首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Application of 0, 30, 60, 90 and 120 kg N ha–1 of urea (U) in split doses with (and without)Azolla pinnata, R. Brown was studied for three consecutive seasons under planted field condition. Fresh weight (FW), acetylene reduction activity (ARA) and N yield of Azolla were found to be maximum 14 days after inoculation (DAI). Among the different treatments, maximum Azolla growth was recorded in no N control. The FW, ARA and N yield of Azolla were inhibited increasingly with the increase in N levels. Irrespective of season, FW and N yield of Azolla were inhibited only a small extent with 90 kg N ha–1 U, beyond which the inhibition was pronounced. ARA was inhibited only slightly up to 60 kg N ha–1 of U. Grain yield and crop N uptake of rice increased significantly up to 90 kg N ha–1 of U (alone or in combination with Azolla) in the dry seasons (variety IR 36) and up to 60 kg N ha–1 U in the wet season (variety CR 1018).  相似文献   

2.
There are seven known species of Azolla, two of which have been used in cultivated systems, the tropical speciesA. pinnata, and the temperate speciesA. filiculoides. OnlyA. pinnata is indigenous in Thailand. In this study the two exotic species,A. caroliniana andA. microphylla, were evaluated under the various tropical field conditions in Thailand. When compared with seven selected strains ofA. pinnata under three field conditions,A. caroliniana andA. microphylla were similar to the indigenous species, in terms of growth performance, N2 fixation, and yield. This study suggests thatA. caroliniana andA. microphylla can be successfully cultivated as a nitrogen fixing green manure for rice production in the tropics.  相似文献   

3.
The effect of nitrogenous sources like ammonium sulphate (AS), prilled urea (U), urea super granule (USG) and farm yard manure (FYM) was studied on the fresh biomass (FB) and acetylene reduction activity (ARA) ofAzolla pinnata, R. Brown (Bangkok isolate), grown as a dual crop with rice, and rice yield in three successive seasons. Irrespective of the N-sources and seasons, the FB and ARA of Azolla were observed to be maximum on 14th day after Azolla inoculation (DAI). The different N-sources had significant effect on the ARA and to a lesser extent on the FB of Azolla. The treatment without fertilizer-N (control) exhibited highest ARA, FB and total N-content of Azolla. These were inhibited to a lesser extent by USG and FYM, though used at higher rates of 75 kg N ha−1 and 90 kgN ha−1 respectively, compared to that by AS and U, used at lower rates of 45kg N ha−1 each.  相似文献   

4.
Summary Inoculation of water fernAzolla pinnata R. Brown (Bangkok isolate) at the rate of 500kg fresh weight ha−1 in rice fields at weekly intervals after planting in addition to 30 kg N ha−1 as urea showed a decrease in its growth and N2-fixation with delay in application. Use of Azolla up to 3 weeks after planting (WAP) during wet and 4 WAP during dry season produced significantly more grain yield than 30 kg N ha−1, whereas its application upto one WAP produced more grain yield than 60 kg N ha−1. Grain yield with Azolla applied at the time of planting was similar to that of 60 kg N treatment during the wet season. Higher grain yields in zero and one WAP Azolla treatments resulted due to increase in both number of panicles m−2 and number of grains/panicle while the subsequent Azolla inoculations increased grain yield mainly by producing more number of grains/panicle. Dry matter and total N yields at maturity of rice crop were more with Azolla application upto 3 WAP during wet and 2 WAP during dry season while the reduction in sterility (%) was observed upto one WAP over 30 kg N ha−1 during both seasons. Number of tillers m−2 and dry matter production at maximum tillering and flowering were more than 30 kg N ha−1 with the use of Azolla upto one WAP. Increased grain N yield was observed with the use of Azolla upto 4 WAP during two seasons whereas straw N yield increased upto one WAP during wet and 2 WAP during dry season.  相似文献   

5.
Field experiments (20 m2 plots) were conducted to compare Azolla and urea as N sources for rice (Oryza sativa L.) in both the wet and dry seasons. Parallel microplot (1 m2) experiments were conducted using 15N. A total of approximately 60 kg N ha-1 was applied as urea, Azolla, or urea plus Azolla. Urea or Azolla applied with equal applications of 30 kg N ha-1 at transplanting (T) and at maximum tillering (MT) were equally effective for increasing rice grain yields in both seasons. Urea at 30 kg N ha-1 at T and Azolla 30 kg N ha-1 at MT was also equally effective. Urea applied by the locally recommended best split (40 kg at T and 20 kg at MT) gave a higher yield in the wet season, but an equal yield in the dry season. The average yield increase was 23% in the wet season, and 95% in the dry season. The proportion of the N taken up by the rice plants which was derived from urea (%NdfU) or Azolla (%NdfAz) was essentially identical for the treatments receiving the same N split. Recovery of 15N in the grain plus straw was also very similar. Positive yield responses to residual N were observed in the succeeding rice crop following both the wet and dry seasons, but the increases were not always statistically significant. Recovery of residual 15N ranged from 5.5 to 8.9% for both crops in succeeding seasons. Residual recovery from the urea applications was significantly higher than from Azolla in the crop succeeding the dry season crop. Azolla was equally effective as urea as an N source for rice production on a per kg N basis.  相似文献   

6.
A field experiment was conducted at the Bangladesh Rice Research Institute, Joydebpur, Dhaka during the late wet season. Basal application of P at both 5 and 10 kg ha−1 significantly increased total biomass production and nitrogen fixation byAzolla pinnata R. Brown (local strain). Addition of both 5 and 10 kg P ha−1 in equal splits at inoculation and at six day intervals thereafter during growth periods of 12, 24 and 36 days increased biomass production and nitrogen fixation by Azolla over that attained with the basal application. Biomass and nitrogen fixation using a split application of 5 kg P ha−1 exceeded that attained with basal application of 10 kg P ha−1 and split application of 10 kg P ha−1 resulted in 0.58, 11.2, and 18.3 t ha−1 more biomass, and 0.47, 18.9, and 18.3 more kg fixed N ha−1 at 12, 24 and 36 days, respectively, than the same amount applied as a basal application. Analyses indicated that the critical level of dry weight P in Azolla for sustained growth was in the range of 0.15–0.17%. Compared with the control, where no P was added, and additional 30 and 36 kg N ha−1 were fixed after 24 and 36 days, respectively, when P was provided at 10 kg ha−1 using a split application. A separate field study showed that flooded rice plants received P from incorporated Azolla with about 28% of the P present in the supplied Azolla being incorporated into the rice plants.  相似文献   

7.
Cultures ofAzolla pinnata Lam., grown in various mixtures of soil plus industrial waste from a chlor-alkali factory for 30 to 60 days, resulted in the addition of significant amounts of nitrogen and organic carbon to the growing medium. A considerable decrease in the alkaline pH of the waste/soil was also recorded. On transplantation of rice seedlings into the waste/soil mixtures, after 60 days of Azolla culture it was observed that the rice survived and continued to grow in mixtures containing 30% waste whereas, in control conditions, seedlings failed to survive in above 15% waste/soil combinations.  相似文献   

8.
Summary The symbiotic association of the water fernAzolla with the blue-green algaAnabaena azollae can fix 30–60 kg N ha–1 per rice cropping season. The value of this fixed N for rice production, however, is only realized once the N is released from theAzolla biomass and taken up by the rice plants. The availability of N applied asAzolla or as urea was measured in field experiments by two15N methods. In the first,Azolla caroliniana (Willd.) was labelled with15N in nutrient solution and incorporated into the soil at a rate of 144 kg N ha–1. The recovery ofAzolla-N in the above ground parts of rice [Oryza sativa (L) cv. Nucleoryza] was found to be 32% vs. 26% for urea applied at a rate of 100 kg N/ha; there was no significant difference in recovery. In the second, 100 kg N/ha of15N-urea was applied separately or in combination with either 250 or 330 kg N ha–1 of unlabelledAzolla. At the higher rate, the recovery ofAzolla-N was significantly greater than that of urea. There was a significant interaction when both N sources were applied together, which resulted in a greater recovery of N from each source in comparison to that source applied separately. Increasing the combined urea andAzolla application rate from 350 kg N ha–1 to 430 kg N ha–1 increased the N yield but had no effect on the dry matter yield of rice plants. The additional N taken up at the higher level of N application accumulated to a greater extent in the straw compared to the panicles. Since no assumptions need to be made about the contribution of soil N in the method using15N-labelledAzolla, this method is preferable to the15N dilution technique for assessing the availability ofAzolla-N to rice. Pot trials usingAzolla stored at –20°C or following oven-drying showed that both treatments decreased the recovery of N by one third in comparison to freshAzolla.  相似文献   

9.
The trials to use Azolla as a green manure for rice culture were made in the Niger basin.Azolla pinnata (Niger isolate) was used for the experiments. The effect of phosphorus on the growth and N2-fixation was examined in the field and in the laboratory. The growth rate and N content were maximum with P 3.1 ppm culture solution under laboratory conditions. The threshold P content for the growth was 0.5–0.6% in the dry matter. Maximum N content was 4.1% in the laboratory culture. In the field culture, the effect of P fertilizer on the growth and N yield of Azolla was tested. The split application of 6.5 kg P ha−1 per 13 days was most effective in stimulating the growth of Azolla. One kg of P as triple superphosphate produced 3.66 kg N in the Azolla. Maximum growth rate and N content in the field trials was 4.3 days (doubling time) and 2.3%, respectively. The lower productivity in the field in comparison with the laboratory culture was considered to be due to higher temperature and light intensity. the growth of Azolla was suppressed in the hot season in the Niger basin. The growth rate and N content were reduced during the high temperature period over 30°C on an average. The effect of inoculation of Azolla on rice yield was tested in the field experiment. The grain yield was increased 27% by Azolla incolation over the treatment without Azolla inoculation in — N fertilizer treatments. While the growth of Azolla with rice plants did not attain saturated density (1.8 kg fresh weight m−2), the effect on the grain yield was comparable to 40 kg N ha−1 as urea.  相似文献   

10.
A field experiment conducted at Central Rice Research Institute, Cuttack, during three successive seasons showed that with the 120-day-duration variety Ratna two dual crops ofAzolla pinnata R. Brown (Bangkok isolate) could be achieved 25 and 50 days after transplanting (DAT) by inoculating 2.0 t ha−1 of fresh Azolla 10 and 30 DAT respectively. One basal crop of Azolla could also be grown using the same inoculum 20 days before transplanting (DBT) in fallow rice fields. The three crops of Azolla grown—once before transplanting and twice after transplanting—gave an average total biomass of 38–63 and 43–64 t ha−1 fresh Azolla containing 64–90 and 76–94 kg N ha−1 respectively in the square and rectangular spacings. Two crops of Azolla grown only as a dual crop, on the other hand, gave 26–39 and 29–41 t ha−1 fresh Azolla which contained 44–61 and 43–59 kg N ha−1 respectively. Growth and yield of rice were significantly higher in Azolla basal plus Azolla dual twice incorporated treatments than in the Azolla dual twice incorporation, Azolla basal plus 30 kg N ha−1 urea and 60 kg N ha−1 urea treatments. Azolla basal plus 30 kg N ha−1 urea and 60 kg N ha−1 urea showed similar yields but Azolla dual twice incorporation was significantly lower than those. The different spacing with same plant populations did not affect growth and yield significantly, whereas Azolla growth during dual cropping was 8.3 and 64% more in the rectangular spacing than in the square spacing in Azolla basal plus Azolla dual twice incorporation and Azolla dual twice incorporation treatments.  相似文献   

11.
Summary The symbiotic heterocystous cyanobacteriumAnabaena azollae present in the leaf cavities of the water fernAzolla spp. was studied. The cyanobacteria extracted from the leaf cavities showed differences in pigment composition in three species ofAzolla, i.e A.pinnata var.pinnata, A.caroliniana and A.filiculoides, as observed by pigment absorption and epifluorescence tests. These differences suggest that of these species the cyanobiont ofA. pinnata is the most actively nitrogenfixing form. This has been confirmed by nitrogen fixation (acetylene reduction) tests. Heterocysts of the symbiont ofA. pinnata were characterized by high chlorophylla and low phycocyanin content, a low fluorescence yield of chlorophyll in the heterocysts compared to vegetative cells and a gradient of phycocyanin concentration in the vegetative cells adjacent to heterocysts. This indicates that only photosystem I is present in the heterocyst. In the two otherAzolla species quantitative shifts in the pigment composition occurred suggesting a lower nitrogen fixation activity.In the cyanobiontAnabaena azollae the heterocyst frequency could reach a value of 44–45%. It is argued that there are two generations of heterocysts in a matureAzolla plant, which are concomitant with two peaks of nitrogen fixation activity correlated with leaf age,i.e. leaf number along the main axis of the plant. At both peaks of maximal N2-ase activity, only 20–25% of the heterocysts present are metabolically active as demonstrated by the reduction of Neotetrazolium chloride (NTC) in the heterocysts and darkening of nuclear emulsions by silver salt reduction. Vegetative cells of the cyanobiont reduce Neotetrazolium chloride (NTC) to formazan more rapidly than has been observed in the free-living heterocystous cyanobacteriumAnabaena cylindrica tested in parallel experiments. This feature may be due to a more permeable cell wall of the vegetative cells of the cyanobiont compared to the free-living form, since the vegetative cells of the symbiont play a role in cross-feeding of the host (Azolla).Evidence is obtained that only the heterocysts of the cyanobiont ofAzolla are involved in the nitrogen fixation process as in free-living heterocystous cyanobacterium species. This situation is different from other cyanobacterial symbioses such as inGunnera, Blasia andAnthoceros, where physiological modifications are reported in the symbiosis with another photosynthetic partner such as the absence of O2 evolution and the absence of photo-fixation of CO2 in the cyanobionts.Pigment composition and N2-ase activity in the symbiotic cyanobacteria of three Azolla species have indicated the superiority of theA. pinnata symbiont.A. pinnata var.pinnata is a semidomesticated form used in S.E. Asia for agricultural purposes (irrigated rice culture) to increase soil fertility.It is suggested that by selection (domestication) more efficient strains (clones) can be obtained, and further that with more advanced techniques such as gene mutation and genetic manipulation even more efficient and for agriculture more beneficial clones can be obtained.  相似文献   

12.
Light intensity has a profound effect on the growth of Azolla pinnata R. Brown. Fresh weight, dry weight and moisture content were maximum at 80 000 lux, but maximum frond area was attained in 50% light intensity. There was a wide variation in frond colour under different treatments. Frond texture, root characteristics and sporocarp production were also affected. The plant expresses heliophytic characteristics.  相似文献   

13.
Seven species ofAzolla (A. caroliniana, A. microphylla, A. nilotica, A. filiculoides, A. mexicana, A. rubra, A. pinnata the last from both Malaysia and India) grown in pots of flooded soil were subjected to three different treatments with respect to P: none, single application, split application. The experiments were carried out under greenhouse conditions. Heterocyst frequency inAnabaena azollae and acetylene reducing activity (ARA) were studied in successiveAzolla leaves. Both variables increased from the first leaf (shoot apex) to the last one (before branch) in all species in the presence or absence of P. However, heterocyst frequency, ARA andAzolla biomass were all less in the treatment lacking P. Heterocyst frequency inA. azollae, ARA and biomass ofAzolla were higher when P was applied in split doses than in the other treatments.Azolla plants exhibited more ARA than the isolated leaves.  相似文献   

14.
Summary The productivity of three species of Azolla (A. pinnata, A. filiculoides andA. caroliniana) in outdoor culture has been evaluated at different planting densities. The highest yields were obtained with biomass concentration ranging from 40 to 70g d.w. m–2. The mean productivity over a 90 days period (from May 10th to August 10th) ranged from 10g d.w. m–2 day–1 forA. filiculoides up to 11.5 g d.w. m–2 day–1 forA. caroliniana. The nitrogen content of the dried biomasses was 48.3 mg (g d.w.)–1 forA. pinnata, 51.5mg (g d.w.)–1 forA. filiculoides and 52.3 mg (g d.w.)–1 forA. caroliniana. Very little variations of the nitrogen content of the ferns during the experimental period were observed.The nitrogen-fixing efficiency of the Azolla-Anabaena azollae symbiosis grown in outdoor conditions was evaluated both by direct measurement of the amount of N2 fixed by the culture and by the C2H2-reduction and H2-evolution tests in an air atmosphere. These tests were performed outdoor under the same environmental conditions as the growing cultures. For all the species the ratios of C2H2-reduced to N2-fixed were unexpectedly low, ranging from 2.04 (A. pinnata) to 1.50 (A. caroliniana).The results suggest that the reliability of the C2H2-reduction assay, particularly when applied to complex biological N2-fixing systems, must be re-examined.  相似文献   

15.
The growth of 22 strains of Azolla pinnata R. Br., 3 strains of A. filiculoides Lam. and one strain each of A. mexicana Presl and A. caroliniana Willd. was tested separately in liquid culture media kept in controlled, artificial light (30 klux) growth cabinets. Three temperature levels were used: 33°C (37/29°C day/night), 29°C (33/25°C) and 22°C (26/18°C)/ Photoperiod was 12 h a day.For most A. pinnata strains (except three) and an A. mexicana strain the maximum weekly relative growth rate was higher at 33°C than at 22°C, but not for A. filiculoides and A. caroliniana. The highest value of maximum relative growth rate corresponded to 1.9 doubling days and in most strains this occurred in the first week. As the plants grew, the growth rate slowed down more severely at higher temperatures. The maximum biomass was higher at 22°C than at 33°C in all strains. At 22°C, it took 30–50 days to attain maximum biomass and the highest value was 14 g N m?2 or 320 g dry m?2 by A. caroliniana, followed by 12 g N m?2 or 290 g dry wt. m?2 by one strain of A. filiculoides. At 29°C, the maximum biomass was attained in 20–35 days. The highest value was 6.3 g N m?2 or 154 g dry wt. m?2 by A. caroliniana. At 33°C, most A. pinnata strains gave a maximum biomass of less than 4 g N m?2 after 13–23 days, while some strains grew up to 30 days, resulting in a higher maximum biomass. The highest maximum biomass at 33°C was 5.5 g N m?2 or 140 g m?2 dry wt. by A. pinnata from Cheng Mai while the maximum biomass of A. filiculoides and A. caroliniana was much less. Azolla filiculoides requires lower temperature than other species for its growth. Azolla pinnata has the best tolerance to high temperatures among the four species. Azolla mexicana could not be discriminated from A. pinnata in its response to temperature. Azolla caroliniana may keep an intermediate position between A. filiculoides and A. pinnata in temperature response.The formation of ammonia in the medium was examined and it occurred mostly under stationary growth conditions, but, at 33°C, some strains of A. pinnata and A. mexicana released or formed ammonia at 0.3–0.8 μg N ml?1 per week during their initial exponential growth stage.  相似文献   

16.
Transmission electron microscopy and immunocytological labeling were used to study the distribution and ontological occurrence of dinitrogenase reductase (Fe-protein) of nitrogenase in cyanobacterial symbionts within young leaves of the water-ferns Azolla filiculoides Lamarck, A. caroliniana Willdenow, and A. pinnata R. Brown. Rabbit anti-dinitrogenase reductase antisera and goat anti-rabbit-immunoglobulin G antibody conjugated to colloidal gold were used as probes. Western blot analyses showed that a polypeptide of approx. 36 kDa (kdalton) was recognized in the symbionts of all three Azolla species and that the polyclonal sera used were monospecific. In all symbionts, nitrogenase was immunologically recognizable within heterocysts. It was absent from vegetative cells, and also from the akinetes of the A. caroliniana and A. pinnata symbionts. The differentiation of vegetative cells into heterocysts in all three symbionts was initiated by formation of additional external cell-wall layers and narrowing of the neck followed by loss of glycogen, mild vesiculation of thylakoid membranes, and the appearance of polar nodules. No nitrogenase was detected at these early stages, but it appeared in the intermediate proheterocyst stage concomitantly with the formation of contorted membranes, and reached the strongest labeling in mature heterocysts, containing extensive tightly packed membranes. Nitrogenase was evenly distributed throughout heterocysts except at the polar regions, which contained honey-comb configurations and large polar nodules. With increased age of the A. caroliniana and A. pinnata symbionts, heterocysts became highly vesiculated, with a concomitant decrease in the amount of nitrogenase detected.Abbreviations IgG Immunoglobulin G - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate - TEM transmission electron micrograph  相似文献   

17.
Photoperiod has a profound effect on the growth of Azolla pinnata. Fresh mass, dry mass and moisture content were maximum in 12 h and minimum in 0 h (dark) photoperiod. Frond colour, root characteristics and sporocarp production were also affected under different treatments. The plants were capable of growing under continuous illumination and unnatural photoperiods.  相似文献   

18.
Summary A pot experiment was carried out using a Bangladesh sandy loam paddy soil of pH 6.9 to compare the rates at which nitrogen from Azolla and ammonium sulphate was available to a high yielding rice variety, IR8, grown for 60 days in pots with 4 cm standing flood water.15N tracer studies confirm that nitrogen from ammonium sulphate was more available to the rice plants than from Azolla. An application of 6, 9 and 18 mg N of Azolla pot–1 (each pot contained 250 g soil) increased shoot dry matter yields by 13, 29 and 49% for an uptake of 19, 36 and 85% more nitrogen; the corresponding increases on using ammonium sulphate were 33, 54 and 114% for an increased uptake of 57, 90 and 177% more nitrogen, respectively. About 34% of applied15N of Azolla was taken up by the rice plants in 60 days but 61% of15N of the ammonium sulphate was absorbed during this period. About 45% of the Azolla-N was released in 60 days, 55% remained in the soils as undecomposed material and 11% was lost as gas. The gaseous loss of15N from ammonium sulphate was 14%; 25% remained in the soils.  相似文献   

19.
Summary A field experiment was conducted and studied the effect of nitrogen and phosphorus on ammonia assimilating enzymes of Azolla. Nitrogen and phosphorus at 30 and 60 kg/ha respectively were tested andAzolla pinnata was inoculated at 200 g/m2. The Azolla samples were drawn on 24th hr, 7th day and 14th day and the ammonia assimilating enzymes glutamine synthetase (GS), glutamate synthase (GOGAT) and glutamine dehydrogenase (GDH) were estimated. Nitrogen and phosphorus have markedly suppressed the GDH activity but fertilizer nitrogen has no significant influence in inhibiting the enzyme activity of GOGAT and GS. In general phosphorus application also has stimulated the GS activity significantly during the first sampling period of 24th hour.  相似文献   

20.
J. H. Becking 《Plant and Soil》1987,100(1-3):183-212
Summary The survival of Azolla was studied in an artificial system which simulated the soil/water interface and the desiccation of soil during a fallow period in lowland rice culture. Tests with non-sporulating and sporulating Azolla fronds showed that Azolla only survives with sporulated fronds. At their reappearance the Azolla fronds already harboured the Anabaena endophyte. A detailed light microscopic and transmission electron microscopic study of macro- and micros-porocarp formation and development revealed that the endophyte is transmitted by the macrosporocarps and not by the microsporocarps. The Anabaena cells within the macrosporocarps are found just below the indusium cap. These cells are not nitrogen-fixing akinetes. The free-living Anabaena cells at the stem apex and below the overarching developing leaves do not bear heterocysts and accordingly are non nitrogen-fixing. During the development of the leaf the Anabaena enters the leaf cavity, but later the pore of this, cavity closes and the imprisoned cyanobacteria are lysed before the leaf decays. As the Azolla leaves age a nitrogen-fixing capability is successively built up concomittantly with the production of heterocysts. Heterocyst frequencies of 40–50% can be found inAnabaena azollae. Usually a gradient of nitrogen-fixing capacity occurs along the Azolla rhizome with two distinct peaks at leaf number 7/8 and at leaf number 13/14 from the apex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号