard is predicted to remain in a patch until its potential intake rate drops to the average intake rate that can be achieved in the environment. A movement model was used to predict lengths of interpatch movements for different spatial distributions, in which a mallard is predicted to travel to the patch where it expects the highest intake rate. 3. Consistent with predictions, in the clumped distribution mallard spent less time in an empty patch when the previously visited neighbouring patch had been empty than when it had been full. This effect was not observed for the random distribution. This shows that mallard use pre-harvest information on spatial pattern to improve patch assessment. Patch assessment could not be evaluated for the regular distribution. 4. Movements that started in an empty patch were longer than movements that started in a full patch. Contrary to model predictions this effect was observed for all spatial distributions, rather than for the clumped distribution only. In this experiment mallard did not regulate movement in relation to pattern. 5. An explanation for the result that pre-harvest information on spatial pattern affected patch assessment rather than movement is that mallard move to the nearest patch where the expected intake rate is higher than the critical value, rather than to the patch where the highest intake rate is expected.  相似文献   

3.
Scale-dependence of movement rates in stream invertebrates   总被引:3,自引:0,他引:3  
We used analytical models and random walk simulations in a one-dimensional habitat to study the scale-dependence of migration rates in stream invertebrates. Our models predict that per capita migration rate is inversely proportional to patch length when patches are large compared to the scale of movements. When patches are small the scale-dependence is weaker and primarily determined by the length of individual movements (steps) relative to patch size. Laboratory experiments using isopods ( Asellus aquaticus L . ) and mayfly nymphs ( Baetis sp.) confirmed that the strength of the scale-dependence decreased with increasing step length.
For the case when step length distributions follow an exponential probability distribution, which is often the case for stream organisms, we provide a simple model that allows the scale-dependence to be predicted from the mean step length. We fitted this model to published field data on drift densities at different downstream distances from a net that blocks the drift from upstream areas. Agreement between model and data was excellent in most cases. We then used already published data on the length of induced drift movements to predict the scale-dependence that was observed in block experiments performed in the same system. Predicted and observed scale-dependence showed very close agreement.
We conclude that our models and published data on drift distances can be used to calculate the expected scale-dependence of per capita emigration rates for a large number of taxa under a wide range of environmental conditions.  相似文献   

4.
Social information in breeding site selection has received extensive study; however, few attempts have been made to link this process to pre‐existing models. We examine the importance of social information to three pertinent models of habitat selection that describe breeding aggregations and spatial patterns: 1) the ideal despotic distribution (IDD) which considers conspecific competition and habitat availability, 2) the perceptual constraints model which accounts for patch selection when animals experience a threshold of undetectable difference in quality, and 3) the “neighbourhood model” which predicts concordance between resources and settlers can be disrupted by conspecific attraction when resources are patchy. These models all predict initial settlers will select a high quality patch first. However, their predictions of subsequent settlement behaviour in remaining patches differ: the IDD predicts subsequent settlers will be distributed regularly, the perceptual constraints model predicts a random distribution, and the neighbourhood model predicts clustering from conspecific attraction. We examined which model best described settlement patterns of bobolink Dolichonyx oryzivorus and savannah sparrow Passerculus sandwichensis, in the context of social information. We observed settlement timing, quantified available resources, and determined where they occurred in the highest (local population “core”) and lowest densities (local population “periphery”). We then assessed whether individuals in the periphery settled in greater concordance with resources or conspecific presence. Core territories were clustered strongly on relevant resources, and these territory holders were older than in the periphery. Peripheral territories were likewise clustered but did not always co‐occur with the best available resources, matching the neighbourhood model prediction that social information may not always direct them to the best sites available. This suggests older individuals used their own experience to locate ideal habitat, whereas younger individuals attempted to aggregate on seemingly ideal habitat by using conspecific location; such information asymmetry due to age can be viewed as an “ideal aggregative distribution”.  相似文献   

5.
ABSTRACT: BACKGROUND: In addition to selection, the process of evolution is accompanied by stochastic effects, such as changing environmental conditions, genetic drift and mutations. Commonly it is believed that without genetic drift, advantageous mutations quickly fixate in a halpoid population due to strong selection and lead to a continuous increase of the average fitness. This conclusion is based on the assumption of constant fitness. However, for frequency dependent fitness, where the fitness of an individual depends on the interactions with other individuals in the population, this does not hold. RESULTS: We propose a mathematical model that allows to understand the consequences of random frequency dependent mutations on the dynamics of an infinite large population. The frequencies of different types change according to the replicator equations and the fitness of a mutant is random and frequency dependent. To capture the interactions of different types, we employ a payoff matrix of variable size and thus are able to accommodate an arbitrary number of mutations. We assume that at most one mutant type arises at a time. The payoff entries to describe the mutant type are random variables obeying a probability distribution which is related to the fitness of the parent type. CONCLUSIONS: We show that a random mutant can decrease the average fitness under frequency dependent selection, based on analytical results for two types, and on simulations for n types. Interestingly, in the case of at most two types the probabilities to increase or decrease the average fitness are independent of the concrete probability density function. Instead, they only depend on the probability that the payoff entries of the mutant are larger than the payoff entries of the parent type.  相似文献   

6.
The ideal free distribution (IFD) requires that individuals can accurately perceive density‐dependent habitat quality, while failure to discern quality differences below a given perception threshold results in distributions approaching spatial uniformity. Here, we investigate the role of population growth in restoring a nonideal population to the IFD. We place a simple model of discrete patch choice under limits to the resolution by which patch quality is perceived and include population growth driven by that underlying quality. Our model follows the population's distribution through both breeding and dispersal seasons when perception limits differ in their likely influence. We demonstrate that populations of perception limited movers can approximate an IFD provided sufficient population growth; however, the emergent IFD would be temporally inconstant and correspond to reproductive events. The time to emergence of the IFD during breeding is shorter under exponential growth than under logistic growth. The IFD during early colonization of a community persists longer when more patches are available to individuals. As the population matures and dispersal becomes increasingly random, there is an oscillation in the observance of IFD, with peaks most closely approximating the IFD occurring immediately after reproductive events, and higher reproductive rates producing distributions closer to the IFD.  相似文献   

7.
Spatially structured populations in patchy habitats show much variation in migration rate, from patchy populations in which individuals move repeatedly among habitat patches to classic metapopulations with infrequent migration among discrete populations. To establish a common framework for population dynamics in patchy habitats, we describe an individual-based model (IBM) involving a diffusion approximation of correlated random walk of individual movements. As an example, we apply the model to the Glanville fritillary butterfly (Melitaea cinxia) inhabiting a highly fragmented landscape. We derive stochastic patch occupancy model (SPOM) approximations for the IBMs assuming pure demographic stochasticity, uncorrelated environmental stochasticity, or completely correlated environmental stochasticity in local dynamics. Using realistic parameter values for the Glanville fritillary, we show that the SPOMs mimic the behavior of the IBMs well. The SPOMs derived from IBMs have parameters that relate directly to the life history and behavior of individuals, which is an advantage for model interpretation and parameter estimation. The modeling approach that we describe here provides a unified framework for patchy populations with much movements among habitat patches and classic metapopulations with infrequent movements.  相似文献   

8.
Studies of time-invariant matrix metapopulation models indicate that metapopulation growth rate is usually more sensitive to the vital rates of individuals in high-quality (i.e., good) patches than in low-quality (i.e., bad) patches. This suggests that, given a choice, management efforts should focus on good rather than bad patches. Here, we examine the sensitivity of metapopulation growth rate for a two-patch matrix metapopulation model with and without stochastic disturbance and found cases where managers can more efficiently increase metapopulation growth rate by focusing efforts on the bad patch. In our model, net reproductive rate differs between the two patches so that in the absence of dispersal, one patch is high quality and the other low quality. Disturbance, when present, reduces net reproductive rate with equal frequency and intensity in both patches. The stochastic disturbance model gives qualitatively similar results to the deterministic model. In most cases, metapopulation growth rate was elastic to changes in net reproductive rate of individuals in the good patch than the bad patch. However, when the majority of individuals are located in the bad patch, metapopulation growth rate can be most elastic to net reproductive rate in the bad patch. We expand the model to include two stages and parameterize the patches using data for the softshell clam, Mya arenaria. With a two-stage demographic model, the elasticities of metapopulation growth rate to parameters in the bad patch increase, while elasticities to the same parameters in the good patch decrease. Metapopulation growth rate is most elastic to adult survival in the population of the good patch for all scenarios we examine. If the majority of the metapopulation is located in the bad patch, the elasticity to parameters of that population increase but do not surpass elasticity to parameters in the good patch. This model can be expanded to include additional patches, multiple stages, stochastic dispersal, and complex demography.  相似文献   

9.
The aim of this work is to study the influence of patch selection on the dynamics of a system describing the interactions between two populations, generically called 'population N' and 'population P'. Our model may be applied to prey-predator systems as well as to certain host-parasite or parasitoid systems. A situation in which population P affects the spatial distribution of population N is considered. We deal with a heterogeneous environment composed of two spatial patches: population P lives only in patch 1, while individuals belonging to population N migrate between patch 1 and patch 2, which may be a refuge. Therefore they are divided into two patch sub-populations and can migrate according to different migration laws. We make the assumption that the patch change is fast, whereas the growth and interaction processes are slower. We take advantage of the two time scales to perform aggregation methods in order to obtain a global model describing the time evolution of the total populations, at a slow time scale. At first, a migration law which is independent on population P density is considered. In this case the global model is equivalent to the local one, and under certain conditions, population P always gets extinct. Then, the same model, but in which individuals belonging to population N leave patch 1 proportionally to population P density, is studied. This particular behavioral choice leads to a dynamically richer global system, which favors stability and population coexistence. Finally, we study a third example corresponding to the addition of an aggregative behavior of population N on patch 1. This leads to a more complicated situation in which, according to initial conditions, the global system is described by two different aggregated models. Under certain conditions on parameters a stable limit cycle occurs, leading to periodic variations of the total population densities, as well as of the local densities on the spatial patches.  相似文献   

10.
When the environment varies spatially, so that some habitatsare more favorable to reproduction than others, an individualshould attempt to increase the number of offspring establishingin high-quality habitats. Hence, if male and female dispersalbehavior differ, it may be adaptive to produce more offspringof the more dispersing sex in low-quality habitats, since these offspring are likely to disperse to another patch, and moreoffspring of the most philopatric sex in high-quality habitats,since these offspring are likely to remain in that patch. Sucha strategy is shown to be evolutionarily stable provided thatmale and female dispersal rates are different and that reproductivesuccess varies between habitats (lack of ideal free distribution).Highly biased sex ratios are predicted (1) in rare habitats, (2) in poor habitats, (3) when difference between habitat qualityis large, (4) when at least one sex disperses at a rate closeto random with respect to habitat availability, (5) when bothsexes disperse at a high rate, (6) when individuals are unableto select their reproducing habitat, and, presumably, (7) withmoderate temporal variation of habitat quality. The model appearsto be a good candidate to explain the pattern of sex ratiovariation in a variety of species : phytophagous arthropods,species with environmental sex determination, and territorialpasserines.  相似文献   

11.
Environmental fluctuations often have different impacts on individuals that differ in size, age, or spatial location. To understand how population structure, environmental fluctuations, and density-dependent interactions influence population dynamics, we provide a general theory for persistence for density-dependent matrix models in random environments. For populations with compensating density dependence, exhibiting “bounded” dynamics, and living in a stationary environment, we show that persistence is determined by the stochastic growth rate (alternatively, dominant Lyapunov exponent) when the population is rare. If this stochastic growth rate is negative, then the total population abundance goes to zero with probability one. If this stochastic growth rate is positive, there is a unique positive stationary distribution. Provided there are initially some individuals in the population, the population converges in distribution to this stationary distribution and the empirical measures almost surely converge to the distribution of the stationary distribution. For models with overcompensating density-dependence, weaker results are proven. Methods to estimate stochastic growth rates are presented. To illustrate the utility of these results, applications to unstructured, spatially structured, and stage-structured population models are given. For instance, we show that diffusively coupled sink populations can persist provided that within patch fitness is sufficiently variable in time but not strongly correlated across space.  相似文献   

12.
Individual differences in growth can lead to a monopolistic form of food competition. We studied the long-term transition in the mode of competition and the distribution of individuals between food patches of the cloned salmonid fish, Oncorhynchus masou ishikawae, in the laboratory. This transition was accompanied by growth depensation, i.e., the increase over time in the variance of size between individuals resulting from the differences in individual growth rates. The 120-cm experimental tanks were divided into two compartments (patches) between which an opaque partition was placed. Fish were able to move freely between the patches and therefore were able to assess the patch quality using long-term memory, but they were not able to see the food input in the other patch directly. The distribution between the two food patches, the amount of food gained, and the growth and the agonistic behavior of four groups of six individuals were observed over 4 weeks. We found that (1) within-group variation in body weight increased with time; (2) on average, the better patch was used by more individuals than predicted by a random distribution but fewer individuals than predicted by an ideal free distribution, and (3) the distribution and pattern of resource use by the fish changed over the 4-week experimental period from a random distribution to an ideal free distribution and finally to an ideal despotic distribution. We suggest that growth depensation causes the long-term change in the spatial distribution and pattern of resource use by competitors. Received: December 19, 2000 / Accepted: March 19, 2001  相似文献   

13.
Sueur C  Briard L  Petit O 《PloS one》2011,6(10):e26788
Animals adapt their movement patterns to their environment in order to maximize their efficiency when searching for food. The Lévy walk and the Brownian walk are two types of random movement found in different species. Studies have shown that these random movements can switch from a Brownian to a Lévy walk according to the size distribution of food patches. However no study to date has analysed how characteristics such as sex, age, dominance or body mass affect the movement patterns of an individual. In this study we used the maximum likelihood method to examine the nature of the distribution of step lengths and waiting times and assessed how these distributions are influenced by the age and the sex of group members in a semi free-ranging group of ten Tonkean macaques. Individuals highly differed in their activity budget and in their movement patterns. We found an effect of age and sex of individuals on the power distribution of their step lengths and of their waiting times. The males and old individuals displayed a higher proportion of longer trajectories than females and young ones. As regards waiting times, females and old individuals displayed higher rates of long stationary periods than males and young individuals. These movement patterns resembling random walks can probably be explained by the animals moving from one location to other known locations. The power distribution of step lengths might be due to a power distribution of food patches in the enclosure while the power distribution of waiting times might be due to the power distribution of the patch sizes.  相似文献   

14.
Impact of spatial heterogeneity on a predator-prey system dynamics   总被引:2,自引:0,他引:2  
This paper deals with the study of a predator-prey model in a patchy environment. Prey individuals moves on two patches, one is a refuge and the second one contains predator individuals. The movements are assumed to be faster than growth and predator-prey interaction processes. Each patch is assumed to be homogeneous. The spatial heterogeneity is obtained by assuming that the demographic parameters (growth rates, predation rates and mortality rates) depend on the patches. On the predation patch, we use a Lotka-Volterra model. Since the movements are faster that the other processes, we may assume that the frequency of prey and predators become constant and we would get a global predator-prey model, which is shown to be a Lotka-Volterra one. However, this simplified model at the population level does not match the dynamics obtained with the complete initial model. We explain this phenomenom and we continue the analysis in order to give a two-dimensional predator-prey model that gives the same dynamics as that provided by the complete initial one. We use this simplified model to study the impact of spatial heterogeneity and movements on the system stability. This analysis shows that there is a globally asymptotically stable equilibrium in the positive quadrant, i.e. the spatial heterogeneity stabilizes the equilibrium.  相似文献   

15.
In this paper we investigate the consequences of size-dependent competition among the individuals of a consumer population by analyzing the dynamic properties of a physiologically structured population model. Only 2 size-classes of individuals are distinguished: juveniles and adults. Juveniles and adults both feed on one and the same resource and hence interact by means of exploitative competition. Juvenile individuals allocate all assimilated energy into development and mature on reaching a fixed developmental threshold. The combination of this fixed threshold and the resource-dependent developmental rate, implies that the juvenile delay between birth and the onset of reproduction may vary in time. Adult individuals allocate all assimilated energy to reproduction. Mortality of both juveniles and adults is assumed to be inversely proportional to the amount of energy assimilated. In this setting we study how the dynamics of the population are influenced by the relative foraging capabilities of juveniles and adults.In line with results that we previously obtained in size-structured consumer-resource models with pulsed reproduction, population cycles primarily occur when either juveniles or adults have a distinct competitive advantage. When adults have a larger per capita feeding rate and are hence competitively superior to juveniles, population oscillations occur that are primarily induced by the fact that the duration of the juvenile period changes with changing food conditions. These cycles do not occur when the juvenile delay is a fixed parameter. When juveniles are competitively superior, two different types of population fluctuations can occur: (1) rapid, low-amplitude fluctuations having a period of half the juvenile delay and (2) slow, large-amplitude fluctuations characterized by a period, which is roughly equal to the juvenile delay. The analysis of simplified versions of the structured model indicates that these two types of oscillations also occur if mortality and/or development is independent of food density, i.e. in a situation with a constant juvenile developmental delay and a constant, food-independent background mortality. Thus, the oscillations that occur when juveniles are more competitive are induced by the juvenile delay per se. When juveniles exert a larger foraging pressure on the shared resource, maturation implies an increase not only in adult density, but also in food density and consequently fecundity. Our analysis suggests that this correlation in time between adult density and fecundity is crucial for the occurrence of population cycles when juveniles are competitively superior.  相似文献   

16.
In this article, we develop population game theory, a theory that combines the dynamics of animal behavior with population dynamics. In particular, we study interaction and distribution of two species in a two-patch environment assuming that individuals behave adaptively (i.e., they maximize Darwinian fitness). Either the two species are competing for resources or they are in a predator-prey relationship. Using some recent advances in evolutionary game theory, we extend the classical ideal free distribution (IFD) concept for single species to two interacting species. We study population dynamical consequences of two-species IFD by comparing two systems: one where individuals cannot migrate between habitats and one where migration is possible. For single species, predator-prey interactions, and competing species, we show that these two types of behavior lead to the same population equilibria and corresponding species spatial distributions, provided interspecific competition is patch independent. However, if differences between patches are such that competition is patch dependent, then our predictions strongly depend on whether animals can migrate or not. In particular, we show that when species are settled at their equilibrium population densities in both habitats in the environment where migration between habitats is blocked, then the corresponding species spatial distribution need not be an IFD. Thus, when species are given the opportunity to migrate, they will redistribute to reach an IFD (e.g., under which the two species can completely segregate), and this redistribution will also influence species population equilibrial densities. Alternatively, we also show that when two species are distributed according to the IFD, the corresponding population equilibrium can be unstable.  相似文献   

17.
Summary Individual-based simulations were conducted to examine the effect of a small ecological neighbourhood (an area in which ecological processes such as density-dependent factors operate) and the genetic neighbourhood size (the size of an area from which the parents may be assumed to be drawn at random) on the coevolution of two competing species. For the simulations, individuals of two consumer species compete for two types of food organisms. Different genotypes (one locus and two alleles) have different efficiencies of food acquisition for different food types. Individual consumer organisms search for food within their home ranges and reproduce depending on the amount of food eaten. The dispersal distance of the offspring follows a normal distribution with a zero mean and d standard deviation. Simulations were conducted by varying the home range size, mating area (area from where individuals choose their mates), standard deviation of dispersal distance, food generation time, the reproductive rates of food populations and the sizes and number of independent food populations. Food organisms reproduce either within one population or independently within 16 spatially divided populations. For all the simulations, competitive exclusion was the most frequent outcome and character displacement was the least frequent outcome. Through a 200-generation simulation, the two consumer species could co-exist longer and maintain a polymorphic resource use longer when the home range and mating size were small in 16 spatially divided populations than when random mating and homogeneous interaction occurred within a community (perfect mixing population). For perfect mixing populations, the frequency of character displacement increased as the food generation time became short and the reproductive rates of food decreased. It follows from the results that the sizes of the genetic and ecological neighbourhoods and the mode of resource dynamics can affect the evolution of two competing species.  相似文献   

18.
Rift Valley fever (RVF) is an important mosquito-borne viral zoonosis in Africa and the Middle East that causes human deaths and significant economic losses due to huge incidences of death and abortion among infected livestock. Outbreaks of RVF are sporadic and associated with both seasonal and socioeconomic effects. Here we propose an almost periodic three-patch model to investigate the transmission dynamics of RVF virus (RVFV) among ruminants with spatial movements. Our findings indicate that, in Northeastern Africa, human activities, including those associated with the Eid al Adha feast, along with a combination of climatic factors such as rainfall level and hydrological variations, contribute to the transmission and dispersal of the disease pathogen. Moreover, sporadic outbreaks may occur when the two events occur together: 1) abundant livestock are recruited into areas at risk from RVF due to the demand for the religious festival and 2) abundant numbers of mosquitoes emerge. These two factors have been shown to have impacts on the severity of RVF outbreaks. Our numerical results present the transmission dynamics of the disease pathogen over both short and long periods of time, particularly during the festival time. Further, we investigate the impact on patterns of disease outbreaks in each patch brought by festival- and seasonal-driven factors, such as the number of livestock imported daily, the animal transportation speed from patch to patch, and the death rate induced by ceremonial sacrifices. In addition, our simulations show that when the time for festival preparation starts earlier than usual, the risk of massive disease outbreaks rises, particularly in patch 3 (the place where the religious ceremony will be held).  相似文献   

19.
 We study the evolution of dispersal in a structured metapopulation model. The metapopulation consists of a large (infinite) number of local populations living in patches of habitable environment. Dispersal between patches is modelled by a disperser pool and individuals in transit between patches are exposed to a risk of mortality. Occasionally, local catastrophes eradicate a local population: all individuals in the affected patch die, yet the patch remains habitable. We prove that, in the absence of catastrophes, the strategy not to migrate is evolutionarily stable. Under a given set of environmental conditions, a metapopulation may be viable and yet selection may favor dispersal rates that drive the metapopulation to extinction. This phenomenon is known as evolutionary suicide. We show that in our model evolutionary suicide can occur for catastrophe rates that increase with decreasing local population size. Evolutionary suicide can also happen for constant catastrophe rates, if local growth within patches shows an Allee effect. We study the evolutionary bifurcation towards evolutionary suicide and show that a discontinuous transition to extinction is a necessary condition for evolutionary suicide to occur. In other words, if population size smoothly approaches zero at a boundary of viability in parameter space, this boundary is evolutionarily repelling and no suicide can occur. Received: 10 November 2000 / Revised version: 13 February 2002 / Published online: 17 July 2002  相似文献   

20.
The effects of spatial movements of infected and susceptible individuals on disease dynamics is not well understood. Empirical studies on the spatial spread of disease and behaviour of infected individuals are few and theoretical studies may be useful to explore different scenarios. Hence due to lack of detail in empirical studies, theoretical models have become necessary tools in investigating the disease influence in host-pathogen systems. In this paper we developed and analysed a spatially explicit model of two interacting social groups of animals of the same species. We investigated how the movement scenarios of susceptible and infected individuals together with the between-group contact parameter affect the survival rate of susceptible individuals in each group. This work can easily be applied to various host-pathogen systems. We define bounds on the number of susceptibles which avoid infection once the disease has died out as a function of the initial conditions and other model parameters. For example, once disease has passed through the populations, a larger diffusion coefficient for each group can result in higher population levels when there is no between-group interaction but in lower levels when there is between-group interaction. Numerical simulations are used to demonstrate these bounds and behaviours and to describe the different outcomes in ecological terms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号