首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Heat stress inhibits photosynthesis by reducing the activation of Rubisco by Rubisco activase. To determine if loss of activase function is caused by protein denaturation, the thermal stability of activase was examined in vitro and in vivo and compared with the stabilities of two other soluble chloroplast proteins. Isolated activase exhibited a temperature optimum for ATP hydrolysis of 44 degrees C compared with > or =60 degrees C for carboxylation by Rubisco. Light scattering showed that unfolding/aggregation occurred at 45 degrees C and 37 degrees C for activase in the presence and absence of ATPgammaS, respectively, and at 65 degrees C for Rubisco. Addition of chemically denatured rhodanese to heat-treated activase trapped partially folded activase in an insoluble complex at treatment temperatures that were similar to those that caused increased light scattering and loss of activity. To examine thermal stability in vivo, heat-treated tobacco (Nicotiana rustica cv Pulmila) protoplasts and chloroplasts were lysed with detergent in the presence of rhodanese and the amount of target protein that aggregated was determined by immunoblotting. The results of these experiments showed that thermal denaturation of activase in vivo occurred at temperatures similar to those that denatured isolated activase and far below those required to denature Rubisco or phosphoribulokinase. Edman degradation analysis of aggregated proteins from tobacco and pea (Pisum sativum cv "Little Marvel") chloroplasts showed that activase was the major protein that denatured in response to heat stress. Thus, loss of activase activity during heat stress is caused by an exceptional sensitivity of the protein to thermal denaturation and is responsible, in part, for deactivation of Rubisco.  相似文献   

2.
Rubisco活化酶的研究进展   总被引:1,自引:0,他引:1  
韩鹰  陈刚  王忠 《植物学报》2000,17(4):306-311
Rubisco活化酶是近年中发现的一种可以调节Rubisco活性的酶,它能使Rubisco在植株体内条件下达到最大活化程度。Rubisco活化酶不仅具有活化Rubisco的活性,而且具有ATP水解酶活性。在ATP水解过程中,Rubisco活化酶促使各种磷酸糖抑制物从Rubisco上解离下来,恢复Rubisco活性。Rubisco活化酶的发现与研究使许多Rubisco体内活化中的疑难问题得到了阐明。本文还介绍了Rubisco活化酶的分子特性、酶作用机制以及环境因素对它活性影响等方面的最新研究进展。  相似文献   

3.
Rubisco活化酶的研究进展   总被引:8,自引:0,他引:8  
韩鹰  陈刚  王忠 《植物学通报》2000,17(4):306-331
Rubisco活化酶是近年中发现的一种可以调节Rubisco活性的酶 ,它能使Rubisco在植株体内条件下达到最大活化程度。Rubisco活化酶不仅具有活化Rubisco的活性 ,而且具有ATP水解酶活性。在ATP水解过程中 ,Rubisco活化酶促使各种磷酸糖抑制物从Rubisco上解离下来 ,恢复Rubisco活性。Rubisco活化酶的发现与研究使许多Rubisco体内活化中的疑难问题得到了阐明。本文还介绍了Rubisco活化酶的分子特性、酶作用机制以及环境因素对它活性影响等方面的最新研究进展。  相似文献   

4.
The effect of polyethylene glycol (PEG) on the enzymatic and physical properties of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase was examined. In the presence of PEG, Rubisco activase exhibited higher ATPase and Rubisco activating activities, concomitant with increased apparent affinity for ATP and Rubisco. Specific ATPase activity, which was dependent on Rubisco activase concentration, was also higher in the presence of Ficoll, polyvinylpyrrolidone, and bovine serum albumin. The ability of Rubisco activase to facilitate dissociation of the tight-binding inhibitor 2-carboxyarabinitol 1-phosphate from carbamylated Rubisco was also enhanced in the presence of PEG. Mixing experiments with Rubisco activase from two different sources showed that tobacco Rubisco activase, which exhibited little activation of spinach Rubisco by itself, was inhibitory when included with spinach Rubisco activase. Polyethylene glycol improved the ability of tobacco and a mixture of tobacco plus spinach Rubisco activase to activate spinach Rubisco. Estimates based on rate zonal sedimentation and gel-filtration chromatography indicated that the apparent molecular mass of Rubisco activase was two- to fourfold higher in the presence of PEG. The increase in apparent molecular mass was consistent with the propensity of solvent-excluding reagents like PEG to promote self-association of proteins. Likewise, the change in enzymatic properties of Rubisco activase in the presence of PEG and the dependence of specific activity on protein concentration resembled changes that often accompany self-association. For Rubisco activase, high concentrations of protein in the chloroplast stroma would provide an environment conducive to self-association and cause expression of properties that would enhance its ability to function efficiently in vivo.  相似文献   

5.
Ribulose-1,5-bisphosphate carboxylase/oxygenase activase often consists of two polypeptides that arise from alternative splicing of pre-mRNA. In this study recombinant versions of the spinach (Spinacea oleracea L.) 45- and 41-kD forms of activase were analyzed for their response to temperature. The temperature optimum for ATP hydrolysis by the 45-kD form was 45[deg]C, approximately 13[deg]C higher than the 41-kD form. When the two forms were mixed, the temperature response of the hybrid enzyme was similar to the 45-kD form. In the absence of adenine nucleotide, preincubation of either activase form at temperatures above 25[deg}C inactivated ATPase activity. Adenosine 5[prime]-([gamma]-thio)triphosphate, but not ADP, significantly enhanced the thermostability of the 45-kD form but was much less effective for the 41-kD form. Intrinsic fluorescence showed that the adenosine 5[prime]-([gamma]-thio)triphosphate-induced subunit aggregation was lost at a much lower temperature for the 41-kD than for the 45-kD form. However, the two activase forms were equally susceptible to limited proteolysis after heat treatment. The results indicate that (a) the 45-kD form is more thermostable than, and confers increased thermal stability to, the 41-kD form, and (b) a loss of subunit interactions, rather than enzyme denaturation, appears to be the initial cause of temperature inactivation of activase.  相似文献   

6.
We developed a continuous-addition method for maintaining subsaturating concentrations of ribulose-1,5-bisphosphate (RuBP) for several minutes, while simultaneously monitoring its consumption by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). This method enabled us to observe the effects of subsaturating RuBP and CO2 concentrations on the activity of Rubisco during much longer periods than previously studied. At saturating CO2, the activity of the enzyme declined faster when RuBP was maintained at concentrations near its Km value than when RuBP was saturating. At saturating RuBP, activity declined faster at limiting than at saturating CO2, in accordance with previous observations. The most rapid decline in activity occurred when both CO2 and RuBP concentrations were subsaturating. The activity loss was accompanied by decarbamylation of the enzyme, even though the enzyme was maintained at the same CO2 concentration before and after exposure to RuBP. Rubisco activase ameliorated the decline in activity at subsaturating CO2 and RuBP concentrations. The results are consistent with a proposed mechanism for regulating the carbamylation of Rubisco, which postulates that Rubisco activase counteracts Rubisco's unfavorable carbamylation equilibrium in the presence of RuBP by accelerating, in an ATP-dependent manner, the release of RuBP from its complex with uncarbamylated sites.  相似文献   

7.
烟草Rubisco活化酶的纯化及其特性   总被引:2,自引:0,他引:2  
利用35%饱和硫酸铵分部、DEAE-Sephacel和FPIC-MonoQ柱层析等步骤从烟草叶片中纯化了Rubisco活化酶,并制备了其专一性抗体。此法不仅快速,而且比活力高。以往认为菠菜和拟南芥Rubisco活化酶由两种亚基组成。通过快速制备的粗提液分析.发现烟草Rubisco活化酶由一种42kD的亚基组成。即使在有多种蛋白酶抑制剂存在的情况下,此亚基仍很易降解为39kD的亚基。ATP不仅对酶的活性所必需,而且也有利于维持酶的稳定性。该酶的热稳定性远比Rubisco差。  相似文献   

8.
To function, the catalytic sites of Rubisco (EC 4.1.1.39) need to be activated by the reversible carbamylation of a lysine residue within the sites followed by rapid binding of magnesium. The activation of Rubisco in vivo requires the presence of the regulatory protein Rubisco activase. This enzyme is thought to aid the release of sugar phosphate inhibitors from Rubisco's catalytic sites, thereby influencing carbamylation. In C3 species, Rubisco operates in a low CO2 environment, which is suboptimal for both catalysis and carbamylation. In C4 plants, Rubisco is located in the bundle sheath cells and operates in a high CO2 atmosphere close to saturation. To explore the role of Rubisco activase in C4 photosynthesis, activase levels were reduced in Flaveria bidentis, a C4 dicot, by transformation with an antisense gene directed against the mRNA for Rubisco activase. Four primary transformants with very low activase levels were recovered. These plants and several of their segregating T1 progeny required high CO2 (>1 kPa) for growth. They had very low CO2 assimilation rates at high light and ambient CO2, and only 10% to 15% of Rubisco sites were carbamylated at both ambient and very high CO2. The amount of Rubisco was similar to that of wild-type plants. Experiments with the T1 progeny of these four primary transformants showed that CO2 assimilation rate and Rubisco carbamylation were severely reduced in plants with less than 30% of wild-type levels of activase. We conclude that activase activity is essential for the operation of the C4 photosynthetic pathway.  相似文献   

9.
Byrd GT  Ort DR  Ogren WL 《Plant physiology》1995,107(2):585-591
Photosynthesis rate, ribulsoe-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activation state, and ribulose bisphosphate concentration were reduced after exposing tomato (Lycopersicon esculentum Mill.) plants to light at 4[deg]C for 6 h. Analysis of lysed and reconsituted chloroplasts showed that activity of the thylakoid membrane was inhibited and that Rubisco, Rubisco activase, and other soluble factors were not affected. Leaf photosynthesis rates and the ability of chilled thylakoid membranes to promote Rubisco activation recovered after 24 h at 25[deg]C. Thylakoid membranes from control tomato plants were as effective as spinach thylakoids in activating spinach Rubisco in the presence of spinach Rubisco activase. This observation is in sharp contrast to the poor ability of spinach Rubisco activase to activate tomato Rubisco (Z.-Y. Wang, G.W. Snyder, B.D. Esau, A.R. Portis, and W.L. Ogren [1992] Plant Physiol 100: 1858-1862). The ability of thylakoids from chilled tomato plants to activate Rubisco in the assay system was greatly inhibited compared to control plants. These experiments indicate that chilling tomato plants at 4[deg]C interferes with photosynthetic carbon metabolism at two sites, thioredoxin/ferredoxin reduction (G.F. Sassenrath, D.R. Ort, and A.R. Portis, Jr. [1990] Arch Biochem Biophys 282: 302-308), which limits bisphosphatase activity, and Rubisco activase, which reduces Rubisco activation state.  相似文献   

10.
The activation of Rubisco in vivo requires the presence of the regulatory protein Rubisco activase. To elucidate its role in maintaining CO2 assimilation rate at high temperature, we examined the temperature response of CO2 assimilation rate at 380 μL L−1 CO2 concentration (A380) and Rubisco activation state in wild-type and transgenic tobacco (Nicotiana tabacum) with reduced Rubisco activase content grown at either 20°C or 30°C. Analyses of gas exchange and chlorophyll fluorescence showed that in the wild type, A380 was limited by ribulose 1,5-bisphosphate regeneration at lower temperatures, whereas at higher temperatures, A380 was limited by ribulose 1,5-bisphosphate carboxylation irrespective of growth temperatures. Growth temperature induced modest differences in Rubisco activation state that declined with measuring temperature, from mean values of 76% at 15°C to 63% at 40°C in wild-type plants. At measuring temperatures of 25°C and below, an 80% reduction in Rubisco activase content was required before Rubisco activation state was decreased. Above 35°C, Rubisco activation state decreased slightly with more modest decreases in Rubisco activase content, but the extent of the reductions in Rubisco activation state were small, such that a 55% reduction in Rubisco activase content did not alter the temperature sensitivity of Rubisco activation and had no effect on in vivo catalytic turnover rates of Rubisco. There was a strong correlation between Rubisco activase content and Rubisco activation state once Rubisco activase content was less that 20% of wild type at all measuring temperatures. We conclude that reduction in Rubisco activase content does not lead to an increase in the temperature sensitivity of Rubisco activation state in tobacco.The catalytic sites of Rubisco must be activated for CO2 fixation to take place. This requires the carbamylation of a Lys residue at the catalytic sites to allow the binding of Mg2+ and ribulose 1,5-bisphosphate (RuBP; Andrews and Lorimer, 1987). Rubisco activase facilitates carbamylation and the maintenance of Rubisco activity by removing inhibitors such as tight-binding sugar phosphates from Rubisco catalytic sites in an ATP-dependent manner (Andrews, 1996; Spreitzer and Salvucci, 2002; Portis, 2003; Parry et al., 2008). The activity of Rubisco activase is regulated by the ATP/ADP ratio and redox state in the chloroplast (Zhang and Portis, 1999; Zhang et al., 2002; Portis, 2003).In many plant species, Rubisco activation state decreases at high temperature in vivo (Crafts-Brandner and Salvucci, 2000; Salvucci and Crafts-Brandner, 2004b; Cen and Sage, 2005; Yamori et al., 2006b; Makino and Sage, 2007). However, it is unclear what the primary mechanisms underlying the inhibition of Rubisco activation are and whether Rubisco deactivation limits CO2 assimilation rate at high temperature. It has been proposed that Rubisco activation state decreases at high temperature, because the activity of Rubisco activase is insufficient to keep pace with the faster rates of Rubisco inactivation at high temperatures (Crafts-Brandner and Salvucci, 2000; Salvucci and Crafts-Brandner, 2004a, 2004c; Kim and Portis, 2006). In in vitro assays using purified Rubisco and Rubisco activase, the activity of Rubisco activase was sufficient for the activation of Rubisco at the optimum temperature but not at high temperatures (Crafts-Brandner and Salvucci, 2000; Salvucci and Crafts-Brandner, 2004a, 2004c). ATP hydrolysis activity of Rubisco activase in vitro has varying temperature optima among species (e.g. 25°C in Antarctic hairgrass [Deschampsia antarctica] and spinach [Spinacia oleracea] but 35°C in tobacco [Nicotiana tabacum] and cotton [Gossypium hirsutum]), and Rubisco activase more readily dissociates into inactive forms at high temperature, causing a loss of Rubisco activase capacity (Crafts-Brandner and Law, 2000; Salvucci and Crafts-Brandner, 2004b). Moreover, the rates of inhibitor formation by misprotonation of RuBP during catalysis increased at higher temperatures (Salvucci and Crafts-Brandner, 2004c; Kim and Portis, 2006). CO2 assimilation rates and plant growth were improved under heat stress in transgenic Arabidopsis expressing thermotolerant Rubisco activase isoforms generated by either gene-shuffling technology (Kurek et al., 2007) or chimeric Rubisco activase constructs (Kumar et al., 2009). These results support the view that the reduction of Rubisco activase activity limits the Rubisco activation and, therefore, the CO2 assimilation rates at high temperatures.It has also been suggested that the decrease in CO2 assimilation rate at high temperatures is caused by a limitation of RuBP regeneration capacity (e.g. electron transport capacity) rather than by Rubisco deactivation per se (Schrader et al., 2004; Wise et al., 2004; Cen and Sage, 2005; Makino and Sage, 2007; Kubien and Sage, 2008). These groups suggest that Rubisco deactivation at high temperature may be a regulatory response to the limitation of one of the processes contributing to electron transport capacities. For example, at high temperature, protons can leak through the thylakoid membrane, impairing the coupling of ATP synthesis to electron transport (Pastenes and Horton, 1996; Bukhov et al., 1999, 2000). As the electron transport capacity becomes limiting, ATP/ADP ratios and the redox potential of the chloroplast decline, causing a loss of Rubisco activase activity and, in turn, a reduction in the Rubisco activation state (Zhang and Portis, 1999; Zhang et al., 2002; Sage and Kubien, 2007). Based on this understanding, the decline in the Rubisco activation state at high temperature may be a regulated response to a limitation in electron transport capacity rather than a consequence of a direct effect of heat on the integrity of Rubisco activase.Temperature dependence of CO2 assimilation rate shows a considerable variation with growth temperature (Berry and Björkman, 1980; Hikosaka et al., 2006; Sage and Kubien, 2007). Plants grown at low temperature generally exhibit higher CO2 assimilation rates at low temperatures compared with plants grown at high temperature, but they exhibit lower rates at high temperature. Furthermore, both the temperature response of Rubisco activation state and the limiting step of CO2 assimilation rate (a Rubisco versus RuBP regeneration limitation) have been shown to differ depending on growth temperature (Hikosaka et al., 1999; Onoda et al., 2005; Yamori et al., 2005, 2006a, 2006b, 2008). This suggests that the regulation of Rubisco activation state could also differ in plants grown at different growth temperatures. Here, we analyzed the effects of Rubisco activase content on Rubisco activation state and CO2 assimilation rate at leaf temperatures ranging from 15°C to 40°C in tobacco grown under two different temperature regimes (day/night temperatures of 20°C/15°C or 30°C/25°C). We used wild-type and transgenic tobacco with a range of reductions in Rubisco activase content to examine the dependence of Rubisco activation on Rubisco activase content over the range of leaf temperatures (Mate et al., 1993, 1996).  相似文献   

11.
Ribulose-bisphosphate carboxylase/oxygenase (Rubisco) activase uses the energy from ATP hydrolysis to remove tight binding inhibitors from Rubisco, thus playing a key role in regulating photosynthesis in plants. Although several structures have recently added much needed structural information for different Rubisco activase enzymes, the arrangement of these subunits in solution remains unclear. In this study, we use a variety of techniques to show that Rubisco activase forms a wide range of structures in solution, ranging from monomers to much higher order species, and that the distribution of these species is highly dependent on protein concentration. The data support a model in which Rubisco activase forms an open spiraling structure rather than a closed hexameric structure. At protein concentrations of 1 μm, corresponding to the maximal activity of the enzyme, Rubisco activase has an oligomeric state of 2–4 subunits. We propose a model in which Rubisco activase requires at least 1 neighboring subunit for hydrolysis of ATP.  相似文献   

12.
张国  李滨  邹琦 《植物学报》2005,22(3):313-319
Rubisco活化酶是广泛存在于光合生物中调节Rubisco活性的酶, 我们利用PCR技术, 从小麦(Triticum aestivum)叶片cDNA文库中克隆得到Rubisco活化酶基因cDNA片段, 该片段长度为850 bp, 编码201个氨基酸。Northern blot表明, 小麦叶片在暗诱导衰老的条件下, 叶片中活化酶基因表达水平逐渐下降; 同时, 小麦叶片的光合特性、叶绿素含量和Rubisco活性呈现下降趋势。这些结果表明, 衰老时小麦叶片Rubisco活化酶基因表达水平下降与光合速率下降密切相关。  相似文献   

13.
小麦Rubisco活化酶基因的克隆和表达特性   总被引:3,自引:0,他引:3  
张国  李滨  邹琦 《植物学通报》2005,22(3):313-319
Rubisco活化酶是广泛存在于光合生物中调节Rubisco活性的酶,我们利用PCR技术,从小麦(Triticum aestivum)叶片cDNA文库中克隆得到Rubisco活化酶基因cDNA片段,该片段长度为850 bp,编码201个氨基酸.Northern blot表明,小麦叶片在暗诱导衰老的条件下,叶片中活化酶基因表达水平逐渐下降;同时,小麦叶片的光合特性、叶绿素含量和Rubisco活性呈现下降趋势.这些结果表明,衰老时小麦叶片Rubisco活化酶基因表达水平下降与光合速率下降密切相关.  相似文献   

14.
Previous studies have shown that inhibition of photosynthesis by moderate heat stress is a consequence of Rubisco deactivation, caused in part by the thermal instability of Rubisco activase. This involvement of Rubisco activase was confirmed in heat stress and recovery experiments using transgenic Arabidopsis plants. Compared with wild-type plants, photosynthesis, the effective quantum yield of photosystem II, and Rubisco activation were less thermotolerant and recovered more slowly in transgenic Arabidopsis plants with reduced levels of Rubisco activase. Immunoblots showed that 65% of the Rubisco activase was recovered in the insoluble fraction after heat stress in leaf extracts of transgenic but not wild-type plants, evidence that deactivation of Rubisco was a consequence of thermal denaturation of Rubisco activase. The transgenic Arabidopsis plants used in this study contained a modified form of Rubisco activase that facilitated affinity purification of Rubisco activase and proteins that potentially interact with Rubisco activase during heat stress. Sequence analysis and immunoblotting identified the beta-subunit of chaperonin-60 (cpn60beta), the chloroplast GroEL homologue, as a protein that was bound to Rubisco activase from leaf extracts prepared from heat-stressed, but not control plants. Analysis of the proteins by non-denaturing gel electrophoresis showed that cpn60beta was associated with Rubisco activase in a high molecular mass complex. Immunoblot analysis established that the apparent association of cpn60beta with Rubisco activase was dynamic, increasing with the duration and intensity of the heat stress and decreasing following recovery. Taken together, these data suggest that cpn60beta plays a role in acclimating photosynthesis to heat stress, possibly by protecting Rubisco activase from thermal denaturation.  相似文献   

15.
During the past few years the investigations concerning Rubisco and the changes of its activity and properties at elevated temperature were reconsidered with special reference to the important role of Rubisco activase and Rubisco binding protein. The major changes in Rubisco, Rubisco activase and Rubisco binding protein reported recently are presented in this review. New information on these proteins, including their changes under heat stress conditions, is discussed together with open questions.  相似文献   

16.
Lan Y  Mott KA 《Plant physiology》1991,95(2):604-609
The spectrophotometric assay for ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) was used to determine the rate of increase in Rubisco activity over time in the presence or absence of Rubisco activase. Polynomial approximations to the raw data were used to smooth out minor fluctuations in the spectrophotometer readings, and Rubisco activase activity was expressed as nanomoles of activated Rubisco per minute. This assay was used to examine the effects of CO2 and the inactive-Rubisco:ribulose 1,5-bisphosphate complex (ER) on the activase-catalyzed activation reaction. Double-reciprocal plots of activase activity and ER at several concentrations of CO2 were consistent with two-substrate Michaelis-Menton kinetics, and the apparent Km (CO2) and Km(ER) were determined to be 53 and 2.7 micromolar, respectively. These data do not prove that ER and CO2 are substrates for the reaction catalyzed by activase, but they may be important to our understanding of the activation process in vivo. The implications of these data and their relation to previously published data on the effects of ER and CO2 on activase are discussed.  相似文献   

17.
Rubisco activase is a chloroplast stromal protein that catalyzesthe activation of ribulose-1,5- bisphosphate carboxylase/oxygenase(rubisco) in vivo. Activation must occur before rubisco cancatalyze the photosynthetic assimilation of CO2. In leaves,photosynthesis and rubisco activation increase with increasinglight intensity. Techniques are described that allow the activityof rubisco activase to be measured in extracts of spinach (Spinaceaoleracea L.) leaf tissue. In this context, rubisco activaseactivity is defined as the ability to promote activation ofthe inactive ribulose-1,5- bisphosphate-bound rubisco in anATP-dependent reaction. Determination of rubisco activase activityin extracts of dark and light treated leaf tissue revealed thatthe activation state of rubisco activase was independent oflight intensity. 1Present address: Department of Biological Sciences, 213 Carson-TaylorHall, Louisiana Tech University, Ruston, Louisiana 71272, U.S.A.  相似文献   

18.
Mechanism for deactivation of Rubisco under moderate heat stress   总被引:4,自引:0,他引:4  
Photosynthesis is particularly sensitive to direct inhibition by heat stress. This inhibition is closely associated with the inactivation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). To develop a more complete understanding of the mechanism of inactivation of Rubisco under moderate heat stress, various aspects of the process were examined both in vivo and in vitro. Experiments with isolated Rubisco revealed that the rate of synthesis of the catalytic misfire product, xylulose-1,5-bisphosphate, increased with temperature. Activated Rubisco, produced by reaction with activase at a control temperature of 25°C or by incubation with high CO2, deactivated when the temperature of the reaction exceeded temperatures that were equivalent to the optimum for activase adenosine triphosphatase (ATPase) activity. Measurements of the activation state of Rubisco in cotton and tobacco leaves showed that Rubisco inactivated within 7 s of imposing a heat stress. Thus, elevated temperature had an opposite effect on the two processes that ultimately determine the activation state of Rubisco, decreasing activase activity but stimulating the catalytic misfire reaction that inactivates Rubisco. These data support a mechanism for the inactivation of Rubisco at high temperature involving an inability of activase to overcome the inherently faster rates of Rubisco inactivation. That the net effect of elevated temperatures on Rubisco activation is similar both in vivo and under controlled conditions in vitro argues for a direct effect of temperature on the activation of Rubisco by activase and against the proposal that the deactivation of Rubisco under moderate heat stress is a secondary consequence of perturbations in the thylakoid membrane.  相似文献   

19.
The activation of Rubisco in vivo requires the presence of the regulatory protein Rubisco activase. This enzyme facilitates the release of sugar phosphate inhibitors from Rubisco catalytic sites thereby influencing carbamylation. T(1) progeny of transgenic Flaveria bidentis (a C(4) dicot) containing genetically reduced levels of Rubisco activase were used to explore the role of the enzyme in C(4) photosynthesis at high temperature. A range of T(1) progeny was screened at 25 degrees C and 40 degrees C for Rubisco activase content, photosynthetic rate, Rubisco carbamylation, and photosynthetic metabolite pools. The small isoform of F. bidentis activase was expressed and purified from E. coli and used to quantify leaf activase content. In wild-type F. bidentis, the activase monomer content was 10.6+/-0.8 micromol m(-2) (447+/-36 mg m(-2)) compared to a Rubisco site content of 14.2+/-0.8 micromol m(-2). CO(2) assimilation rates and Rubisco carbamylation declined at both 25 degrees C and 40 degrees C when the Rubisco activase content dropped below 3 mumol m(-2) (125 mg m(-2)), with the status of Rubisco carbamylation at an activase content greater than this threshold value being 44+/-5% at 40 degrees C compared to 81+/-2% at 25 degrees C. When the CO(2) assimilation rate was reduced, ribulose-1,5-bisphosphate and aspartate pools increased whereas 3-phosphoglycerate and phosphoenol pyruvate levels decreased, demonstrating an interconnectivity of the C(3) and C(4) metabolites pools. It is concluded that during short-term treatment at 40 degrees C, Rubisco activase content is not the only factor modulating Rubisco carbamylation during C(4) photosynthesis.  相似文献   

20.
Changes in chlorophyll content, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) binding protein (RBP), Rubisco activase (RA), Rubisco large (LS) and small (SS) subunits, and electrolyte leakage were investigated in wheat leaf segments during heat stress (HS) for 1 h and for 24 h at 40 °C in darkness or in light, as well as after recovery from heat stress (HSR) for 24 h at 25 °C in light. The 24-h HS treatment in darkness decreased irreversibly photosynthetic pigments, soluble proteins, RBP, RA, Rubisco LS and SS. An increase in RA and RBP protein contents was observed under 24-h HS and HSR in light. This increase was in accordance with their role as chaperones and the function of RBP as a heat shock protein.This work was partially supported by Swiss National Science Foundation (Project 31-55289.98).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号