首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mutagenic activities of 2,6-dinitrotoluene (2,6-DNT) and its 6 metabolites, and their 8 related compounds were examined using Salmonella typhimurium strains TA98 and TA100 in the absence or presence of S9 mix. 2,6-DNT itself showed no mutagenicity toward either strain, but 2,6-dinitrobenzaldehyde (2,6-DNBAl), one of the metabolites of 2,6-DNT, showed the highest mutagenic activity in strain TA100. 2,6-DNBAl was a direct-acting mutagen, not requiring metabolic activation. The other compounds containing nitro groups showed weak or no mutagenic activity. This result suggests that the direct-acting mutagenicity of 2,6-DNBAl is mainly due to the aldehyde group of the 2,6-DNBAl molecule.  相似文献   

2.
Benzo[b]phenanthro[2,3-d]thiophene (BPT), and a number of its metabolites, including BPT-3,4-diol, BPT sulfoxide, BPT sulfone, and 3-hydroxyBPT were assessed for their mutagenic activity in Salmonella typhimurium strain TA100, and S. typhimurium base-specific strains TA7001, TA7002, TA7003, TA7004, TA7005, and TA7006. Among the compounds tested in strain TA100, BPT, BPT sulfone, and 3-hydroxyBPT did not show any significant mutagenic response in the presence of S9. In contrast BPT sulfoxide and BPT-3,4-diol (a precursor to the bay-region diol epoxide of BPT) showed significant mutagenic activity in the presence of S9. Surprisingly, BPT sulfoxide was nearly 3.3-fold more mutagenic than BPT-3,4-diol in the presence of S9. BPT sulfoxide also displayed intrinsic mutagenic activity, which was nearly 1.5-fold less than that displayed by BPT-3,4-diol in the presence of S9. In base specific tester strains, BPT sulfoxide was the most active metabolite in strains TA7002, TA7004, and TA7005 with S9 activation. In these strains, BPT-3,4-diol was 2- to 7-fold less mutagenic than BPT sulfoxide in the presence of S9. Only in strain TA7006, BPT-3,4-diol was four-fold more mutagenic than BPT sulfoxide. The fact that BPT sulfoxide is significantly more mutagenic than BPT-3,4-diol in S. typhimurium strain TA100 suggests that the formation of sulfoxide may be the principal pathway for the metabolic activation of BPT to mutagenic products. Based on the results from Tester Strain TA7005, it indicate that BPT and its most mutagenic metabolite BPT sulfoxide induce predominantly CG --> AT transversion, which is observed as the most frequent base substitution mutation of p53 tumor-suppressor gene in human lung cancer.  相似文献   

3.
An in vitro protocol was designed to separate the process of metabolic activation from the mutational events. Cultured rat hepatocytes were first incubated with the food mutagens 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) or 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ). After the incubation period the medium was removed and further incubated with Salmonella typhimurium TA98. A high direct mutagenic activity of the culture medium was then measured. The half-lives of the mutagenic metabolites formed from IQ and MeIQ were in the order of 45 min. The presence of the cytochrome P450 inhibitors alpha-naphthoflavone and metyrapone during the pre-incubation period reduced the accumulation of mutagenic metabolites. No effects of ascorbate on the mutagenic effects of IQ and MeIQ were seen. (+)-Catechin, another antioxidant and free-radical scavenger, markedly enhanced the number of IQ/MeIQ-induced revertants when added to the hepatocytes. In contrast, (+)-catechin clearly decreased the number of revertants when 9000 X g supernatant from rat liver (S9) was used as an activation system. No marked effect of pentachlorophenol, an inhibitor of hepatocyte sulfation and bacterial O-acetylation, was seen using hepatocytes as an activation system, while the mutagenic activity of both IQ and MeIQ was reduced by 90% in the S9/Salmonella system. The addition of an inhibitor of glucuronidation, galactosamine, or the nucleophile glutathione caused no or only minor decreases in the genotoxic effects of the IQ compounds. With both S9 and hepatocytes as activation systems the relative mutagenic effects observed in the S. typhimurium strains TA98 and TA98 NR were in the same order of magnitude, while a large decrease was seen with TA98/1,8-DNP6. The results show that this in vitro test protocol may be useful as a tool to study mechanisms involved in the formation of mutagenic metabolites.  相似文献   

4.
3 epoxy-resin hardeners, 4,4'-diaminodiphenyl ether (DDE), 4,4'-diaminodiphenylmethane (DDM), and 4,4'-diaminodiphenylsulfone (DDS), and their N-acetyl and N,N'-diacetyl derivatives were examined for their mutagenicity using Salmonella typhimurium TA98 and TA100 as the tester stains and an S9 mix containing a rat-liver 9000 X g supernatant fraction as the metabolic activation system. DDE and DDM were mutagenic towards TA98 and TA100 in the presence of S9 mix while DDS exhibited no significant mutagenic activity towards these tester strains. These epoxy-resin hardeners were metabolized in vivo and their N-acetyl and N,N'-diacetyl metabolites were found in the urine. Among these acetyl metabolites, only N-acetyl-DDE was found to be mutagenic towards TA98 and TA100 in the presence of S9 mix. None of these acetyl metabolites exhibited significant mutagenic activity towards these tester strains in the absence of S9 mix.  相似文献   

5.
Niclosamide is an anti-helminthic drug susceptible to being metabolized into a bacterial mutagen by the action of enzymes present in the S9 activation mixture. Additional results from genotoxic studies in rodents and humans suggest that the drug is absorbed from the gastrointestinal tract, and mutagenic metabolites are excreted both in the free form and as conjugated glucuronides. As in the case of other secondary amides, phase I metabolism of niclosamide may result in a hydrolytic cleavage of the amide bond, giving rise to 5-chlorosalicylic acid and 2-chloro-4-nitroaniline as the main metabolites. In this study, the mutagenicity of these compounds was tested using the Salmonella typhimurium assay. Bacterial mutagenicity tests with these 2 compounds reveal a non-mutagenic response with 5-chlorosalicylic acid and a mutagenic one with 2-chloro-4-nitroaniline. However, the mutagenic potency observed with this compound is lower than that of niclosamide. The role of nitroreduction in the activation of niclosamide and 2-chloro-4-nitroaniline was also investigated with the help of S. typhimurium strains TA98NR, YG1020, YG1021 and YG1024. The results show a pattern of response which is qualitatively similar for both compounds and this indicates that its mutagenicity depends on both nitroreduction and transacetylation.  相似文献   

6.
8 representative 2-substituted 5-nitrofurans were assayed for mutagenicity in Salmonella typhimurium strains TA98, TA98NR and TA98/1,8-DNP6. The tested compounds were: 5-nitro-2-furanacrylic N-(5-nitro-2-furfurylidene)hydrazide (1); furazolidone (2); 5-nitro-2-furanacrolein (3); 5-nitro-2-furaldehyde semicarbazone (4); 5-nitro-2-furaldehyde (5); nitrofurantoin (6); 5-nitro-2-furaldehyde diacetate (7); and 5-nitro-2-furoic acid (8). These compounds exhibited markedly different mutagenic activities in TA98, and these mutagenicities were similar both in the presence and the absence of rat-liver hepatic S9 activation enzymes. The mutagenic responses ranged from potent (90-300 revertants/nmole, compounds 1-3), to medium (about 10 revertants/nmole, compounds 4 and 6), to weak (0-4 revertants/nmole, compounds 5, 7 and 8). The mutagenicity of 3 was similar in all 3 tester strains, while compound 8 was essentially inactive. The mutagenicities of 1, 4, 5 and 7 were decreased 30-75% in TA98NR, while 2 and 6 showed an even greater depression of activity in this strain. Compound 6 with S9 was about equally mutagenic in TA98 and TA98/1,8-DNP6, while the activities of 6 without S9 and 2 and 7 both with and without S9 were 50-75% lower in TA98/1,8-DNP6. Compounds 1, 4 and 5 were only about 5-10% as mutagenic in TA98/1,8-DNP6 as in TA98. These results suggest that: (i) nitrofurans and their S9-mediated metabolites have similar mutagenic potencies; (ii) with the possible exception of No. 3, nitroreduction is the major route of mutagenic activation for these nitrofurans; and (iii) for compounds 2, 6 and 7, both the presumed N-hydroxy and N,O-ester derivatives of the corresponding aminofuran metabolites appear to lead to mutations.  相似文献   

7.
Cyclophosphamide (CPA) and its main metabolites were analyzed with respect to their mutagenic activities in Salmonella, human peripheral lymphocytes (PL), and Chinese hamster ovary (CHO) cells. In Salmonella, the compounds were activated with S9 mix from rat livers, which were unstimulated or stimulated with Aroclor 1254 or phenobarbital. For the enzyme inducers the following order of efficiency was found for all test compounds except carboxyphosphamide: phenobarbital greater than Aroclor 1254 greater than non-induced. The most potent mutagens in all 3 test systems were 4-OH-CPA, PAM and nor-HN2. S9 mix transforms 4-OH-CPA to strong mutagenic compounds in the Salmonella assay. All metabolites tested in the Salmonella assay were activated by S9 mix to higher mutagenic potential.  相似文献   

8.
Production of volatile mutagenic metabolites from 5 halogenated promutagens was examined by a simple modification of the conventional Salmonella/microsome mutagenicity assay. This method incorporates the taping together of 2 agar plates face to face during the initial portion of their incubation at 37 degrees C. By varying the contents of the soft agar in each of the two plates with respect to promutagen, S9 and tester strain cells, mutagenesis due to volatile promutagens and their metabolites could be quantitated separately. Using the taped plate assay, volatile mutagenic metabolites were detected from the promutagens 3-(2-chloroethoxy)-1,2-dichloropropene, the herbicides diallate, triallate and sulfallate, and the flame-retardant tris-(2,3-dibromopropyl) phosphate (Tris-BP). All compounds except Tris-BP were also found to be volatile promutagens. The mutagenic metabolites accounted for 50-80% of the activity of these compounds observed in the standard assay. Morever, our studies suggest that a small, but appreciable percentage of the mutagenic metabolites from all 5 compounds escaped detection in the conventional, untaped assay. Mutagenic activity of the volatile mutagenic metabolites from diallate was quenched by various Salmonella tester strains independent of their responsiveness to diallate mutagenesis. Detection of volatile mutagen formation from diallate was also prevented by cysteine and glutathione, but not by DNA or metyrapone. This taped plate method for the Salmonella assay should facilitate future investigations of the detection, isolation and identification of volatile mutagenic metabolites from other promutagenic compounds or mixtures.  相似文献   

9.
Three pyrrolizidine alkaloids (PAs), monocrotaline, retrorsine and isatidine, were tested for their clastogenic activity under different conditions of metabolic activation in vitro. All three compounds exhibited a weak activity when V79 cells were treated at very high concentrations for 18 h in the absence of a metabolizing system. Short-term (2 h) treatment with rat liver S9 mix led to a strong and concentration-dependent increase in chromosomal aberrations for retrorsine. Isatidine was not mutagenic with S9 mix and monocrotaline was positive at high concentrations only. In contrast, a prolonged treatment (18 h) in vitro under activation conditions in the presence of primary hepatocytes led to clear concentration-dependent positive responses for all three PAs investigated. Particularly the results with isatidine demonstrate that in vitro tests using S9 mix for metabolization can generate misleading results. It is not clear whether the results could be attributed to a better activation of the test compounds by intact hepatocytes in comparison to S9 mix or if the fact that only hepatocytes allow a treatment for the whole culture period under activation conditions was more important. Owing to its strong cytotoxicity the exposure to S9 mix is generally limited to 2-4 h, limiting also the exposure of the target cells to a test chemical as well as its metabolites. The results presented show significant differences in mutagenic potency of PAs due to variations in the activation system. This underlines the usefulness of primary hepatocytes, e.g., for the detection of pre-mutagens. The PAs investigated are present in plants which are used for phytotherapeutic medicinal products. They do not contribute to their efficacy and are, therefore, not to be tolerated in amounts that may impose a risk for the user.  相似文献   

10.
The mutagenicity and activation requirements of purified synthetic derivatives and potential metabolites of 1-nitropyrene have been characterized in the Ames plate incorporation assay with the Salmonella tester strains TA98, TA98NR and TA98/1,8-DNP6, in the presence or absence of exogenous metabolic activation provided by Aroclor-induced rat liver S9. All the compounds tested (1-aminopyrene, N-acetyl-1-aminopyrene, N-hydroxy-N-acetyl-1-aminopyrene, 3-hydroxy-1-nitropyrene, 6-hydroxy-1-nitropyrene, and 8-hydroxy-1-nitropyrene) exhibited mutagenic activity under one or more assay conditions. 1-Nitropyrene was metabolized to 3-hydroxy-1-nitropyrene, 6- or 8-hydroxy-1-nitropyrene, 1-aminopyrene, N-acetyl-1-aminopyrene and other unidentified products (including some bound to protein) by an S9 preparation analogous to that used for exogenous metabolic activation in the Ames assay. 1-Nitropyrene and 3-hydroxy-1-nitropyrene were activated primarily by the 'classical' nitroreductase, while the other compounds, particularly in the presence of S9 metabolic activation, were dependent on transesterification for expression of their mutagenicity.  相似文献   

11.
IQ, a heterocyclic aromatic amine which is formed during the frying of meat, was prepared by chemical synthesis. Its genotoxic potential was studied in bacteria, Drosophila and in mice. A mutagenic effect of IQ (frameshift induction) was detected in Salmonella typhimurium in experiments without metabolic activation; this effect was several orders of magnitude lower than that observed in the presence of an activation system. Ames tests with liver-homogenate S9 fraction from PCB-induced mice and rats confirmed the high mutagenic potency of IQ metabolites (Kasai et al., 1980a). Comparative studies on diagnostic Salmonella strains revealed that the high frameshift-inducing activity is independent of the plasmid pkM101; it is, however, greatly reduced by an intact excision-repair system for DNA lesions. The mutagenic activity of the metabolite(s) formed in vitro by S9 mix has a half-life of ca. 14 min. In the fruit fly, Drosophila melanogaster, IQ induced when used at sublethal concentrations, X-chromosomal recessive lethal mutations in male germ cells in a dose-dependent manner. In mice, tests were performed to detect somatic mutations: chromosomal anomalies (micronuclei) in bone marrow, and gene mutations (affecting coat pigmentation) in mice exposed to IQ in utero. No genotoxic effects were observed in these assays. However, the formation of mutagenic metabolites in the liver of IQ-treated mice was unequivocally demonstrated in host-mediated assays using Salmonella as mutagen probes in mice. The data demonstrate genotoxic activity of IQ in prokaryotic and eukaryotic organisms. The possible reasons for the different response of mammalian systems in vivo and the Salmonella system are discussed.  相似文献   

12.
S Clemmensen  H R Lam 《Mutation research》1984,138(2-3):137-143
The mutagenicity of urine from rats treated topically on the skin with 1,3-diaminobenzene was studied by the Salmonella/mammalian-microsome assay. Urine samples were either passed directly through micropore filters or extracts were prepared using XAD-2 resin before testing in the frameshift strain TA98. Significant mutagenic activity was found only after metabolic activation with rat-liver microsomes. The activity was higher in extracts from rats treated with a mixture of hydrogen peroxide and 1,3-diaminobenzene than from rats which were exposed to 1,3-diaminobenzene only. After fractionation of the urine by HPLC it could be demonstrated that the mutagenic activity was not due to the parent amine but related to metabolites in two of the fractions. To a lesser extent these two partially purified fractions were also mutagenic without S9 activation even though it was not possible to demonstrate this effect in unfractionated urine extracts. A third fraction containing two metabolites did not exert demonstrable mutagenic activity. The implications for the assessment of hazard to man are discussed.  相似文献   

13.
The mutagenicity of 10 known genotoxic compounds, of several chemical classes, was measured in Salmonella typhimurium mutagenicity assays comprising isolated human hepatocytes or human liver 9000 X g supernatant (S9) from 4 different individuals, as activating system. The mutagenic activity of several compounds as determined with the Salmonella/hepatocyte suspension assay showed obvious differences when compared with the values obtained in the Salmonella/S9 plate assay. For instance, the mutagenic activity of BZ, DMN and DEN appeared to be much higher in the hepatocyte assay than in the S9 assay. However, 2-AF and 2-AAF were activated more effectively into mutagens in the S9 assay than in the hepatocyte assay. 2-AF was slightly more mutagenic than 2-AAF in the hepatocyte assay, whereas it was far more mutagenic than 2-AAF in the S9 assay. DMN was found more mutagenic than DEN in the hepatocyte assay, whereas in the S9 assay DEN appeared to be slightly more mutagenic. Furthermore, great interindividual differences in the metabolic activation of certain compounds, e.g. BZ and DMN, were observed in the hepatocyte suspension assay, whereas these variations were less evident in the S9 plate assay. Comparison of the mutagenicity data obtained with the human liver preparations, with those obtained with rat liver preparations, showed great interspecies differences in the capacity to activate certain chemicals into mutagens. The use of human liver preparations, in particular isolated human hepatocytes, may be of great value in studies on inter- and intraspecies variations in metabolic activation of genotoxic agents.  相似文献   

14.
Aqueous chlorination of humic acids results in the formation of compounds with direct-acting mutagenic activity in the Ames/Salmonella plate assay for tester strains TA98, TA100, TA1535, TA1537 and TA1538. The addition of a rat-liver microsomal fraction (S9) plus cofactors causes a substantial decrease of activity, the extent of which is tester strain dependent. The non-chlorinated humic acids are not mutagenic either in the presence or absence of S9. Formation of mutagenic activity and of total organic halogen (TOX) is linearly related to humic concentration in the range of 0.2-1.6 mg/ml total organic carbon (TOC), and to chlorine concentration in the range of 0.1-1.0 chlorine equivalents per mole of carbon. The mutagenic activity is due predominantly to non-volatile compounds. Mutagenic activity is also detectable, after sample concentration by lyophilization, upon chlorination at a humic acid level of 0.02 mg/ml TOC. The specific mutagenic activities (per mg TOX), and also the degree of chlorine incorporation into humic acid, at 0.02 mg/ml TOC are similar to those present after chlorination at 1 mg/ml TOC. Production of mutagens is greatly dependent on the chlorination pH, with a pattern of decreasing mutagenic activity with increasing pH. This order of activity can be at least partially explained by the alkali liability of the compounds. Chlorination of commercial humic acids is proposed as a model for examination of mutagen formation during water chlorination.  相似文献   

15.
Ten imidazole derivatives were tested for mutagenicity in Salmonella typhimurium strains TA98 and TA100 both in the absence and presence of metabolic activation by the microsomal fraction S9 mix. In a general manner, derivatives tested exhibited a greater mutagenic activity in the TA100 strain comparing to the responses in TA 98. In the standard plate incorporation assay, 8 of these substances (80%) were found to be mutagenic for at least one of the two strains in the presence or absence of metabolic activation. Two compounds showed positive results in TA98 and 6 compounds were also mutagenic in TA100 without S9. In the presence of S9 mix, all of the 10 substances were non-mutagenic in TA98, whereas 4 compounds were positive in TA100. The results suggested the mutagenic potentials of the imidazole derivatives particularly inducing the reversion of base-pair substitutions. According to the structure-activity relationships phenyl groups in position 2 with different substituents can confer the mutagenic activity of the tested compounds. Methyl groups in different positions of these phenyl substituents can cause different types of mutations. This mutagenic effect is observed more clearly when the phenyl group is inhibited with a nitro group.  相似文献   

16.
6-Nitrochrysene, 6-aminochrysene and several of their metabolites were assayed for mutagenic activity at the hypoxanthine-guanine phosphoribosyl transferase (hprt) locus in DNA-repair-proficient Chinese hamster ovary (CHO-K1) cells and excision-repair-deficient CHO-UV5 cells. Mutagen-DNA adducts were analyzed by 32P-postlabeling in cells treated under the conditions of the mutagenicity assay and compared with the adduct patterns produced from the in vitro reaction of metabolites of 6-nitrochrysene and 6-aminochrysene with calf-thymus DNA. The mutagenic activities of the test compounds in the presence of a liver homogenate (S9) fraction from Aroclor 1254-pretreated rats, expressed as the number of mutants per 10(6) cells per nmole test compound per ml, in CHO-K1 and CHO-UV5 cells, respectively, were as follows: 6-nitrochrysene, 0.3 and 4; 6-aminochrysene, 35 and 117; 6-nitrochrysene-1,2-dihydrodiol, 1 and 6; 6-aminochrysene-1,2-dihydrodiol, 488 and 644; chrysene (run as a positive control), 12 and 28. 6-Nitrosochrysene was a direct-acting mutagen, yielding 127 and 618 mutants per 10(6) cells per nmole per ml in CHO-K1 and CHO-UV5 cells, respectively. Mutagen-DNA adduct analysis indicated that cells treated with 6-aminochrysene in the presence of S9 or 6-nitrosochrysene in the absence of S9 contained an adduct pattern identical to that derived from the in vitro reaction of N-hydroxy-6-aminochrysene with calf-thymus DNA. Cells treated with 6-aminochrysene-1,2-dihydrodiol plus S9 contained a single mutagen-DNA adduct that was distinct from those derived from N-hydroxy-6-aminochrysene. Based on comparison with previous studies, this adduct is presumed to be derived from 1,2-dihydroxy-3,4-epoxy-1,2,3,4-tetrahydro-6-aminochrysene. Cells treated with 6-nitrochrysene plus S9 and 6-nitrochrysene-1,2-dihydrodiol plus S9 contained a single major chromatographically identical adduct that was apparently derived from N-hydroxy-6-aminochrysene-1,2-dihydrodiol. The results indicate that 6-nitrochrysene, 6-aminochrysene and their metabolites are mutagenic in CHO cells, but that the major activation pathway for 6-nitrochrysene and 6-nitrochrysene-1,2-dihydrodiol in this system differs from previously described pathways.  相似文献   

17.
The metabolism of carcinogens in fish was examined by measuring the activation of different polycyclic aromatic hydrocarbons (PAH) by carp (Cyprinus carpio L.) liver post-mitochondrial fractions (S9) using the Salmonella typhimurium TA100 reverse mutation assay. For this study, 1 non-carcinogen, anthracene (AN), and 4 carcinogens, chrysene (CHR), benzo[a]pyrene (BaP), 3-methylcholanthrene (3MC) and 7,12-dimethylbenzanthracene (DMBA), were chosen. The bioactivating potency of the metabolic systems of carp pretreated with phenobarbital (PB), 3MC or Aroclor 1254 (ARO) were compared to uninduced carp liver. The results show that carp liver has the ability to metabolize carcinogenic PAH into mutagenic metabolites, which is enhanced when carp are pretreated with 3MC or ARO, but not with PB. A positive correlation between the induction of aryl hydrocarbon hydroxylase (AHH) activity in carp liver and the mutagenic potencies of CHR, BaP, DMBA and 3MC, has been observed. The bioactivating ability of carp liver S9 was compared with the ability of the same fractions from female Wistar rats (this study) as well as from Sprague-Dawley rats (literature data). When the mutagenic potencies of selected PAH had been normalized on the activity of BaP, the following order of mutagenic activities with S9 fractions from ARO-treated animals was obtained: (1) BaP (1) greater than DMBA (0.26) greater than 3MC (0.22) greater than CHR (0.05) greater than AN (0) for carp; (2) BaP (1) greater than 3MC (0.48) greater than CHR (0.31) greater than DMBA (0.16) greater than AN (0) for Sprague-Dawley rats; and (3) BaP (1) greater than 3MC (0.17) greater than DMBA (0.11) greater than CHR (0) = AN (0) for female Wistar rats. We conclude that carp and rats are very similar in their ability to activate carcinogenic PAH into mutagenic metabolites, which suggests that carp may be very susceptible to the carcinogenic activity of these compounds. According to our results from the mutagenicity study, as well as from the enzyme induction study, we propose the use of carp as a suitable model system for the study of chemical carcinogens.  相似文献   

18.
The Ames test was applied to evaluation of the mutagenicity of month's samples of airborne particles from the center of Wroc?aw (SW Poland) collected in August and December 1997. The strains used for the study were TA 98, TA 100 and their derivatives: TA 98 NR, YG 1021, YG 1024, YG 1026, YG 1029, YG 1041, YG 1042. Both studied samples were mutagenic for almost all tested strains, with the exception of the August sample which did not influence the strain TA 100 without the metabolic activation with the S9 fraction. The December sample exhibited higher genotoxic activity than the August sample. Mutagenicity ratios of the strains with reduced nitroreductase and O-acetyltransferase activities were higher, and of the strain without the nitroreductase--lower than those of the parent strains. This indicates that nitro and amino derivatives of PAHs are responsible for the significant proportion of total mutagenicity of the studied samples of particulates. Metabolic activation with the S9 fraction caused the increase of the mutagenic activity of the samples, which indicates the presence of promutagens. The GC-MS analysis revealed the presence of known indirect mutagens from the PAHs group.  相似文献   

19.
The mutagenic activity of some dietary mutagens, 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole (Glu-P-1) and 2-amino-dipyrido[1,2-a:3',2'-d]imidazole (Glu-P-2), was inhibited in the Salmonella-plate test preincubated with heat-inactivated rat intestinal preparations. A similar inhibition was observed by preincubating intestinal preparations with 2-acetylaminofluorene (AAF) and benzo[a]pyrene (B[a]P). The effect was not specific for small intestine and was also obtained with spleen, liver, lung, colon and stomach preparations. Mutagenic activity was not inhibited by beef muscle proteins. Lipids extracted from intestinal mucosa preparations were equally effective as inhibitors of the mutagenic activity. Lipid fractions from intestinal mucosa were capable of inhibiting the formation of activated IQ by mammalian S9, and other components of the intestinal preparations were able to bind the promutagens and their active metabolites. The mutagenic activity of 1-(2-hydroxyethyl)-2-methyl-5-nitroimidazole (metronidazole) and of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was also inhibited by intestinal preparations, but not by their lipid fractions. A binding of IQ to intestinal preparations was also demonstrated with HPLC techniques. The data indicate that tissue components may reduce the mutagenic activity of chemicals by interfering with the activation process and by reducing the concentration of the promutagens and their active metabolites at target sites.  相似文献   

20.
The mutagenicity and toxicity of energetic compounds such as 2,4, 6-trinitrotoluene (TNT), 1,3,5-trinitrobenzene (TNB), hexahydro-1,3, 5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3, 5,7-tetrazocine (HMX), and of amino/nitro derivatives of toluene were investigated in vitro. Mutagenicity was evaluated with the Salmonella fluctuation test (FT) and the V79 Chinese hamster lung cell mutagenicity assay. Cytotoxicity was evaluated using V79 and TK6 human lymphoblastic cells. For the TK6 and V79 assays, TNB and 2, 4,6-triaminotoluene were more toxic than TNT, whereas RDX and HMX were without effect at their maximal aqueous solubility limits. The primary TNT metabolites (2-amino-4,6-dinitrotoluene, 4-amino-2, 6-dinitrotoluene, 2,4-diamino-6-nitrotoluene and 2, 6-diamino-4-nitrotoluene) were generally less cytotoxic than the parent compound. The FT results indicated that TNB, TNT and all the tested primary TNT metabolites were mutagenic. Except for the cases of 4-amino-2,6-dinitrotoluene and 2,4-diamino-6-nitrotoluene in the TA98 strain, addition of rat liver S9 resulted in either no effect, or decreased activity. None of the tested compounds were mutagenic for the V79 mammalian cells with or without S9 metabolic activation. Thus, the FT assay was more sensitive to the genotoxic effects of energetic compounds than was the V79 test, suggesting that the FT might be a better screening tool for the presence of these explosives. The lack of mutagenicity of pure substances for V79 cells under the conditions used in this study does not preclude that genotoxicity could actually exist in other mammalian cells. In view of earlier reports and this study, mutagenicity testing of environmental samples should be considered as part of the hazard assessment of sites contaminated by TNT and related products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号