首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evidence is presented that inStaphylococcus aureus mannitol is metabolized by phosphorylation to mannitol-1-phosphate and subsequent dehydrogenation to fructose-6-phosphate. Both mechanisms were equally active in a coagulase-positive and a coagulase-negative strain. Mannitol metabolism is inducible, both mannitol and sorbitol acting as inducers. No evidence for unphosphorylated mannitol breakdown could be found.  相似文献   

2.
The effects of mannitol were investigated by comparing some metabolic features in colonial derivatives, I-110 and L1-110, ofRhizobium japonicum strain 3IIb110, grown either on glucose alone (G-cells) or in glucose media supplemented with mannitol (GM-cells). The polyol stimulated the synthesis of not only mannitol dehydrogenase, which is active in derivative L1-110, but also the nicotinamide adenine dinucleotide (NAD)-linked 6-phosphogluconate (6-PG) dehydrogenase (EC 1.1.1.43). As revealed by radiorespirometry, when GM-cells were allowed to metabolize glucose, they produced relatively more CO2 from the first and sixth carbons of the sugar than G-cells did. This finding is evidence that NAD-linked 6-PG dehydrogenase might initiate an unknown pathway different from the hexose cycle and the pentose phosphate (PP) pathway. Mannitol exerted no allosteric control on the oxygen consumption and the glucose transport systems. Active uptake of the polyol was correlated with the presence of mannitol dehydrogenase (EC 1.1.1.67); it did not hinder the transport of glucose even though both systems derive their energy for active transport from a common source presumptively characterized as the energized membrane state. Mannitol, however, suppressed by two- or threefold the glucose uptake system. Addition of the polyol to the cell suspensions of both colonial types ofR. japonicum metabolizing glucose caused an immediate 40–50% drop of adenosine triphosphate (ATP) concentrations, owing in part to the mannitol kinase reaction. Type I-110 failed to overcome this reduction of ATP levels, and low growth rates could results. In contrast, type L1-110 offsets the reduction of ATP concentration by oxidizing mannitol as an additional source of energy through mannitol dehydrogenase, fructokinase, and a sequence of glycolytic reactions. The polyol also induced type L1-110 to produce extracellular slimy materials that, apparently, harbor amounts of ATP and proteins.  相似文献   

3.
Mannitol dehydrogenase, a mannitol:mannose 1-oxidoreductase, constitutes the first enzymatic step in the catabolism of mannitol in nonphotosynthetic tissues of celery (Apium graveolens L.). Endogenous regulation on the enzyme activity in response to environmental cues is critical in modulating tissue concentration of mannitol, which, importantly, contribute to stress tolerance of celery. The enzyme was purified to homogeneity from celery suspension cultures grown on D-mannitol as the carbon source. Mannitol dehydrogenase was purified 589-fold to a specific activity of 365 mumol h-1 mg-1 protein with a 37% yield of enzyme activity present in the crude extract. A highly efficient and simple purification protocol was developed involving polyethylene glycol fractionation, diethylaminoethyl-anion-exchange chromatography, and NAD-agarose affinity chromatography using NAD gradient elution. Sodium dodecylsulfate gel electrophoresis of the final preparation revealed a single 40-kD protein. The molecular mass of the native protein was determined to be approximately 43 kD, indicating that the enzyme is a monomer. Polyclonal antibodies raised against the enzyme inhibited enzymatic activity of purified mannitol dehydrogenase. Immunoblots of crude protein extracts from mannitol-grown celery cells and sink tissues of celery, celeriac, and parsley subjected to sodium dodecyl sulfate gel electrophoresis showed a single major immuno-reactive 40-kD protein.  相似文献   

4.
Biotechnological production of mannitol and its applications   总被引:1,自引:0,他引:1  
Mannitol, a naturally occurring polyol (sugar alcohol), is widely used in the food, pharmaceutical, medical, and chemical industries. The production of mannitol by fermentation has become attractive because of the problems associated with its production chemically. A number of homo- and heterofermentative lactic acid bacteria (LAB), yeasts, and filamentous fungi are known to produce mannitol. In particular, several heterofermentative LAB are excellent producers of mannitol from fructose. These bacteria convert fructose to mannitol with 100% yields from a mixture of glucose and fructose (1:2). Glucose is converted to lactic acid and acetic acid, and fructose is converted to mannitol. The enzyme responsible for conversion of fructose to mannitol is NADPH- or NADH-dependent mannitol dehydrogenase (MDH). Fructose can also be converted to mannitol by using MDH in the presence of the cofactor NADPH or NADH. A two enzyme system can be used for cofactor regeneration with simultaneous conversion of two substrates into two products. Mannitol at 180 g l−1 can be crystallized out from the fermentation broth by cooling crystallization. This paper reviews progress to date in the production of mannitol by fermentation and using enzyme technology, downstream processing, and applications of mannitol.  相似文献   

5.
Mannitol metabolism was evaluated in fruiting bodies of Lentinus edodes. Cell extracts were prepared from fruiting bodies, and key enzymes involved in mannitol metabolism were assayed, including hexokinase, mannitol dehydrogenase, mannitol-1-phosphate dehydrogenase, mannitol-1-phosphatase, and fructose-6-phosphatase. Mannitol dehydrogenase, fructose-6-phosphatase, mannitol-1-phosphatase, and hexokinase activities were found in extracts of fruiting bodies. However, mannitol-1-phosphate dehydrogenase activity was not detected. Mycelial cultures were grown in an enriched liquid medium, and enzymes of the mannitol cycle were assayed in cell extracts of rapidly growing cells. Mannitol-1-phosphate dehydrogenase activity was also not found in mycelial extracts. Hence, evidence for a complete mannitol cycle both in vegetative mycelia and during mushroom development was lacking. The pathway of mannitol synthesis in L. edodes appears to utilize fructose as an intermediate.  相似文献   

6.
Mannitol is a 6-carbon polyol that is among the most abundant biochemical compounds in the biosphere. Mannitol has been ascribed a multitude of roles in filamentous fungi including carbohydrate storage, reservoir of reducing power, stress tolerance and spore dislodgement and/or dispersal. The advancement of genetic manipulation techniques in filamentous fungi has rapidly accelerated our understanding of the roles and metabolism of mannitol. The targeted deletion of genes encoding proteins of mannitol metabolism in several fungi, including phytopathogens, has proven that the metabolism of mannitol does not exist as a cycle and that many of the postulated roles are unsupported. These recent studies have provided a much needed focus on this mysterious metabolite and make this a fitting time to review the roles and metabolism of mannitol in filamentous fungi.  相似文献   

7.
Mannitol is a sugar polyol claimed to have health-promoting properties. A mannitol-producing strain of Lactococcus lactis was obtained by disruption of two genes of the phosphoenolpyruvate (PEP)-mannitol phosphotransferase system (PTS(Mtl)). Genes mtlA and mtlF were independently deleted by double-crossover recombination in strain L. lactis FI9630 (a food-grade lactate dehydrogenase-deficient strain derived from MG1363), yielding two mutant (Delta ldh Delta mtlA and Delta ldh Delta mtlF) strains. The new strains, FI10091 and FI10089, respectively, do not possess any selection marker and are suitable for use in the food industry. The metabolism of glucose in nongrowing cell suspensions of the mutant strains was characterized by in vivo (13)C-nuclear magnetic resonance. The intermediate metabolite, mannitol-1-phosphate, accumulated intracellularly to high levels (up to 76 mM). Mannitol was a major end product, one-third of glucose being converted to this hexitol. The double mutants, in contrast to the parent strain, were unable to utilize mannitol even after glucose depletion, showing that mannitol was taken up exclusively by PEP-PTS(Mtl). Disruption of this system completely blocked mannitol transport in L. lactis, as intended. In addition to mannitol, approximately equimolar amounts of ethanol, 2,3-butanediol, and lactate were produced. A mixed-acid fermentation (formate, ethanol, and acetate) was also observed during growth under controlled conditions of pH and temperature, but mannitol production was low. The reasons for the alteration in the pattern of end products under nongrowing and growing conditions are discussed, and strategies to improve mannitol production during growth are proposed.  相似文献   

8.
Mannitol kinase and mannitol-1-phosphate dehydrogenase activities were detected in two Micromonospora isolates. The presence of these enzyme activities indicates that mannitol is catabolized first to mannitol-1-phosphate and then to fructose-6-phosphate. Mannitol-oxidizing enzymes were also surveyed in representative species of four other genera of actinomycetes. Mannitol-1-phosphate dehydrogenase was detected in cell-free extracts of Streptomyces lactamdurans. In contrast, cell-free extracts of Mycobacterium smegmatis, Nocardia erythrophila, Streptomyces lavendulae, and Actinoplanes missouriensis contained mannitol dehydrogenase activity but no detectable mannitol-1-phosphate dehydrogenase activity. The mannitol dehydrogenase activities in the latter species support the operation of a pathway for catabolism of mannitol that involves the oxidation of mannitol to fructose, followed by phosphorylation to fructose-6-phosphate.  相似文献   

9.
Mannitol kinase and mannitol-1-phosphate dehydrogenase activities were detected in two Micromonospora isolates. The presence of these enzyme activities indicates that mannitol is catabolized first to mannitol-1-phosphate and then to fructose-6-phosphate. Mannitol-oxidizing enzymes were also surveyed in representative species of four other genera of actinomycetes. Mannitol-1-phosphate dehydrogenase was detected in cell-free extracts of Streptomyces lactamdurans. In contrast, cell-free extracts of Mycobacterium smegmatis, Nocardia erythrophila, Streptomyces lavendulae, and Actinoplanes missouriensis contained mannitol dehydrogenase activity but no detectable mannitol-1-phosphate dehydrogenase activity. The mannitol dehydrogenase activities in the latter species support the operation of a pathway for catabolism of mannitol that involves the oxidation of mannitol to fructose, followed by phosphorylation to fructose-6-phosphate.  相似文献   

10.
, and 1992. Mannitol metabolism in Eimeria tenella. International Journal for Parasitology 22: 1157–1163. Unsporulated oocysts of Eimeria tenella contain large quantities of carbohydrates, namely amylopectin, mannitol and glucose. Analysis of the carbohydrate content of sporulating oocysts revealed that mannitol content increased markedly during early stages of sporogony (first 4–6 h) but slowly diminished during the next 40 h of sporulation. Accumulation of mannitol was accompanied by a rapid decrease in amylopectin and free glucose, suggesting that mannitol might be synthesized from glucose released from amylopectin. Mannitol was also detected in sporozoite and merozoite extracts. All four mannitol cycle enzymes were detected in oocysts. Sporozoites excysted in vitro had lower activities of all four enzymes. Mannitol-1 -phosphatase and mannitol dehydrogenase activity was also detected in merozoites obtained from the second stage schizonts. Sporozoites incubated with 14C-glucose accumulated radioactively labelled precursor continuously for over 12 h and some of the 14C-glucose was converted into 14C-mannitol. These results indicate that mannitol plays an important role in the metabolism and development of the intracellular stages of the parasite.  相似文献   

11.
Mannitol is a natural polyol extensively used in the food industry as low-calorie sugar being applicable for diabetic food products. We aimed to evaluate mannitol production by Lactobacillus reuteri CRL 1101 using sugarcane molasses as low-cost energy source. Mannitol formation was studied in free-pH batch cultures using 3-10% (w/v) molasses concentrations at 37?°C and 30?°C under static and agitated conditions during 48?h. L. reuteri CRL 1101 grew well in all assayed media and heterofermentatively converted glucose into lactic and acetic acids and ethanol. Fructose was used as an alternative electron acceptor and reduced it to mannitol in all media assayed. Maximum mannitol concentrations of 177.7?±?26.6 and 184.5?±?22.5?mM were found using 7.5% and 10% molasses, respectively, at 37?°C after 24-h incubation. Increasing the molasses concentration from 7.5% up to 10% (w/v) and the fermentation period up to 48?h did not significantly improve mannitol production. In agitated cultures, high mannitol values (144.8?±?39.7?mM) were attained at 8?h of fermentation as compared to static ones (5.6?±?2.9?mM), the highest mannitol concentration value (211.3?±?15.5?mM) being found after 24?h. Mannitol 2-dehydrogenase (MDH) activity was measured during growth in all fermentations assayed; the highest MDH values were obtained during the log growth phase, and no correlation between MDH activities and mannitol production was observed in the fermentations performed. L. reuteri CRL 1101 successfully produced mannitol from sugarcane molasses being a promising candidate for microbial mannitol synthesis using low-cost substrate.  相似文献   

12.
Candida magnoliae HH-01, a yeast strain that is currently used for the industrial production of mannitol, has the highest mannitol production ever reported for a mannitol-producing microorganism. However, when the fructose concentration exceeds 150 g/L, the volumetric mannitol production rate decreases because of a lag in mannitol production, and the yield decreases as a result of the formation of side products. In fed-batch culture, the volumetric production rate and mannitol yield from fructose vary substantially with the fructose concentration and are maximal at a controlled fructose concentration of 50 g/L. In continuous feeding experiments, the maximum mannitol yield was 85% (g/g) at a glucose/fructose feeding ratio of 1/20. A high glucose concentration in the production phase resulted in the formation of ethanol followed by a decrease in yield and productivity. NAD(P)H-dependent mannitol dehydrogenase was purified to homogeneity from C. magnoliae. In vitro, mannitol dehydrogenase was inhibited by increasing ethanol concentration. Mannitol product was also found to be inhibitory with a K(i) of 183 mM. Under optimum conditions, a final mannitol production of 213 g/L was obtained from 250 g fructose/L after 110 h.  相似文献   

13.
Mannitol has been widely used in fine chemicals, pharmaceutical industries, as well as functional foods due to its excellent characteristics, such as antioxidant protecting, regulation of osmotic pressure and non-metabolizable feature. Mannitol can be naturally produced by microorganisms. Compared with chemical manufacturing, microbial production of mannitol provides high yield and convenience in products separation; however the fermentative process has not been widely adopted yet. A major obstacle to microbial production of mannitol under industrial-scale lies in the low economical efficiency, owing to the high cost of fermentation medium, leakage of fructose, low mannitol productivity. In this review, recent advances in improving the economical efficiency of microbial production of mannitol were reviewed, including utilization of low-cost substrates, strain development for high mannitol yield and process regulation strategies for high productivity.  相似文献   

14.
The most efficient substrate for mannitol production by Candida magnoliae HH-01 is fructose; glucose and sucrose can also be converted into mannitol but with lower conversion yields. Mannitol dehydrogenase was purified and characterized; it had the highest activity with fructose as the substrate and used only NADPH. In fed-batch fermentation with glucose, the production of mannitol from fructose ceased when the glucose was exhausted but it was reinitiated with the addition of glucose, implying that glucose plays an important role in NADPH regeneration.  相似文献   

15.
《Trends in biotechnology》2023,41(6):745-749
Mannitol is a readily accessible component of seaweed with higher energy content than glucose, making it a promising feedstock for biomanufacturing. Microorganisms have been engineered for converting mannitol into various bioproducts. Microbial strain discovery and synthetic biology approach will advance biomanufacturing using mannitol and other complex components of marine biomass.  相似文献   

16.
Mannitol dehydrogenase (MDH) was purified and characterised from Lactobacillus sanfranciscensis. Two peptide fragments of MDH were N-terminally sequenced for the first time in the genus Lactobacillus. The purified enzyme had an apparent molecular mass of 44 kDa and catalysed both the reduction of fructose to mannitol and the oxidation of mannitol to fructose. The K(m) value for the reduction reaction was 24 mM fructose and that for the oxidation 78 mM mannitol. The optimum temperature was 35 degrees C, the pH optima for the reduction or oxidation were 5.8 and 8, respectively.  相似文献   

17.
Mannitol is a naturally occurring low calorie sweetener, widely used in the food, pharmaceutical, medicine and chemical industries. In this study mannitol producing strains of Leuconostoc spp. (210) were isolated from a wide array of sources such as raw milk, fermented milks, fermented cereal foods, fruits, vegetables and sugar factory syrup. During initial screening, half of the population of these isolates (105) exhibited ability to produce mannitol to a variable extent. Only 11.4% isolate produced mannitol yield of above 80% (when fructose used @ 50 g/l). Cultural and environmental factors affecting growth and mannitol production were studied for four high mannitol producing isolates. High mannitol production was favored by high temperature and high pH. Isolates had high osmotic tolerance as these could use fructose concentration as high as 100 g/l in batch culture. Sequencing of 16S rRNA genes of the strains revealed that Ln27, Ln104 and Ln206 were Leuconostoc mesenteroides and Ln92 was Leuconostoc fallax.  相似文献   

18.
A comparison of the growth rates of established human lymphoid and tumor cell lines was performed in nutrient medium made hyperosmolal with mannitol, NaCl, or mixtures of NaCl and KCl at a constant Na/K ratio. It was found that considerably higher osmolalities were attained with mannitol than electrolytes before a reduction in the growth rate of the culture was observed. This suggests that mannitol and electrolytes affected the growth rate through different mechanisms. Mannitol uptake was studied with two of the cell lines and both cell lines were found to be permeable to mannitol. This eventually would have eliminated the osmolality gradient between the interior of the cell and the medium, and could explain why higher osmolalities were obtained with mannitol before the growth rate was effected. In addition, initial experiments showed that these cell lines may also be able to metabolize mannitol.  相似文献   

19.
Mannitol is a fructose-derived, 6-carbon sugar alcohol that is widely found in bacteria, yeasts, fungi, and plants. Because of its desirable properties, mannitol has many applications in pharmaceutical products, in the food industry, and in medicine. The current mannitol chemical manufacturing process yields crystalline mannitol in yields below 20 mol% from 50% glucose/50% fructose syrups. Thus, microbial and enzymatic mannitol manufacturing methods have been actively investigated, in particular in the last 10 years. This review summarizes the most recent advances in biological mannitol production, including the development of bacterial-, yeast-, and enzyme-based transformations.  相似文献   

20.
Mannitol dehydrogenase, NADP specific (EC 1.1.1.138), was purified from mycelium of Aspergillus parasiticus (1-11-105 Whl). The enzyme had a molecular weight of 1.4 X 10(5) and was composed of four subunits of apparently equal size. The substrate specificity was limited to D-mannitol, D-glucitol, D-arabinitol, 1-deoxy-D-mannitol, and 1-deoxy-D-glucitol. Zinc ion was a powerful inhibitor of the enzyme, inhibition being competitive with respect to mannitol, with Ki and 1 microM. It is proposed that the stimulation of polyketide synthesis by zinc ion may be mediated in part by inhibition of mannitol dehydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号