首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Feng JF  Gray CD  Im MJ 《Biochemistry》1999,38(7):2224-2232
We previously reported that a novel GTP binding protein (G alpha h) is tissue type transglutaminase (TGII) and transmits the alpha 1B-adrenoceptor (AR) signal to phospholipase C (PLC) through its GTPase function. We have also shown that PLC-delta 1 is the effector in TGII-mediated signaling. In this study, interaction sites on TGII for the alpha 1B-AR were identified using a peptide approach and site-directed mutagenesis, including in vivo reconstitution of TGIIs with the alpha 1B-AR and PLC-delta 1. To identify the interaction sites, 11 synthetic peptides covering approximately 132 amino acid residues of the C-terminal domain of TGII were tested. The studies with the peptides revealed that three peptides, L547-I561, R564-D581, and Q633-E646, disrupted formation of an alpha 1-agonist-alpha 1B-AR-TGII complex and blocked alpha 1B-AR-mediated TGase inhibition in a dose-dependent manner, indicating that these peptide regions are involved in recognition and activation of TGII by the alpha 1B-AR. These three regions were further evaluated with full-length TGIIs by constructing and coexpressing each site-directed mutant with the alpha 1B-AR and PLC-delta 1 in COS-1 cells. Supporting the findings with these peptides, these TGII mutants lost 56-82% the receptor binding ability and reduced by 29-68% the level of alpha 1B-AR-mediated IP3 production via PLC-delta 1 as compared to those with wild-type TGII. The results also revealed that the regions of R564-D581 and Q633-E646 were the high-affinity binding sites of TGII for the receptor and critical for the activation of TGII by the receptor. Taken together, the studies demonstrate that multiple regions of TGII interact with the alpha 1B-AR and that the alpha 1B-AR stimulates PLC-delta 1 via TGII.  相似文献   

2.
We characterized the alpha(1B)-adrenoreceptor (alpha(1B)-AR)-mediated intracellular Ca(2+) signaling involving G alpha(h) (transglutaminase II, TGII) and phospholipase C (PLC)-delta 1 using DDT1-MF2 cell. Expression of wild-type TGII and a TGII mutant lacking transglutaminase activity resulted in significant increases in a rapid peak and a sustained level of intracellular Ca(2+) concentration ([Ca(2+)](i)) in response to activation of the alpha(1B)-AR. Expression of a TGII mutant lacking the interaction with the receptor or PLC-delta 1 substantially reduced both the peak and sustained levels of [Ca(2+)](i). Expression of TGII mutants lacking the interaction with PLC-delta 1 resulted in a reduced capacitative Ca(2+) entry. Reduced expression of PLC-delta 1 displayed a transient elevation of [Ca(2+)](i) and a reduction in capacitative Ca(2+) entry. Expression of the C2-domain of PLC-delta 1, which contains the TGII interaction site, resulted in reduction of the alpha(1B)-AR-evoked peak increase in [Ca(2+)](i), while the sustained elevation in [Ca(2+)](i) and capacitative Ca(2+) entry remained unchanged. These findings demonstrate that stimulation of PLC-delta 1 via coupling of the alpha(1B)-AR with TGII evokes both Ca(2+) release and capacitative Ca(2+) entry and that capacitative Ca(2+) entry is mediated by the interaction of TGII with PLC-delta 1.  相似文献   

3.
In cardiac myocytes, stimulation of alpha(1)-adrenoceptor (AR) leads to a hypertrophic phenotype. The G(h) protein (transglutaminase II, TGII) is tissue type transglutaminase and transmits the alpha(1B)-adrenoceptor signal with GTPase activity. Recently, it has been shown that the calreticulin (CRT) down-regulates both GTP binding and transglutaminase activities of TGII. To elucidate whether G(h) mediates norepinephrine-stimulated intracellular signal transductions leading to activation of extracellular signal-regulated kinases (ERKs) and neonatal rat cardiomyocyte hypertrophy, we examined the effects of G(h) on the activation of ERKs and inhibitory effects of CRT on alpha(1)-adrenoceptor/G(h) signaling. In neonatal rat cardiomyocytes, norepinephrine-induced ERKs activation was inhibited by an alpha(1)-adrenoceptor blocker (prazosin), but not by an beta-adrenoceptor blocker (propranolol). Overexpression of the G(h) protein stimulated norepinephrine-induced ERKs activation, which was inhibited by alpha-adrenoceptor blocker (prazosin). Co-overexpression of G(h) and CRT abolished norepinephrine-induced ERKs activation. Taken together, norepinephrine induces hypertrophy in neonatal rat cardiomyocytes through alpha(1)-AR stimulation and G(h) is partly involved in norepinephrine-induced MEK1,2/ERKs activation. Activation of G(h)-mediated MEK1,2/ERKs was completely inhibited by CRT.  相似文献   

4.
J F Feng  M Readon  S P Yadav  M J Im 《Biochemistry》1999,38(33):10743-10749
Enzyme regulation is an important mechanism for controlling cell proliferation and differentiation in response to extracellular signaling molecules. We have previously reported that a approximately 50 kDa protein (termed Gbetah) consistently copurified with Galphah (transglutaminase II, TGII) and that Gbetah down-regulates the GTPase function of TGII by associating with GDP-bound TGII [Baek et al. (1996) Biochemistry 35, 2651-2657]. In this study, we examined the identity of Gbetah by partial amino acid sequencing and immunological characterizations. The results strongly suggest that Gbetah is a protein known as calreticulin (CRT). When the regulatory role of CRT in the GTPase activity of TGII was examined, CRT inhibited GTP (GTPgammaS) binding and hydrolysis in a concentration-dependent manner. Moreover, CRT interacted only with GDP-bound TGII. These results demonstrate that CRT down-regulates the GTPase activity of TGII by associating with GDP-bound TGII. Studies on the modulation of the TGase activity of TGII revealed that CRT also inhibited TGase activity. The inhibition showed the two characteristics depend on guanine nucleotides occupying the GTPase active site. The inhibition of the "empty" form of the GTPase active site increased the Ca2+ requirement without changing the Vmax. On the other hand, the inhibition of the GDP-bound form decreased Vmax, but did not alter the Ca2+ requirement. Moreover, the GTPgammaS-bound TGII was virtually resistant to Ca2+-mediated stimulation of the TGase activity, indicating that the GTP-bound TGII does not function as a TGase. We concluded that CRT is the regulatory protein of TGII that down-regulates both GTPase and TGase activities, opposing the activators of TGII function.  相似文献   

5.
The human formyl peptide receptor (FPR) is a prototypical G(i) protein-coupled receptor, but little is known about quantitative aspects of FPR-G(i) protein coupling. To address this issue, we fused the FPR to G(i)alpha(1), G(i)alpha(2), and G(i)alpha(3) and expressed the fusion proteins in Sf9 insect cells. Fusion of a receptor to Galpha ensures a defined 1:1 stoichiometry of the signaling partners. By analyzing high affinity agonist binding, the kinetics of agonist- and inverse agonist-regulated guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) binding and GTP hydrolysis and photolabeling of Galpha, we demonstrate highly efficient coupling of the FPR to fused G(i)alpha(1), G(i)alpha(2), and G(i)alpha(3) without cross-talk of the receptor to insect cell G proteins. The FPR displayed high constitutive activity when coupled to all three G(i)alpha isoforms. The K(d) values of high affinity agonist binding were approximately 100-fold lower than the EC(50) (concentration that gives half-maximal stimulation) values of agonist for GTPase activation. Based on the B(max) values of agonist saturation binding and ligand-regulated GTPgammaS binding, it was previously proposed that the FPR activates G proteins catalytically, i.e. one FPR activates several G(i) proteins. Analysis of agonist saturation binding, ligand-regulated GTPgammaS saturation binding and quantitative immunoblotting with membranes expressing FPR-G(i)alpha fusion proteins and nonfused FPR now reveals that FPR agonist binding greatly underestimates the actual FPR expression level. Our data show the following: (i) the FPR couples to G(i)alpha(1), G(i)alpha(2), and G(i)alpha(3) with similar efficiency; (ii) the FPR can exist in a state of low agonist affinity that couples efficiently to G proteins; and (iii) in contrast to the previously held view, the FPR appears to activate G(i) proteins linearly and not catalytically.  相似文献   

6.
The regulation of G protein activation by the rat corticotropin-releasing factor receptor type 1 (rCRFR1) in human embryonic kidney (HEK)293 (HEK-rCRFR1) cell membranes was studied. Corresponding to a high and low affinity ligand binding site, sauvagine and other peptidic CRFR1 ligands evoked high and low potency responses of G protein activation, differing by 64-fold in their EC(50) values as measured by stimulation of [(35)S]GTPgammaS binding. Contrary to the low potency response, the high potency response was of lower GTPgammaS affinity, pertussis toxin (PTX)-insensitive, and homologously desensitized. Distinct desensitization was also observed in the adenylate cyclase activity, when its high potency stimulation was abolished and the activity became low potently inhibited by sauvagine. From these results and immunoprecipitation of [(35)S]GTPgammaS-bound Galpha(s) and Galpha(i) subunits it is concluded that the high and low potency [(35)S]GTPgammaS binding stimulation reflected coupling to G(s) and G(i) proteins, respectively, only G(s) coupling being homologously desensitized. Immunoprecipitation of [(35)S]GTPgammaS-bound Galpha(q/11) revealed additional coupling to G(q/11), which also was homologously desensitized. Although Galpha(q/11) coupling was PTX-insensitive, half of the sauvagine-stimulated accumulation of inositol phosphates in the cells was PTX-sensitive, suggesting involvement of G(i) in addition to G(q/11)in the stimulation of inositol metabolism. It is concluded that CRFR1 signals through at least two different ways, one leading to G(s)- and G(q/11)-mediated signaling steps and desensitization and another leading to G(i) -mediated signals without being desensitized. Furthermore, the concentrations of the stimulating ligand and GTP and desensitization may be part of a regulatory mechanism determining the actual ratio of the coupling of CRFR1 to different G proteins.  相似文献   

7.
Tissue type transglutaminase (TGII, also known as G(h)) has been considered a multifunctional protein, with both transglutaminase and GTPase activity. The role of the latter function, which is proposed as a coupling mechanism between alpha(1)-adrenergic receptors and phospholipase C (PLC), is not well defined. TGII was overexpressed in transgenic mice in a cardiac specific manner to delineated relevant signaling pathways and their consequences in the heart. Cardiac transglutaminase activity in the highest expressing line was approximately 37-fold greater than in nontransgenic lines. However, in vivo signaling to PLC, as assessed by inositol phosphate turnover in [(3)H]myoinositol organ bath atrial preparations, was not increased in the TGII mice at base line or in response to alpha(1)-adrenergic receptor stimulation; nor was protein kinase Calpha (PKCalpha) or PKCepsilon activity enhanced in the TGII transgenic mice. This is in contrast to mice moderately (approximately 5-fold) overexpressing G(alphaq), where inositol phosphate turnover and PKC activity were found to be clearly enhanced. TGII overexpression resulted in a remodeling of the heart with mild hypertrophy, elevated expression of beta-myosin heavy chain and alpha-skeletal actin genes, and diffuse interstitial fibrosis. Resting ventricular function was depressed, but responsiveness to beta-agonist was not impaired. This set of pathophysiologic findings is distinct from that evoked by overexpression of G(alphaq). We conclude that TGII acts in the heart primarily as a transglutaminase, and modulation of this function results in unique pathologic sequelae. Evidence for TGII acting as a G-protein-like transducer of receptor signaling to PLC in the heart is not supported by these studies.  相似文献   

8.
9.
ric-8 (resistance to inhibitors of cholinesterase 8) genes have positive roles in variegated G protein signaling pathways, including Gα(q) and Gα(s) regulation of neurotransmission, Gα(i)-dependent mitotic spindle positioning during (asymmetric) cell division, and Gα(olf)-dependent odorant receptor signaling. Mammalian Ric-8 activities are partitioned between two genes, ric-8A and ric-8B. Ric-8A is a guanine nucleotide exchange factor (GEF) for Gα(i)/α(q)/α(12/13) subunits. Ric-8B potentiated G(s) signaling presumably as a Gα(s)-class GEF activator, but no demonstration has shown Ric-8B GEF activity. Here, two Ric-8B isoforms were purified and found to be Gα subunit GDP release factor/GEFs. In HeLa cells, full-length Ric-8B (Ric-8BFL) bound endogenously expressed Gα(s) and lesser amounts of Gα(q) and Gα(13). Ric-8BFL stimulated guanosine 5'-3-O-(thio)triphosphate (GTPγS) binding to these subunits and Gα(olf), whereas the Ric-8BΔ9 isoform stimulated Gα(s short) GTPγS binding only. Michaelis-Menten experiments showed that Ric-8BFL elevated the V(max) of Gα(s) steady state GTP hydrolysis and the apparent K(m) values of GTP binding to Gα(s) from ~385 nm to an estimated value of ~42 μM. Directionality of the Ric-8BFL-catalyzed Gα(s) exchange reaction was GTP-dependent. At sub-K(m) GTP, Ric-BFL was inhibitory to exchange despite being a rapid GDP release accelerator. Ric-8BFL binds nucleotide-free Gα(s) tightly, and near-K(m) GTP levels were required to dissociate the Ric-8B·Gα nucleotide-free intermediate to release free Ric-8B and Gα-GTP. Ric-8BFL-catalyzed nucleotide exchange probably proceeds in the forward direction to produce Gα-GTP in cells.  相似文献   

10.
In the heart beta1-adrenergic (beta1R) and adenosine A1 (A1R) and A2A (A2AR) receptors modulate contractile and metabolic function. The interaction between these receptors was investigated at the level of G-protein cycling by determining the effect of receptor agonists on the binding of GTP to G-proteins and displacement of G alpha-subunit-bound GDP by GTP. Crude membranes from rat heart or brain were stimulated by agonists for beta1R (isoproterenol; ISO), A1R (chlorocyclopentyladenosine, CCPA) and A2AR (CGS-21680; CGS). GTP binding to membranes was increased by ISO (17%), CCPA (6%) and CGS (12%). Binding values observed with incubation using ISO and CCPA together were significantly less than values obtained by the incubation of individual agents alone. With ISO, GTP binding to G alpha(s) subunits as determined by immunoprecipitation was increased 79% in heart and 87% in brain. These increases were attenuated by CCPA, an effect that was inhibited by CGS. GDP release by membranes was increased 6.9% and 4.6% by ISO and CCPA, respectively. After co-incubation of these agonists, release was increased less than determined by the addition of the individual agent responses. CGS inhibited the reduced release caused by of CCPA. Adenylyl cyclase activity stimulated by ISO was attenuated 33% by CCPA, an effect inhibited by CGS. Together, these results indicate that A1R exert an antiadrenergic action at the level of beta1R stimulated G(s)-protein cycling and that A2AR reduce this action.  相似文献   

11.
A number of recently discovered proteins that interact with the alpha subunits of G(i)-like G proteins contain homologous repeated sequences named G protein regulatory (GPR) motifs. Activator of G protein signaling 3 (AGS3), identified as an activator of the yeast pheromone pathway in the absence of the pheromone receptor, has a domain with four such repeats. To elucidate the potential mechanisms of regulation of G protein signaling by proteins containing GPR motifs, we examined the effects of the AGS3 GPR domain on the kinetics of guanine nucleotide exchange and GTP hydrolysis by G(i)alpha(1) and transducin-alpha (G(t)alpha). The AGS3 GPR domain markedly inhibited the rates of spontaneous guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) binding to G(i)alpha and rhodopsin-stimulated GTPgammaS binding to G(t)alpha. The full-length AGS3 GPR domain, AGS3-(463-650), was approximately 30-fold more potent than AGS3-(572-629), containing two AGS3 GPR motifs. The IC(50) values for the AGS3-(463-650) inhibitory effects on G(i)alpha and transducin were 0.12 and 0.15 microm, respectively. Furthermore, AGS3-(463-650) and AGS3-(572-629) effectively blocked the GDP release from G(i)alpha and rhodopsin-induced dissociation of GDP from G(t)alpha. The potencies of AGS3-(572-629) and AGS3-(463-650) to suppress the GDP dissociation rates correlated with their ability to inhibit the rates of GTPgammaS binding. Consistent with the inhibition of nucleotide exchange, the AGS3 GPR domain slowed the rate of steady-state GTP hydrolysis by G(i)alpha. The catalytic rate of G(t)alpha GTP hydrolysis, measured under single turnover conditions, remained unchanged with the addition of AGS3-(463-650). Altogether, our results suggest that proteins containing GPR motifs, in addition to their potential role as G protein-coupled receptor-independent activators of Gbetagamma signaling pathways, act as GDP dissociation inhibitors and negatively regulate the activation of a G protein by a G protein-coupled receptor.  相似文献   

12.
The blockade of heptahelical receptor coupling to heterotrimeric G proteins by the expression of peptides derived from G protein Galpha subunits represents a novel means of simultaneously inhibiting signals arising from multiple receptors that share a common G protein pool. Here we examined the mechanism of action and functional consequences of expression of an 83-amino acid polypeptide derived from the carboxyl terminus of Galpha(s) (GsCT). In membranes prepared from GsCT-expressing cells, the peptide blocked high affinity agonist binding to beta(2) adrenergic receptors (AR) and inhibited beta(2)AR-induced [35S]GTPgammaS loading of Galpha(s). GsCT expression inhibited beta(2)AR- and dopamine D(1A) receptor-mediated cAMP production, without affecting the cellular response to cholera toxin or forskolin, indicating that the peptide inhibited receptor-G(s) coupling without impairing G protein or adenylyl cyclase function. [35S]GTPgammaS loading of Galpha(q/11) by alpha(1B)ARs and Galpha(i) by alpha(2A)ARs and G(q/11)- or G(i)-mediated phosphatidylinositol hydrolysis was unaffected, indicating that the inhibitory effects of GsCT were selective for G(s). We next employed the GsCT construct to examine the complex role of G(s) in regulation of the ERK mitogen-activated protein kinase cascade, where activation of the cAMP-dependent protein kinase (PKA) pathway reportedly produces both stimulatory and inhibitory effects on heptahelical receptor-mediated ERK activation. For the beta(2)AR in HEK-293 cells, where PKA activity is required for ERK activation, expression of GsCT caused a net inhibition of ERK activation. In contrast, alpha(2A)AR-mediated ERK activation in COS-7 cells was enhanced by GsCT expression, consistent with the relief of a downstream inhibitory effect of PKA. ERK activation by the G(q/11)-coupled alpha(1B)AR was unaffected by GsCT. These findings suggest that peptide G protein inhibitors can provide insights into the complex interplay between G protein pools in cellular regulation.  相似文献   

13.
GAP-43 and Go are peripheral membrane proteins enriched in neuronal growth cone. GAP-43 was highly purified from bovine cerebral cortex and myristoylated Goαwas highly purified from Escherichia coli cotransformed with pQE60 (Goα) and pBB131 (NMT). GAP-43 stimulated GTPγS binding to Goαand the stimulation effect was dependent on concentration of GAP-43. Protein-protein binding experiments using CaM-Sepharose affinity media revealed that Goa·GDP bound GAP-43 directly to form intermolecular complex. This interaction induced conformational change of Goα. In the presence of GAP-43, fluorescence spectrum of Goa·GDP blue shifted 4 nm; fluorescence intensity increased 35.3% and apparent quenching constant (Ksv) increased from (1.1± 0.22)×105 to (4.1±0.43)×105 (M-1). However, no obvious changes of fluorescence spectra of Goα·GTPγS were observed in the absence or presence of GAP-43. Our results indicated that GAP-43 induced conformational change of Goα·GDP so as to accelerate GDP release and subsequent GTPγS binding, which activates G proteins to trigger signal transduction and amplification. These results provided insights into understanding the function of G proteins in coupling between receptors and effectors and the key role of GDP/GTP exchange mode in GTPase cycle.  相似文献   

14.
Ramachandran S  Cerione RA 《Biochemistry》2004,43(27):8778-8786
The GTP-binding protein (G protein), transducin, serves as a key molecular switch in vertebrate vision through the tight regulation of its GTP-binding (activation)/GTP hydrolytic (deactivation) cycle by the photoreceptor rhodopsin. To better understand the structure-function characteristics of transducin activation, we have set out to identify spectroscopic probes that bind to the guanine nucleotide-binding site of this G protein and maintain its ability to interact with its specific cellular target/effector, the cyclic GMP phosphodiesterase (PDE). In this study, we describe the characterization of a fluorescently labeled GTP analogue, BODIPY-FL GTPgammaS (BOD-GTPgammaS), that binds to the alpha subunit of transducin (alpha(T)) in a rhodopsin- and Gbetagamma-dependent manner, similar to the binding of GTP or GTPgammaS, with an apparent dissociation constant of 100 nM. The rhodopsin-dependent binding of BOD-GTPgammaS to alpha(T) is slow, relative to the rate of binding of GTPgammaS, particularly under conditions where rhodopsin must act catalytically to stimulate the exchange of BOD-GTPgammaS for GDP on multiple alpha(T) subunits. This reflects a slower rate of dissociation of rhodopsin and Gbetagamma from alpha(T)-BOD-GTPgammaS complexes, relative to their rates of dissociation from alpha(T)-GTPgammaS. The binding of BOD-GTPgammaS occurs without a change in the intrinsic tryptophan fluorescence of alpha(T), indicating that only a subtle movement of the Switch 2 domain on alpha(T) accompanies the binding of this GTPgammaS analogue. Nevertheless, the BOD-GTPgammaS-bound alpha(T) subunit is able to bind with high affinity to the recombinant, purified gamma subunit of PDE (gamma(PDE)) labeled with 5-((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid (IAEDANS (K(d) approximately 13 nM)), as well as bind to and stimulate the activity of PDE, albeit less efficiently compared to alpha(T)-GTPgammaS. Taken together, these findings suggest that the binding of BOD-GTPgammaS to transducin causes it to adopt a distinct conformation that appears to be intermediate between the inactive and fully active states of alpha(T), and this fluorescent nucleotide analogue can be used as a reporter group to characterize the interactions of alpha(T) in this conformational state with its biological target/effector.  相似文献   

15.
Minaba M  Ichiyama S  Kojima K  Ozaki M  Kato Y 《The FEBS journal》2006,273(24):5508-5516
Signal transduction mediated by heterotrimeric G proteins regulates a wide variety of physiological functions. We are interested in the manipulation of G-protein-mediating signal transduction using G-protein-coupled receptors, which are derived from evolutionarily distant organisms and recognize unique ligands. As a model, we tested the functionally coupling GOA-1, G alpha(i/o) ortholog in the nematode Caenorhabditis elegans, with the human muscarinic acetylcholine receptor M2 subtype (M2), which is one of the mammalian G alpha(i/o)-coupled receptors. GOA-1 and M2 were prepared as a fusion protein using a baculovirus expression system. The affinity of the fusion protein for GDP was decreased by addition of a muscarinic agonist, carbamylcholine and the guanosine 5'-[3-O-thio]triphosphate ([35S]GTPgammaS) binding was increased with an increase in the carbamylcholine concentrations in a dose-dependent manner. These effects evoked by carbamylcholine were completely abolished by a full antagonist, atropine. In addition, the affinity for carbamylcholine decreased under the presence of GTP as reported for M2-G alpha(i/o) coupling. These results indicate that the M2 activates GOA-1 as well as G alpha(i/o).  相似文献   

16.
Phospholipase Cbeta (PLCbeta) isoforms, which are under the control of Galphaq and Gbetagamma subunits, generate Ca2+ signals induced by a broad array of extracellular agonists, whereas PLCdelta isoforms depend on a rise in cytosolic Ca2+ for their activation. Here we find that PLCbeta2 binds strongly to PLCdelta1 and inhibits its catalytic activity in vitro and in living cells. In vitro, this PLC complex can be disrupted by increasing concentrations of free Gbetagamma subunits. Such competition has consequences for signaling, because in HEK293 cells PLCbeta2 suppresses elevated basal [Ca2+] and inositol phosphates levels and the sustained agonist-induced elevation of Ca2+ levels caused by PLCdelta1. Also, expression of both PLCs results in a synergistic release of [Ca2+] upon stimulation in A10 cells. These results support a model in which PLCbeta2 suppresses the basal catalytic activity of PLCdelta1, which is relieved by binding of Gbetagamma subunits to PLCbeta2 allowing for amplified calcium signals.  相似文献   

17.
Interactions of eukaryotic 5-dimethylaminonaphthalene-1-sulfonyl-initiation factor 2 (eIF-2) from rabbit reticulocytes and the guanine nucleotide exchange factor ( GEF ), Met-tRNAf, GTP, and GDP were monitored by changes in fluorescence anisotropy and radioactive filtration assays. At 1 mM Mg2+, radioactive filtration assays demonstrate that GEF is necessary for nucleotide exchange. We did not observe a GDP dependence in the association reaction of eIF-2 X GEF for GDP concentrations from 0.01 to 20 microM. This is in disagreement with the model: eIF-2 X GDP + GEF in equilibrium eIF-2 X GEF + GDP. The addition of GTP caused a decrease in fluorescence anisotropy which is interpreted as a dissociation of eIF-2 X GEF . We propose an asymmetrical model of ternary complex (eIF-2 X GTP X Met-tRNAf) formation where 1) GDP does not displace GEF and 2) GTP replaces GEF and presumably GDP. For reticulocyte eIF-2, phosphorylation of the alpha subunit greatly inhibits protein synthesis. This inhibition derives neither from failure of GEF to bind to eIF-2(alpha P) nor from greatly enhanced binding of GEF . The inhibition results from the requirement of very high levels of GTP (100 microM) to dissociate the eIF-2(alpha P) X GEF complex.  相似文献   

18.
We previously reported that residues 299-318 in Galphai1 participate in the selective interaction between Galphai1 and the 5-hydroxytryptamine1B (5-HT1B) receptor (Bae, H., Anderson, K., Flood, L. A., Skiba, N. P., Hamm, H. E., and Graber, S. G. (1997) J. Biol. Chem. 272, 32071-32077). The present study more precisely defines which residues within this domain are critical for 5-HT1B receptor-mediated G protein activation. A series of Galphai1/Galphat chimeras and point mutations were reconstituted with Gbetagamma and Sf9 cell membranes containing the 5-HT1B receptor. Functional coupling to 5-HT1B receptors was assessed by 1) [35S]GTPgammaS binding and 2) agonist affinity shift assays. Replacement of the alpha4 helix of Galphai1 (residues 299-308) with the corresponding sequence from Galphat produced a chimera (Chi22) that only weakly coupled to the 5-HT1B receptor. In contrast, substitution of residues within the alpha4-beta6 loop region of Galphai1 (residues 309-318) with the corresponding sequence in Galphat either permitted full 5-HT1B receptor coupling to the chimera (Chi24) or only minimally reduced coupling to the chimeric protein (Chi25). Two mutations within the alpha4 helix of Galphai1 (Q304K and E308L) reduced agonist-stimulated [35S]GTPgammaS binding, and the effects of these mutations were additive. The opposite substitutions within Chi22 (K300Q and L304E) restored 5-HT1B receptor coupling, and again the effects of the two mutations were additive. Mutations of other residues within the alpha4 helix of Galphai1 had minimal to no effect on 5-HT1B coupling behavior. These data provide evidence that alpha4 helix residues in Galphai participate in directing specific receptor interactions and suggest that Gln304 and Glu308 of Galphai1 act in concert to mediate the ability of the 5-HT1B receptor to couple specifically to inhibitory G proteins.  相似文献   

19.
ADP-ribosylation factors (ARFs) are small Ras-like GTPases which play important roles in intracellular vesicle transport and in the remodeling of the actin cytoskeleton. Guanine nucleotide exchange factors (GEFs) for ARFs have recently been identified. One of them, cytohesin-1, a 47-kDa cytoplasmic protein acts as an inside-out signaling molecule and regulates binding of the beta2 integrin leukocyte function antigen 1 (LFA-1) to its ligand intercellular adhesion molecule 1 (ICAM-1). In this study, we address the regulation of the GEF activity of cytohesin-1 by phosphoinositides, using mammalian expression of functional ARF-Ig chimeras. The fusion proteins, which can be quantitatively immunoprecipitated on protein A-Sepharose, target to the expected intracellular compartments, and they are readily induced to bind GTP in vitro. We show that both ARF1-Ig and ARF6-Ig chimeras are activated in vitro by cytohesin-1. However, GEF activity towards ARF6 is strongly suppressed by phosphatidylinositol-(3,4,5)-trisphosphate (PtdInsP3). In contrast, cytohesin-1-dependent GTP binding of ARF1 is significantly enhanced by PtdInsP3. We conclude that the membrane phospholipid PtdInsP3 determines the specificity of the GEF activity of cytohesin-1.  相似文献   

20.
The yeast myosin light chain 1 (Mlc1p) belongs to a branch of the calmodulin superfamily and is essential for vesicle delivery at the mother-bud neck during cytokinesis due to is ability to bind to the IQ motifs of the class V myosin Myo2p. While calcium binding to calmodulin promotes binding/release from the MyoV IQ motifs, Mlc1p is unable to bind calcium and the mechanism of its interaction with target motifs has not been clarified. The presence of Mlc1p in a complex with the Rab/Ypt Sec4p and with Myo2p suggests a role for Mlc1p in regulating Myo2p cargo binding/release by responding to the activation of Rab/Ypt proteins. Here we show that GTP or GTPgammaS potently stimulate Mlc1p interaction with Myo2p IQ motifs. The C-terminus of the Rab/Ypt GEF Sec2p, but not Sec4p activation, is essential for this interaction. Interestingly, overexpression of constitutively activated Ypt32p, a Rab/Ypt protein that acts upstream of Sec4p, stimulates Mlc1p/Myo2p interaction similarly to GTP although a block of Ypt32 GTP binding does not completely abolish the GTP-mediated Mlc1p/Myo2p interaction. We propose that Mlc1p/Myo2p interaction is stimulated by a signal that requires Sec2p and activation of Ypt32p.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号