首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
J Zhao  X Huang  X Ouyang  W Chen  A Du  L Zhu  S Wang  XW Deng  S Li 《PloS one》2012,7(8):e43705
Arabidopsis thaliana EARLY FLOWERING 3 (ELF3) as a zeitnehmer (time taker) is responsible for generation of circadian rhythm and regulation of photoperiodic flowering. There are two orthologs (OsELF3-1 and OsELF3-2) of ELF3 in rice (Oryza sativa), but their roles have not yet been fully identified. Here, we performed a functional characterization of OsELF3-1 and revealed it plays a more predominant role than OsELF3-2 in rice heading. Our results suggest OsELF3-1 can affect rice circadian systems via positive regulation of OsLHY expression and negative regulation of OsPRR1, OsPRR37, OsPRR73 and OsPRR95 expression. In addition, OsELF3-1 is involved in blue light signaling by activating EARLY HEADING DATE 1 (Ehd1) expression to promote rice flowering under short-day (SD) conditions. Moreover, OsELF3-1 suppresses a flowering repressor GRAIN NUMBER, PLANT HEIGHT AND HEADING DATE 7 (Ghd7) to indirectly accelerate flowering under long-day (LD) conditions. Taken together, our results indicate OsELF3-1 is essential for circadian regulation and photoperiodic flowering in rice.  相似文献   

3.
4.
EARLY FLOWERING 3 (ELF3), a light zeitnehmer (time-taker) gene, regulates circadian rhythm and photoperiodic flowering in Arabidopsis, rice, and barley. The three orthologs of ELF3 (TaELF3-1AL, TaELF3-1BL, and TaELF3-1DL) have been identified in wheat too, and one gene, TaELF3-1DL, has been associated with heading date. However, the basic characteristics of these three genes and the roles of the other two genes, TaELF3-1BL and, TaELF3-1AL, remain unknown. Therefore, the present study obtained the coding sequences of the three orthologs (TaELF3-1AL, TaELF3-1BL, and TaELF3-1DL) of ELF3 from bread wheat and characterized them and investigated the role of TaELF3-1BL in Arabidopsis. Protein sequence comparison revealed similarities among the three TaELF3 genes of wheat; however, they were different from the Arabidopsis ELF3. Real-time quantitative PCR revealed TaELF3 expression in all wheat tissues tested, with the highest expression in young spikes; the three genes showed rhythmic expression patterns also. Furthermore, the overexpression of the TaELF3-1BL gene in Arabidopsis delayed flowering, indicating their importance in flowering. Subsequent overexpression of TaELF3-1BL in the Arabidopsis ELF3 nonfunctional mutant (elf3 mutant) eliminated its early flowering phenotype, and slightly delayed flowering. The wild-type Arabidopsis overexpressing TaELF3-1BL demonstrated reduced expression levels of flowering-related genes, such as CONSTANS (AtCO), FLOWERING LOCUS T (AtFT), and GIGANTEA (AtGI). Thus, the study characterized the three TaELF3 genes and associated TaELF3-1BL with flowering in Arabidopsis, suggesting a role in regulating flowering in wheat too. These findings provide a basis for further research on TaELF3 functions in wheat.  相似文献   

5.
6.
7.
8.
9.
Phytochromes mediate the photoperiodic control of flowering in rice (Oryza sativa), a short-day plant. Recent molecular genetics studies have revealed a genetic network that enables the critical daylength response of florigen gene expression. Analyses using a rice phytochrome chromophore-deficient mutant, photoperiod sensitivity5, have so far revealed that within this network, phytochromes are required for expression of Grain number, plant height and heading date7 (Ghd7), a floral repressor gene in rice. There are three phytochrome genes in rice, but the roles of each phytochrome family member in daylength response have not previously been defined. Here, we revealed multiple action points for each phytochrome in the critical daylength response of florigen expression by using single and double phytochrome mutant lines of rice. Our results show that either phyA alone or a genetic combination of phyB and phyC can induce Ghd7 mRNA, whereas phyB alone causes some reduction in levels of Ghd7 mRNA. Moreover, phyB and phyA can affect Ghd7 activity and Early heading date1 (a floral inducer) activity in the network, respectively. Therefore, each phytochrome gene of rice has distinct roles, and all of the phytochrome actions coordinately control the critical daylength response of florigen expression in rice.  相似文献   

10.
11.
Li J  Chu H  Zhang Y  Mou T  Wu C  Zhang Q  Xu J 《PloS one》2012,7(3):e34231
Heading date and grain weight are two determining agronomic traits of crop yield. To date, molecular factors controlling both heading date and grain weight have not been identified. Here we report the isolation of a hemizygous mutation, heading and grain weight (hgw), which delays heading and reduces grain weight in rice. Analysis of hgw mutant phenotypes indicate that the hemizygous hgw mutation decreases latitudinal cell number in the lemma and palea, both composing the spikelet hull that is known to determine the size and shape of brown grain. Molecular cloning and characterization of the HGW gene showed that it encodes a novel plant-specific ubiquitin-associated (UBA) domain protein localized in the cytoplasm and nucleus, and functions as a key upstream regulator to promote expressions of heading date- and grain weight-related genes. Moreover, co-expression analysis in rice and Arabidopsis indicated that HGW and its Arabidopsis homolog are co-expressed with genes encoding various components of ubiquitination machinery, implying a fundamental role for the ubiquitination pathway in heading date and grain weight control.  相似文献   

12.
13.
X Huang  X Wang  H Jia  S Feng  K Cao  C Sun 《DNA research》1999,6(6):375-379
COP9 complex is one of the most important components that act in repressing photomorphogenesis in Arabidopsis thaliana. FUS6 has been identified as one of eight subunits of the COP9 complex in Arabidopsis. Using Arabidopsis Fus6 cDNA as a probe, we screened a rice root cDNA library and a rice genomic library. A 1730-bp cDNA was obtained, which has an open reading frame corresponding to 441-amino-acid. This 441 amino acids putative protein has 67% identity with Arabidopsis COP11/FUS6 (AtFUS6) and 40% identity with human GPS1, an AtFUS6 orthologue. So we designated this novel gene as rFUS6. The 6.2-kb genomic sequence of rFUS6 was also obtained. Sequence comparison showed that the rFUS6 gene had six exons and five introns. Sequence inspection of the 5'-flanking region revealed the presence of some potential light-regulated cis-elements such as a G-box, GT-1 binding sites, and a TGACG motif. Southern hybridization with rice total DNA showed that rFUS6 was perhaps a single copy gene. The rFUS6 locus was mapped by hybridization with a rice BAC library membrane and the results showed that rFUS6 had a locus at 16.3 cM of chromosome 1.  相似文献   

14.
The photoperiodic sensitivity 5 (se5) mutant of rice, a short-day plant, has a very early flowering phenotype and is completely deficient in photoperiodic response. We have cloned the SE5 gene by candidate cloning and demonstrated that it encodes a putative heme oxygenase. Lack of responses of coleoptile elongation by light pulses and photoreversible phytochromes in crude extracts of se5 indicate that SE5 may function in phytochrome chromophore biosynthesis. Ectopic expression of SE5 cDNA by the CaMV 35S promoter restored the photoperiodic response in the se5 mutant. Our results indicate that phytochromes confer the photoperiodic control of flowering in rice. Comparison of se5 with hy1, a counterpart mutant of Arabidopsis, suggests distinct roles of phytochromes in the photoperiodic control of flowering in these two species.  相似文献   

15.
16.
Using a degenerative probe designed according to the most conservative region of a known Lys- and His-specific amino acid transporter (LHT 1) from Arabidopsis, we isolated a full-length cDNA named OsHT (histidine transporter of Oryza sativa L.) by screening the rice cDNA library. The cDNA is 1.3 kb in length and the open reading frame encodes for a 441 amino acid protein with a calculated molecular mass of 49 kDa. Multiple sequence alignments showed that OsHT shares a high degree of sequence conservation at the deduced amino acid level with the Arabidopsis LHT1 and six putative lysine and histidine transporters. Computational analysis indicated that OsHT is an integral membrane protein with 11 putative transmembrane helices. This was confirmed by the transient expression assay because the OsHT-GFP fusion protein was, indeed, localized mainly in the plasma membrane of onion epidermal cells. Functional complementation experiments demonstrated that OsHT was able to work as a histidine transporter in Saccharomyces cerevisiae, suggesting that OsHT is a gene that encodes for a histidine transporter from rice.This is the first time that an LHT-type amino acid transporter gene has been cloned from higher plants other than Arabidopsis.  相似文献   

17.
Using a degenerative probe designed according to the most conservative region of a known Lys- and His-specific amino acid transporter (LHT1) from Arabidopsis, we isolated a full-length cDNA named OsHT (histidine transporter of Oryza sativa L.) by screening the rice cDNA library. The cDNA is 1.3kb in length and the open reading frame encodes for a 441 amino acid protein with a calculated molecular mass of 49 kDa. Multiple sequence alignments showed that OsHT shares a high degree of sequence conservation at the deduced amino acid level with the Arabidopsis LHT1 and six putative lysine and histidine transporters. Computational analysis indicated that OsHT is an integral membrane protein with 11 putative transmembrane helices. This was confirmed by the transient expression assay because the OsHT-GFP fusion protein was, indeed, localized mainly in the plasma membrane of onion epidermal cells. Functional complementation experiments demonstrated that OsHT was able to work as a histidine transporter in Saccharomyces cerevisiae, suggesting that OsHT is a gene that encodes for a histidine transporter from rice.This is the first time that an LHT-type amino acid transporter gene has been cloned from higher plants other than A rabidopsis.  相似文献   

18.
Heading date is a major determinant of adaptability and yield potential in rice (Oryza sativa L.) and is influenced by photoperiod. Among chromosome segment substitution lines, the introgression line C63 contains a segment of the short arm of chromosome 6 from indica Qingluzhan 11 in the japonica Nipponbare background and exhibits a delayed heading date under both long day (LD) and short day (SD) natural field conditions. This study demonstrates that the late heading date of the C63 line is controlled by a single recessive gene, Heading date from Qingluzhan 11 (Hd-q). Hd-q was mapped to a region of less than 43.7 kb. Complementation testing revealed that Ef7 (LOC_Os06g05060), a homolog of Arabidopsis ELF3, is the candidate gene, while Hd-q is a new allele of Ef7. Sequence alignment revealed at least five Ef7 alleles among 11 rice cultivars based on polymorphism in the coding region. Unlike other alleles, Hd-q has a single nucleotide polymorphism (T/A) in exon 2, which leads to premature termination of translation. In addition to delayed heading date, Hd-q has pleiotropic effects on major agronomic characteristics, which were determined by comparing the near-isogenic line, NIL (Hd-q), with its recurrent parent Nipponbare. The Hd-q allele improved grain yield under both LD and SD conditions and in different geographical regions. Finally, a dCAPS (derived cleaved amplified polymorphic sequence) marker was developed based on the T/A polymorphism, and will be useful for introgression of the Hd-q allele via marker-assisted selection. The Hd-q allele is a useful target for the improvement of rice adaptation and production, especially at low latitudes.  相似文献   

19.
Much progress has been made in our understanding of photoperiodic flowering of rice and the mechanisms underlying short-day (SD) promotion and long-day (LD) repression of floral induction. In this study, we identified and characterized the Ef7 gene, one of the rice orthologs of Arabidopsis EARLY FLOWERING 3 (ELF3). The ef7 mutant HS276, which was induced by γ-irradiation of the japonica rice cultivar 'Gimbozu', flowers late under both SD and LD conditions. Expression analyses of flowering time-related genes demonstrated that Ef7 negatively regulates the expression of Ghd7, which is a repressor of the photoperiodic control of rice flowering, and consequently up-regulates the expression of the downstream Ehd1 and FT-like genes under both SD and LD conditions. Genetic analyses with a non-functional Ghd7 allele provided further evidence that the delayed flowering of ef7 is mediated through the Ghd7 pathway. The analysis of light-induced expression of Ghd7 revealed that the ef7 mutant was more sensitive to red light than the wild-type plant, but the gate of Ghd7 expression was unchanged. Thus, our results show that Ef7 functions as a floral promoter by repressing Ghd7 expression under both SD and LD conditions.  相似文献   

20.
In rice (Oryza sativa), a short-day plant, photoperiod is the most favorable external signal for floral induction because of the constant seasonal change throughout the years. Compared with Arabidopsis, however, a large part of the regulation mechanism of the photoperiodic response in rice still remains unclear due mainly to the lack of induced mutant genes. An induced mutant line X61 flowers 35 days earlier than its original variety Gimbozu under a natural photoperiod in Kyoto (35°01′N). We attempted to identify the mutant gene conferring early heading to X61. Experimental results showed that the early heading of X61 was conferred by a complete loss of photoperiodic response due to a novel single recessive mutant gene se13. This locus interacts with two crucial photoperiod sensitivity loci, Se1 and E1. Wild type alleles at these two loci do not function in coexistence with se13 in a homozygous state, suggesting that Se13 is an upstream locus of the Se1 and E1 loci. Linkage analysis showed that Se13 is located in a 110 kb region between the two markers, INDEL3735_1 and INDEL3735_3 on chromosome 1. A database search suggested that the Se13 gene is identical to AK101395 (=OsHY2), which encodes phytochromobilin synthase, a key enzyme in phytochrome chromophore biosynthesis. Subsequent sequence analysis revealed that X61 harbors a 1 bp insertion in exon 1 of OsHY2, which induces a frame-shift mutation producing a premature stop codon. It is therefore considered that the complete loss of photoperiodic response of X61 is caused by a loss of function of the Se13 (OsHY2) gene involved in phytochrome chromophore biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号