首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The periodicities of the restriction enzyme cleavage sites in highly repetitive DNAs of six mammalian species (monkey, mouse, sheep, human, calf and rat) appear related to the length of DNA contained in the nucleosome subunit of chromatin. We suggest that the nucleosome structure is an essential element in the generation and evolution of repeated DNA sequences in mammals (Brown et al., 1978; Maio et al., 1977). The possibility of a phase relation between DNA repeat sequences and associated nucleosome proteins is consistent with this hypothesis and has been tested by restriction enzyme and micrococcal nuclease digestions of repetitive DNA sequences in isolated, intact nuclei.Sites for four different restriction enzyme activities, EcoRI, EcoRI1, HindIII and HaeIII have been mapped within the repeat unit of component α DNA, a highly repetitive DNA fraction of the African green monkey. The periodicity of cleavage sites for each of the enzymes (176 ± 4 nucleotide base-pairs) corresponds closely to the periodicity (about 185 nucleotide base-pairs) of the sites attacked in the initial stages of micrococcal nuclease digestion of nuclear chromatin. In intact monkey nuclei, EcoRI-RI1 sites are accessible to restriction enzyme cleavage; the HindIII and HaeIII sites are not. The results suggest (1) that, in component α chromatin, the EcoRI-RI1 sites are found at the interstices of adjacent nucleosomes and (2) the HindIII and HaeIII sites are protected from cleavage by their location on the protein core of the nucleosome. This interpretation was confirmed by experiments in which DNA segments of mononucleosomes and nucleosome cores released from CV-1 nuclei by micrococcal nuclease were subsequently treated with EcoRI, EcoRI1 and HindIII. A major secondary segment of component α, about 140 nucleotide base-pairs in length, was released only by treatment with HindIII, in keeping with the location of the HindIII sites in the restriction map and their resistance to cleavage in intact nuclei.EcoRI reduces calf satellite I DNA to a segment of about 1408 nucleotide basepairs. In contrast, restriction of calf satellite I DNA with EcoRI1 produces six prominent segments ranging in size from 176 to 1408 nucleotide base-pairs. Treatment of isolated calf nuclei with either EcoRI or EcoRI1 did not produce segments shorter than 1408 base-pairs, indicating that while canonical EcoRI sites are accessible to attack, the irregularly spaced EcoRI1 sites are specifically blocked. The results are consistent with a phase relation between the repeat sequence of calf satellite I DNA and an octameric array of nucleosomes.  相似文献   

2.
The physical map for the genome of Spodoptera frugiperda nuclear polyhedrosis virus was constructed for restriction endonucleases BamHI and HindIII. The ordering of the restriction fragments was accomplished by cross-blot hybridization of BamHI, HindIII, and EcoRI fragments. The alignment of the HindIII fragments within the BamHI map was achieved by double digestion with the two restriction endonucleases followed by cross-blot hybridization. The results showed that the viral genome consisted of mainly unique sequences. In addition, the circular nature of the viral genome was reaffirmed.  相似文献   

3.
A restriction map of chicken embryo lethal orphan (CELO) virus DNA was reported with ten restriction endonucleases (XbaI, XhoI, SalI, HindIII, EcoRI, BglI, KpnI, BamHI, PstI and SstI). CELO virus DNA was estimated by comparing CELO virus DNA fragments with marker DNA fragments to have a molecular weight of 29.3·106.  相似文献   

4.
Histone DNA of Psammechinus miliaris was obtained in an enriched form by buoyant density gradient centrifugation and was cleaved into 6 kb repeat units (Birnstiel et al., 1975a) by the action of the specific endonucleases EcoRI and HindIII. Since it was suspected that the 6 kb unit harbored all five histone-coding sequences, the histone DNA unit was subdivided into five segments with the aim of providing five fragments carrying just one coding sequence each. This was achieved by the combined use of EcoRI HindII, HindIII, and Hpa I. A physical map was constructed from the overlaps arising in these restriction experiments. Each of the five segments was shown to hybridize uniquely with just one of the five highly purified histone mRNAs (Gross et al., 1976a). By this procedure, the order of the mRNA sequences on the histone DNA was found to be a, c, d, b, e (Gross et al., 1976a), and hence of the protein coding sequences H4, H2B, H3, H2A, and H1. Further evidence is presented that the 6 kb repeat unit, amplified by means of a Murray λ vector phage, contains AT-rich DNA sequences which would be expected not to code for histone proteins.  相似文献   

5.
Deleted genomes of simian virus 40 have been constructed by enzymatic excision of specific segments of DNA from the genome of wild-type SV402. For this purpose, a restriction endonuclease from Hemophilus influenzae (endo R · HindIII) was used. This enzyme cleaves SV40 DNA into six fragments, which have cohesive termini. Partial digest products were separated by electrophoresis in agarose gel and subsequently cloned by plaque formation in the presence of complementing temperature-sensitive mutants of SV40. Individual deletion mutants generated in this way were mapped by analysis of DNA fragments produced by endo R · Hind digestion of their deleted genomes, and by heteroduplex mapping. Two types of deletions were found: (1) “excisional” deletions, in which the limits of the deleted segment corresponded to HindIII cleavage sites, and (2) “extended” deletions, in which the deleted segment extended beyond HindIII cleavage sites. Excisionally deleted genomes presumably arose by cyclization of a linear fragment via cohesive termini generated by endo R · HindIII whereas genomes with extended deletions probably were generated by intramolecular recombination near the ends of linear fragments. Of the nine mutants analyzed, two had deletions in the “early” region of the SV40 genome, six had deletions in the “late” region, and one had a deletion that spanned both regions.  相似文献   

6.
N K Alton  D Vapnek 《Plasmid》1978,1(3):388-404
A genetic and physical map of Escherichia coli plasmid R538-1 was constructed using restriction endonucleases and molecular cloning techniques. R538-1 DNA was cleaved into 12 fragments by endonuclease · R · EcoRI, 6 fragments by endonuclease R · HindIII, and 3 fragments by endonuclease R · BamHI. The order of these fragments was determined by standard restriction fragment mapping techniques. Endo · R · EcoRI, endo · R · HindIII, endo · R · BamHI, and endo · R · PstI fragments obtained from R538-1 and ColE1-derived plasmids (pMB9, ColE1Apr, and pBR322) were ligated in vitro and used to transform E. coli C600. Transformants were selected for antibiotic resistance markers carried by R538-1. Analysis of the R538-1 fragments contained in these hybrid plasmids permitted the construction of a genetic map of the R538-1 plasmid. The genetic map of this plasmid is very similar to that of plasmid R100.  相似文献   

7.
The size of DNA fragments complementary to ribosomal RNA was determined in SstI and HindIII restriction spectra from totally and partially cleaved yeast (Saccharomyces cerevisiae) DNA. The results indicated that the yeast ribosomal RNA gene cluster consists of 9000 base-pair long tandemly repeated units. Three different repeating units, which are overlapping with respect to their sequences, were cloned as SstI and HindIII fragments with λ vectors. The isolation of these clones was facilitated by genetic or physical preselection for those recombinant phage which contained DNA inserts in the expected size range. Both preselection methods gave about a 30-fold purification with respect to the λ-rDNA clones. A heteroduplex analysis of the clones obtained with a three-component HindIII vector showed that the center part of the λ genome carrying λ recombination and regulation genes (57 to 77% λ) can become inverted without apparent decrease of growth capacities.  相似文献   

8.
A physical map of the 88 × 106 dalton, circular DNA genome of Autographa californica nuclear polyhedrosis virus was constructed. The complete order of BamHI and XmaI restriction enzyme sites was determined. The EcoRI and HindIII fragments were partially ordered, and their general locations, relative to the BamHI and XmaI maps, were determined. Alterations in the restriction endonuclease fragment patterns of natural genotypic variants of A. californica nuclear polyhedrosis virus, including Trichoplusia ni MEV nuclear polyhedrosis virus, were located on the physical map. Alterations were found throughout the A. californica nuclear polyhedrosis virus DNA genome.  相似文献   

9.
The restriction enzymes AluI, BamHI, BglII, EcoRI, HindIII, and SalI have been used to characterize and map a new cauliflower mosaic virus strain (Cabb-S). These fragments have been ordered by examining their overlapping regions after double enzymatic digestion. The single SalI cleavage site was chosen as the point of origin. We compare this strain with those already described.  相似文献   

10.
A physical map of plasmid pDU1 from the cyanobacterium Nostoc PCC 7524   总被引:6,自引:0,他引:6  
Nostoc 7524 contains three different plasmids of molecular weight, 4, 8, and 28 Mdal. The smallest plasmid, designated pDU1, because of its size and ease of isolation, may prove to be useful as a cloning vector. Plasmid pDU1 was incubated separately with 26 different restriction enzymes and only 8 of the enzymes tested cut pDU1. A composite restriction enzyme map consisting of a total of 17 restriction sites was constructed for BglI, HindIII, HpaI, and XbaI. The sites of restriction enzyme cleavage were determined by single, double, and partial digests of plasmid DNA or redigestion of isolated restriction fragments. All the restriction sites were aligned relative to the single BglI site. This is the first restriction enzyme map of a plasmid from a filamentous cyanobacterium.  相似文献   

11.
Pring DR  Levings CS 《Genetics》1978,89(1):121-136
Maize mitochondrial and chloroplast DNA's were prepared from normal (fertile) lines or single crosses and from members of the T, C, and S groups of male-sterile cytoplasms. Restriction endonucleases HindIII, BamI, EcoRI, and SalI were used to restrict the DNA, and the resultant fragments were electrophoresed in agarose gels. The results show that the N (fertile), T, C, and S cytoplasms each contained distinct mitochondrial DNA (mtDNA). These distinctive patterns were unaffected by nuclear genotype. No evidence of paternal inheritance of mtDNA was observed. Chloroplast DNA (ctDNA) from the N, C, and T cytoplasms was indistinguishable by HindIII, SalI, or EcoRI endonuclease digestion. The S cytoplasm ctDNA, however, was slightly different from that of other cytoplasms, as indicated by a slight displacement of one band in HindIII digests. The molecular weight of maize ctDNA was estimated to be as high as 88 x 106. Estimates of the minimum molecular weight of maize mtDNA ranged from 116–131 x 106, but the patterns were to complex for an unambiguous determination. Based on HindIII data, a comparison of the molecular weight of mtDNA bands common to the N, T. C, and S cytoplasms suggests that C cytoplasm most closely resembles N cytoplasm. The T and S sources are more divergent from the C and N cytoplasms. These results indicate a possible gradation of relatedness among male-sterile cytoplasms. The marked variation in mtDNA, with apparently less variation in ctDNA, represents circumstantial, but compelling, evidence that mtDNA may be involved in the male sterility and disease susceptibility traits in maize.  相似文献   

12.
A physical map of the streptococcal macrolides, lincomycin, and streptogramin B (MLS) resistance plasmid pDB101 was constructed using six different restriction endonucleases. Ten recognition sites were found for HindIII, seven for HindII, eight for HaeII, and one each for EcoRI, HpaII, and KpnI. The localization of the restriction cleavage sites was determined by double and triple digestions of the plasmid DNA or sequential digestions of partial cleavage products and isolated restriction fragments, and all sites were aligned with a single EcoRI reference site. Plasmid pDB101 meets all requirements essential for a potential molecular cloning vehicle in streptococci; i.e., single restriction sites, a MLS selection marker, and a multiple plasmid copy number. The vector plasmid described here makes it possible to clone selectively any fragment of DNA cleaved with EcoRI, HpaII, or KpnI, or since the sites are close to each other in map position, any combination of two of these restriction enzymes.  相似文献   

13.
The locations of thirty restriction endonuclease cleavage sites were determined on the genome of adenovirus type 4 (Ad4), the sole member of the subgroup E adenovirions. The restriction endonucleases BglII, EcoRI, HindIII, HpaI, KpnI, SalI, and XbaI cut Ad4 DNA 10, 3, 2, 3, 5, 5 and 3 times, respectively. Orientation of the linear Ad4 map with respect to left and right molecular ends was accomplished by taking advantage of the limited sequence homology between Ad2 and Ad4. Ten non-overlapping fragments of Ad4 DNA representing 98% of the genome, map units 1.6 to 99.6, have been cloned into the plasmid vector pKC7.  相似文献   

14.
Summary A cleavage map of bacteriophage P1 DNA was established by reciprocal double digestion with various restriction endonucleases. The enzymes used and, in parenthesis, the number of their cleavage sites on the P1clts genome are: PstI (1), HindIII (3), BglII (11), BamHI (14) and EcoRI (26). The relative order of the PstI, HindIII and BglII sites, as well as the order of 13 out of the 14 BamHI sites and of 17 out of the 26 EcoRI sites was determined. The P1 genome was divided into 100 map units and the PstI site was arbitrarily chosen as reference point at map unit 20.DNA packaging into phage heads starts preferentially at map unit 92 and it proceeds towards higher map units. The two inverted repeat sequences of P1 DNA map about at units 30 and 34.  相似文献   

15.
Summary The histidine utilization (hut) operons of Klebsiella aerogenes were cloned into pBR322. The hut genes are wholly contained on a 7.9 kilobase pair fragment bounded by HindIII restriction sites and expression of hut is independent of the orientation of the fragment with respect to pBR322. A restriction map locating the 27 cleavage sites within hut for the enzymes, HindIII, PvuII, SalI, BglII, KpnI, PstI, SmaI, AvaI, and BamHI was deduced. Several of the cleavage sites for the enzymes HaeIII and HinfI were also mapped. A set of deletion plasmids was isolated by removing various restriction fragments from the original plasmid. These deletions were characterized and were used to assist in mapping restriction sites. This physical characterization of hut DNA opens the way for genetic and molecular analysis of the regulation of hut gene expression in vitro as well as in vivo.  相似文献   

16.
A plasmid cloning vector for Kpnl-cleaved DNA   总被引:9,自引:0,他引:9  
K Beckingham 《Plasmid》1980,4(3):354-356
A plasmid cloning vector containing a single site for KpnI has been generated by insertion of a 3.5-kb EcoRI/HindIII fragment of pCR1 into the EcoRI/HindIII sites of pBR322. KpnI cleavage yields 3′ rather than 5′ “sticky ends” which allows reconstitution of the recognition site after cloning by a homopolymer joining procedure. This is an advantage shared with only one or two other commercially available restriction enzymes.  相似文献   

17.
Successful amplification of the whole intergenic spacer region of the nuclear ribosomal repeat (IGS) in Pyrenophora graminea was obtained with a PCR-based assay. Single amplification products showed length differences. Depending on the length of the IGS-PCR product, ca. 3.8 or 4.4 kb, two groups of isolates could be identified. The RFLP patterns of isolates obtained with the 6-base cutting enzymes ApaI, BglII, DraI, EcoRV, HindIII and SacI were similar within each group and different between the two groups. Restriction patterns of IGS-PCR products digested with the 4-base cutting enzyme AluI were polymorphic among isolates in spite of their IGS-PCR product length. In order to characterize the long and short IGS-PCR products the restriction map is shown. The long product shows an additional HindIII site and a BglII site that is lacking in the short product. However, the latter shows a SacI site that is not present in the long IGS-PCR product. Therefore, the described PCR-RFLP analysis of the IGS appears to be a useful tool to resolve genetic variation between P. graminea isolates.  相似文献   

18.
Restriction site periodicities in highly repetitive DNA of primates.   总被引:2,自引:0,他引:2  
Highly repeated DNA sequences from three Old World primate groups have been compared, using restriction endonucleases. Baboons, macaques and mangabeys share a 3404 base-pair, tandemly repeated DNA that is cut once by EndoR · BamHI. The several species of guenons, including the African green monkey, possess a related 170 base-pair, tandemly organized sequence distinguished by the feature of being cut once by EndoR · HindIII, EndoR · MboII or EndoR · HphI. The tandemly repeated DNA of the colobus monkey is based on a monomer length of 680 base-pairs, being cut once by EndoR · BamI or EndoR · EcoRI. Thus, all three highly repeated DNAs have a monomer length of 170n base-pairs, where n = 1, 2 or 4. The 340 and 680 base-pair repeated DNAs contain an internal 170 base-pair periodicity with respect especially to the EndoR · HindIII cleavage site, but with respect also to several other enzymes that characterize each repeated sequence. The 170 base-pair length is called the fundamental unit.The three repeated DNAs are more conserved in the region around the HindIII site and are more divergent elsewhere in the sequence. All seven 170 base-pair fundamental units were related to one another, judging from the overall similarities of the maps of restriction endonuclease cleavage sites. The highly repeated DNAs from baboons and guenons are related enough to cross-hybridize at relaxed criteria (60 °C in 0.12 m-Na+) but neither hybridizes to repeated colobus DNA under this condition.The results show that highly repeated sequences in primates form a common library descended from a single ancestral sequence, with 170 base-pairs making up the fundamental unit of library members. Occasionally, a member of the library is amplified, creating a newly amplified family. In Old World monkeys the most recent amplification just preceded active speciation.  相似文献   

19.
Summary A cleavage map of the TOL plasmid pWWO has been determined for the restriction endonucleases HindIII and XhoI. A number of techniques were employed including (i) digestion of purified cleavage products with a second enzyme; (ii) hybridisation of purified XhoI fragments to Southern blots of HindIII digest products and (iii) analysis of a number of deletion mutants.  相似文献   

20.
By the calcium technique, intact DNA of bovine adenovirus type 3 (BAV3) was found to transform A31 cells, a clone of BALB/3T3. Transforming activity was resistant to RNase and Pronase but sensitive to DNase. The efficiency of transformation was approximately 5 to 10 foci per μg of DNA. Attempts were also made to test for transforming activity of BAV3 DNA fragments prepared with restriction endonucleases EcoRI and HindIII. The activity was found to associate exclusively with the EcoRI D fragment mapped in the region of 3.6 and 19.7 units (molecular weight, 3.9 × 106). No transformation could be obtained with three HindIII fragments, J, E, and B, located at the left-hand end of the BAV3 genome. However, the enzymatic joining of J and E fragments (0 to 11.9 map units) with a ligase restored the transforming activity. These results suggest that all the genetic information of BAV3 required for transformation is located in the region between 3.6 and 11.9 units on the viral genome. Some properties of A31 cells transformed by BAV3 DNA EcoRI D fragment (TrD) and the ligated DNA of HindIII J and E fragments (TrJE), as well as those transformed by whole BAV3 DNA (Tr), were examined. As compared to untransformed A31 cells, all the transformed cell lines tested showed rapid growth, high saturation densities, and anchorage-independent growth. Moreover, they contained BAV3-specific T antigen and induced tumors in adult nude and BALB/c mice. These properties of Tr, TrD, and TrJE lines were similar to those of BAV3-transformed cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号