共查询到20条相似文献,搜索用时 15 毫秒
1.
Crystalline firefly luciferase 总被引:13,自引:0,他引:13
2.
Bakhtiarova A Taslimi P Elliman SJ Kosinski PA Hubbard B Kavana M Kemp DM 《Biochemical and biophysical research communications》2006,351(2):481-484
The potential therapeutic value of resveratrol in age-related disease settings including cancer, diabetes, and Alzheimer's has emerged from a rapidly growing body of experimental evidence. Protection from oxidative stress appears to be a common feature of resveratrol that may be mediated through SirT1, though more specific molecular mechanisms by which resveratrol mediates its effects remain unclear. This has prompted an upsurge in cell-based mechanistic studies, often incorporating reporter assays for pathway elucidation in response to resveratrol treatment. Here, we report that resveratrol potently inhibits firefly luciferase with a K(i) value of 2microM, and caution that this confounding element may lead to compromised data interpretation. 相似文献
3.
Catalytic subunit of firefly luciferase 总被引:4,自引:0,他引:4
4.
Pseudo-allosteric behavior of firefly luciferase 总被引:2,自引:0,他引:2
5.
6.
The Limulus reaction is an application of the defense mechanism of horseshoe crab for endotoxin detection. Endotoxin is a component of the cell wall in the outer membrane of gram-negative bacteria, and causes fever or shock when it enters the human blood stream. For endotoxin detection, gel formation or turbidity of the coagulation factor chromogen or fluorescence-modified peptide is used. However, these conventional methods have problems with regard to their measurement time or sensitivity. We recently obtained a mutant firefly luciferase that has a luminescence intensity over 10-fold higher than that of the wild type. Therefore, we developed a new endotoxin detection method that combines the Limulus reaction and bioluminescence using mutant luciferase. The new method detects 0.0005 EU/ml of endotoxin within 15 min. 相似文献
7.
In the presence of ATP, luciferin (LH2), Mg2+ and pyrophosphatase, the firefly (Photinus pyralis) luciferase synthesizes diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) through formation of the E-LH2-AMP complex and transfer of AMP to ATP. The maximum rate of the synthesis is observed at pH 5.7. The Km values for luciferin and ATP are 2-3 microM and 4 mM, respectively. The synthesis is strictly dependent upon luciferin and a divalent metal cation. Mg2+ can be substituted with Zn2+, Co2+ or Mn2+, which are about half as active as Mg2+, as well as with Ni2+, Cd2+ or Ca2+, which, at 5 mM concentration, are 12-20-fold less effective than Mg2+. ATP is the best substrate of the above reaction, but it can be substituted with adenosine 5'-tetraphosphate (p4A), dATP, and GTP, and thus the luciferase synthesizes the corresponding homo-dinucleoside polyphosphates:diadenosine 5',5"'-P1,P5-pentaphosphate (Ap5A), dideoxyadenosine 5',5"'-P1,P4-tetraphosphate (dAp4dA) and diguanosine 5',5"'-P1,P4-tetraphosphate (Gp4G). In standard reaction mixtures containing ATP and a different nucleotide (p4A, dATP, adenosine 5'-[alpha,beta-methylene]-triphosphate, (Ap[CH2]pp), (S')-adenosine-5'-[alpha-thio]triphosphate [Sp)ATP[alpha S]) and GTP], luciferase synthesizes, in addition to Ap4A, the corresponding hetero-dinucleoside polyphosphates, Ap5A, adenosine 5',5"'-P1,P4-tetraphosphodeoxyadenosine (Ap4dA), diadenosine 5',5"'-P1,P4-[alpha,beta-methylene] tetraphosphate (Ap[CH2]pppA), (Sp-diadenosine 5',5"'-P1,P4-[alpha-thio]tetraphosphate [Sp)Ap4A[alpha S]) and adenosine-5',5"'-P1,P4-tetraphosphoguanosine (Ap4G), respectively. Adenine nucleotides, with at least a 3-phosphate chain and with an intact alpha-phosphate, are the preferred substrates for the formation of the enzyme-nucleotidyl complex. Nucleotides best accepting AMP from the E-LH2-AMP complex are those which contain at least a 3-phosphate chain and an intact terminal pyrophosphate moiety. ADP or other NDP are poor adenylate acceptors as very little diadenosine 5',5"'-P1,P3-triphosphate (Ap3A) or adenosine-5',5"'-P1,P3-triphosphonucleosides (Ap3N) are formed. In the presence of NTP (excepting ATP), luciferase is able to split Ap4A, transferring the resulting adenylate to NTP, to form hetero-dinucleoside polyphosphates. In the presence of PPi, luciferase is also able to split Ap4A, yielding ATP. The cleavage of Ap4A in the presence of Pi or ADP takes place at a very low rate. The synthesis of dinucleoside polyphosphates, catalyzed by firefly luciferase, is compared with that catalyzed by aminoacyl-tRNA synthetases and Ap4A phosphorylase. 相似文献
8.
Mehrabi M Hosseinkhani S Ghobadi S 《International journal of biological macromolecules》2008,43(2):187-191
The effects of osmolytes, including sucrose, sorbitol and proline on the remaining activity of firefly luciferase were measured. Heat inactivation studies showed that these osmolytes maintain the remaining activity of enzyme and increase activation energy of thermal unfolding reaction. Fluorescence and circular dichroism (CD) experiments showed changes in secondary and tertiary structure of firefly luciferase, in the presence of sucrose, sorbitol and proline. The unfolding curves of luciferase (obtained by far-UV CD spectra), indicated an irreversible thermal denaturation and raising of the midpoint of the unfolding transition temperature (T(m)) in the presence of osmolytes. 相似文献
9.
The temporal pattern of light production by firefly luciferase depends on the ATP concentration. With low concentrations of ATP a constant production of light occurred while at high concentrations of ATP (greater than 10 microM) there was a flash of light followed by a decline in light production. This time course of light production with high ATP concentrations was changed from the flash pattern to a pattern with a constant production of light by several cytidine nucleotides. CTP, CDP, dCTP, dCDP, dideoxyCTP, periodate-oxidized CTP and CDP, and the etheno derivatives of CTP and CDP produced that change. CMP, cytidine, CDP-glycerol, CDP-glucose, CDP-ethanolamine, and benzoylbenzoylCTP either were inhibitory to firefly luciferase or were not effective in changing the flash time course. Coenzyme A and related compounds also changed the time course of light production. The changes in time course produced by either cytidine nucleotides or CoA were inhibited by desulfoCoA. These compounds apparently enhanced light production by promoting the dissociation of the inhibitory product, oxidized luciferin, from the enzyme. When the activating compounds were used with high concentrations of ATP, the sensitivity of assay for firefly luciferase was increased. This increased sensitivity is important when using the firefly luciferase gene as a reporter. 相似文献
10.
The kinetic properties of collagen-bound firefly luciferase have been investigated. Under definite hydrodynamic conditions with low agitation in the reaction medium, the observed behavior is modified compared to the enzyme free in solution: reducing the stirring rate decreases the observed enzymatic activity. But diffusional resistances alone cannot account for these atypical kinetics though mass transfer may certainly play an important role during the transient state of the bioluminescent reaction. After immobilization, the time necessary to reach the steady state increased from 300 ms to 3 min and the two substrates, luciferin and ATP, behave differently with respect to the enzyme: The nature of the saturating substrate first in contact with the bound enzyme is not indifferent suggesting that immobilization can reveal behaviors or mechanisms which are not visualized with the free enzyme. 相似文献
11.
Nucleoside triphosphate specificity of firefly luciferase 总被引:7,自引:0,他引:7
Twelve naturally occurring nucleoside triphosphates have been examined as substrates and inhibitors of the light-producing reaction of firefly luciferase. Deoxyadenosine 5'-triphosphate was 1.7% as effective relative to ATP as a substrate, whereas all others tested were less than 0.1% as effective as ATP. At concentrations normally present in mammalian cell extracts no interference with ATP measurements results from these nucleotides. 相似文献
12.
Keyaerts M Remory I Caveliers V Breckpot K Bos TJ Poelaert J Bossuyt A Lahoutte T 《PloS one》2012,7(1):e30061
Bioluminescence imaging is routinely performed in anesthetized mice. Often isoflurane anesthesia is used because of its ease of use and fast induction/recovery. However, general anesthetics have been described as important inhibitors of the luciferase enzyme reaction.
Aim
To investigate frequently used mouse anesthetics for their direct effect on the luciferase reaction, both in vitro and in vivo.Materials and Methods
isoflurane, sevoflurane, desflurane, ketamine, xylazine, medetomidine, pentobarbital and avertin were tested in vitro on luciferase-expressing intact cells, and for non-volatile anesthetics on intact cells and cell lysates. In vivo, isoflurane was compared to unanesthetized animals and different anesthetics. Differences in maximal photon emission and time-to-peak photon emission were analyzed.Results
All volatile anesthetics showed a clear inhibitory effect on the luciferase activity of 50% at physiological concentrations. Avertin had a stronger inhibitory effect of 80%. For ketamine and xylazine, increased photon emission was observed in intact cells, but this was not present in cell lysate assays, and was most likely due to cell toxicity and increased cell membrane permeability. In vivo, the highest signal intensities were measured in unanesthetized mice and pentobarbital anesthetized mice, followed by avertin. Isoflurane and ketamine/medetomidine anesthetized mice showed the lowest photon emission (40% of unanesthetized), with significantly longer time-to-peak than unanesthetized, pentobarbital or avertin-anesthetized mice. We conclude that, although strong inhibitory effects of anesthetics are present in vitro, their effect on in vivo BLI quantification is mainly due to their hemodynamic effects on mice and only to a lesser extent due to the direct inhibitory effect. 相似文献13.
14.
César Ribeiro Joaquim C G Esteves da Silva 《Photochemical & photobiological sciences》2008,7(9):1085-1090
The inhibition mechanisms of the firefly luciferase (Luc) by the two major products of the reactions catalysed by Luc, oxyluciferin and dehydroluciferyl-adenylate (L-AMP), were investigated. Light production in the presence and absence of these inhibitors (0.5 to 2 muM oxyluciferin; 0.0025 to 1.25 muM L-AMP) has been measured in 50 mM Hepes buffer (pH = 7.5), 10 nM Luc, 250 muM ATP and d-Luciferin (from 3.75 up to 120 muM). Nonlinear regression analysis with the appropriate kinetic models (Henri-Michaelis-Menten and William-Morrison equations) reveals that oxyluciferin is a competitive inhibitor of luciferase (K(i) = 0.50 +/- 0.03 muM) while L-AMP act as a tight-binding competitive inhibitor (K(i) = 3.8 +/- 0.7 nM). The K(m) values obtained both for oxyluciferin and L-AMP were 14.7 +/- 0.7 and 14.9 +/- 0.2 muM, respectively. L-AMP is a stronger inhibitor of Luc than oxyluciferin and the major responsible for the characteristic flash profile of in vitro Luc bioluminescence. 相似文献
15.
A Thompson J Nigro H H Seliger 《Biochemical and biophysical research communications》1986,140(3):888-894
Firefly luciferase is inactivated by singlet oxygen at near diffusion controlled rates, 1.9 X 10(9) M-1 s-1, based on direct comparison with the oxidation of L-histidine. The inactivation kinetics are multiphasic. Inactivation is inhibitable by NaN3. Surface-separated-sensitizer (SSS) system in which singlet oxygen is produced above an air gap separating the reaction solution from the Rose Bengal sensitizer, ensuring only Type II reactions, was compared with a Sensitox II system in which the polymer bound Rose Bengal is contained in the reaction solution and both Type I and Type II reactions can occur. A slight stabilization is afforded by MgSO4. 相似文献
16.
The time course of the bioluminescence obtained with a partially purified firefly luciferase preparation has been studied. At ATP levels less than 10?6m the light emission could be maintained essentially constant for several minutes, if the luciferase was not subjected to product inhibition or other inactivating processes. This could be achieved by performing the reaction at appropriate pH and concentration of luciferin and luciferase. Under these conditions continuous measurement of light emission may be used for nondestructive monitoring of ATP-converting reactions, since the emission will be proportional to the ATP concentration in each instant. The continuous monitoring of ATP concentration by firefly luciferase was used for kinetic determination of enzymes and metabolites and for endpoint analysis of metabolites. It was found to be extremely sensitive and convenlent for routine applications. 相似文献
17.
Xu Q Xie Z Ding J Lin SX Xu G 《Protein science : a publication of the Protein Society》2004,13(7):1851-1858
The reactivation efficiency in the refolding of denatured luciferase in the presence and the absence of monoclonal antibodies (mAbs) has been studied. Luciferase could be partially reactivated when the protein was denatured in high concentrations of guanidium chloride (GdmCl; >4.5 M) and the refolding was carried out in very low protein concentrations. The refolding yield was, however, significantly lower when it was performed on luciferase that had been denatured with lower concentrations of GdmCl. The efficiency of refolding decreases when the formation of aggregates increases. Three of the five luciferase mAbs tested (4G3, N2E3, S2G10) dramatically increased the yield of reactivation and simultaneously eliminated the formation of aggregates. It is proposed that these mAbs assisted the refolding of luciferase by binding to the exposed hydrophobic surface of the refolding intermediate, thus preventing it from aggregating. The epitopes interacting with these refolding-assisting mAbs are all located in the A-subdomain of the N-terminal region of luciferase. These results have also shed light on the structural features of the intermediate and its interface involved in protein aggregate formation, contributing to the understanding of the protein folding mechanism. 相似文献
18.
《Journal of Molecular Catalysis .B, Enzymatic》2011,70(3-4):140-146
Recently, we found that firefly luciferase exhibited (R)-enantioselective thioesterification activity toward 2-arylpropanoic acids. In the case of Japanese firefly luciferase from Luciola lateralis (LUC-H), the E-value for ketoprofen was approximately 20. In this study, we used a spectrophotometric method to measure the catalytic activity of LUC-H. Using this method allowed us to judge the reaction efficiency easily. Our results confirmed that LUC-H exhibits enantioselective thioesterification activity toward a series of 2-arylpropanoic acids. The highest activity was observed with ketoprofen. We also observed high enzymatic activity of LUC-H toward long-chain fatty acids. These results were reasonable because LUC-H is homologous with long-chain acyl-CoA synthetase. To obtain further information about the enantiodifferentiation mechanism of the LUC-H catalyzed thioesterification of ketoprofen, we determined the kinetic parameters of the reaction relative to each of its three substrates: ketoprofen, ATP, and coenzyme A (CoASH). We found that whereas the affinities of each compound are not affected by the chirality of ketoprofen, enantiodifferentiation is achieved by a chirality-dependent difference in the kcat parameter. 相似文献
19.
Inoue Y Sheng F Kiryu S Watanabe M Ratanakanit H Izawa K Tojo A Ohtomo K 《Molecular imaging》2011,10(5):377-385
Gaussia luciferase (Gluc) is a secreted reporter, and its expression in living animals can be assessed by in vivo bioluminescence imaging (BLI) or blood assays. We characterized Gluc as an in vivo reporter in comparison with firefly luciferase (Fluc). Mice were inoculated subcutaneously with tumor cells expressing both Fluc and Gluc and underwent Fluc BLI, Gluc BLI, blood assays of Gluc activity, and caliper measurement. In Gluc BLI, the signal from the tumor peaked immediately and then decreased rapidly. In the longitudinal monitoring, all measures indicated an increase in tumor burden early after cell inoculation. However, the increase reached plateaus in Gluc BLI and Fluc BLI despite a continuous increase in the caliper measurement and Gluc blood assay. Significant correlations were found between the measures, and the correlation between the blood signal and caliper volume was especially high. Gluc allows tumor monitoring in mice and should be applicable to dual-reporter assessment in combination with Fluc. The Gluc blood assay appears to provide a reliable indicator of viable tumor burden, and the combination of a blood assay and in vivo BLI using Gluc should be promising for quantifying and localizing the tumors. 相似文献
20.
Kinetics of the firefly luciferase catalyzed reactions 总被引:9,自引:0,他引:9