首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structural studies on pancreatic lipase have revealed a complex architecture of surface loops surrounding the enzyme active site and potentially involved in interactions with lipids. Two of them, the lid and β9 loop, expose a large hydrophobic surface and are considered as acyl chain binding sites based on their interaction with an alkyl phosphonate inhibitor. While the role of the lid in substrate recognition and selectivity has been extensively studied, the implication of β9 loop in acyl chain stabilization remained hypothetical. The characterization of an enzyme with a natural deletion of the lid, guinea pig pancreatic lipase-related protein 2 (GPLRP2), suggests however an essential contribution of the β9 loop in the stabilization of the acyl enzyme intermediate formed during the lipolysis reaction. A GPLRP2 mutant with a seven-residue deletion of β9 loop (GPLRP2-Δβ9) was produced and its enzyme activity was measured using various substrates (triglycerides, monoglycerides, galactolipids, phospholipids, vinyl esters) with short, medium and long acyl chains. Whatever the substrate tested, GPLRP2-Δβ9 activity is drastically reduced compared to that of wild-type GPLRP2 and this effect is more pronounced as the length of substrate acyl chain increases. Changes in relative substrate selectivity and stereoselectivity remained however weak. The deletion within β9 loop has also a negative effect on the rate of enzyme inhibition by alkyl phosphonates. All these findings indicate that the reduced enzyme turnover observed with GPLRP2-Δβ9 results from a weaker stabilization of the acyl enzyme intermediate due to a loss of hydrophobic interactions.  相似文献   

2.
Rutin and esculin were enzymatically acylated with different aliphatic acids as acyl donors (fatty acids, dicarboxylic acids and ω-substituted fatty acids) by an immobilized lipase from Candida antarctica. The effect of the water content and the acyl donors pattern on the flavonoid initial acylation rate and conversion yield were investigated. The obtained results indicated that the water content of the medium has a strong effect on the performance of these reactions. The best conversion yields were reached when the water content was kept lower than 200 ppm. At low water content of the medium, these syntheses are influenced by carbon chain length and substitution pattern of the acyl donors. Higher conversion yields of esculin and rutin (>70%) were obtained with aliphatic acids having high carbon chain length (>12). Moreover, it has been found that the amine and thiol groups on ω-substituted fatty acid chain were unfavourable to these reactions. The 1H NMR and 13C NMR analyses of some synthesized esters (esculin and rutin palmitate) show that only monoesters were produced and that the esterification takes place on the primary OH of glucose moiety of the esculin and on the secondary 4′′′-OH of the rhamnose residue of rutin.  相似文献   

3.
Paramylon is a natural hydrophilic polysaccharide produced in the pyrenoids of euglenoids, and esterification may render paramylon hydrophobic. Esterification imparts not only thermoplasticity, but also potential compatibilities with other polymer resins and fillers. However, the dependence of the compatibility on the structure of the polymer ester has not yet been systematically studied. To estimate the affinities between paramylon esters and hydrophobic organic solvents/resins, the dependences of their Hansen solubility parameters, which are association indices, on the degrees of substitution and chain lengths of the ester groups were investigated. Experimental and theoretical investigations were conducted using the dissolution and Fedors methods, respectively. Esterification decreased the solubility parameter from 49 (paramylon) to approximately 18 MPa1/2 (paramylon esters), indicating that the potential affinities of paramylon esters for hydrophobic organic solvents/polymers increased. A multiple regression analysis was also performed to investigate the effects of acyl chain length and degree of substitution with acyl groups on the solubility parameter. The solubility parameters of the paramylon derivatives were continuously variable from hydrophilic to -phobic. Hence, esterification with various acyl groups may control the hydrophobicities of paramylon esters, enhancing their miscibilities with various hydrophobic organic solvents and resins.  相似文献   

4.
Hoff BH  Anthonsen T 《Chirality》1999,11(10):760-767
Enantiomers of C-3 secondary alcohols, 3-hydroxybutanoates, and cyclic 1,3-dithioacetals were separated by chiral GLC using CP-Chirasil-Dex CB and Chiraldex G-TA columns. The former was most successful for analysis of n-alkyl esters of secondary alcohols and the separation depended on the chain length of the acyl group and the electronic and steric properties of the other substituents. The Chiraldex G-TA column was efficient for analysis of secondary alcohols, derivatized as their trifluoroacetates. The elution order of the secondary alcohols and the corresponding acetates was always the same with respect to the size of groups connected to the stereocenter. However, when the secondary alcohols were analyzed as their trimethylsilyl derivatives, the elution order was reversed. Elution order on chiral columns and enantiomeric ratios, E-values, obtained in kinetic resolutions catalyzed by lipase B from Candida antarctica (CALB) were evaluated as a method for prediction of absolute configuration. The usefulness of the method was demonstrated using 22 pairs of enantiomers. Copyright 1999 Wiley-Liss, Inc.  相似文献   

5.
Tris(3-heptafluorobutyryl-d-camphorato)europium(III), Eu(hfbc)3 was used to determine the optical purities of enantiomeric mixtures of tri-, di- and monoglycerides with various fatty acid chain lengths by proton magnetic resonance (PMR). Synthesized model enantiomers were used to assign PMR signals. Enantiomeric signal separation becomes more difficult if the chain length difference between the fatty acids in the 1- and 3-positions of glycerol becomes smaller. The sign of the enantiomeric shift difference (ΔΔδ) of the terminal acyl CH3 group of 1-acyl-2,3-distearoyl-sn-glycerol vs its enantiometer remains the same in the series acyl is hexanoyl, butyryl, propionyl, but is reversed for acetyl.The absolute configuration of the main triglyceride of the seed oil of Euonymus alatus was determined to be 3-acetyl-1,2-distearoyl-sn-glycerol and that of a monobutyryl triglyceride fraction from hydrogenated bovine butterfat was confirmed to be mainly 1,2-diacyl-3-butyryl-sn-glycerol. The enantiotopic behaviour of the glycerol CH2 groups in (nearly) symmetric di- and triglycerides is discussed.  相似文献   

6.
Xiao YM  Wu Q  Wang N  Lin XF 《Carbohydrate research》2004,339(7):1279-1283
Transesterification of cyclomaltoheptaose (beta-CD) with divinyl butanedioate, divinyl hexanedioate, and divinyl decanedioate, catalyzed by the alkaline protease from Bacillus subtilis in anhydrous DMF for 5 days, furnished the corresponding vinyl-beta-CD derivatives. The products were characterized by ESI-MS, (1)H NMR, (13)C NMR, IR, and DSC. The results indicated the products to be monosubstituted esters, with monoacylation occurring at the C-2 secondary hydroxyl groups of beta-CD. The regioselectivity of the monoacylation as catalyzed by alkaline protease was not affected by the chain length of the acyl donor.  相似文献   

7.
The large intrinsic membrane dipole potential, phi(d), is important for protein insertion and functioning as well as for ion transport across natural and model membranes. However, the origin of phi(d) is controversial. From experiments carried out with lipid monolayers, a significant dependence on the fatty acid chain length is suggested, whereas in experiments with lipid bilayers, the contribution of additional -CH(2)-groups seems negligibly small compared with that of the phospholipid carbonyl groups and lipid-bound water molecules. To compare the impact of the -CH(2)-groups of dipalmitoylphosphatidylcholine (DPPC) near and far from the glycerol backbone, we have varied the structure of DPPC by incorporation of sulfur atoms in place of methylene groups in different positions of the fatty acid chain. The phi(d) of symmetric lipid bilayers containing one heteroatom was obtained from the charge relaxation of oppositely charged hydrophobic ions. We have found that the substitution for a S-atom of a -CH(2)-group decreases phi(d). The effect (deltaphi(d) = -22.6 mV) is most pronounced for S-atoms near the lipid head group while a S-atom substitution in the C(13)- or C(14)-position of the hydrocarbon chain does not effect the bilayer dipole potential. Most probably deltaphi(d) does not originate from an altered dipole potential of the acyl chain containing an heteroatom but is mediated by the disruption of chain packing, leading to a decreased density of lipid dipoles in the membrane.  相似文献   

8.
As part of a program towards the development of novel antibiotics, a convenient method for solid-phase synthesis of the cyclic cationic peptide polymyxin B1 and analogues thereof is described. The methodology, based on cleavage-by-cyclization using Kenner's safety-catch linker, yields crude products with purities ranging from 37-67%. Antibacterial assays revealed that analogues 23-26, in which the (S)-6-methyloctanoic acid moiety is replaced with shorter acyl chains, exhibit distinct antimicrobial activity. The results suggest that the length of the acyl chain is rather critical for antimicrobial activity. On the other hand, substitution of the hydrophobic ring-segment D-Phe-6/Leu-7 in polymyxin B1 with dipeptide mimics (i.e. analogues 27-33) resulted in almost complete loss of antimicrobial activity.  相似文献   

9.
Hydrocarbons from three homologous series of branched alkanes from the eggs of the tobacco hornworm, Manduca sexta (L.), were identified by mass spectrometry. Gas-liquid chromatography (GLC) peaks 37-A (equivalent chain length of 37.2) and 39-A (equivalent chain length of 39.2) were mixtures of 13-, 15-, 17-, and 19-methylheptatriacontane and 13-, 15-, 17-, and 19-methylnonatriacontane, respectively. GLC peaks 33-B, 37-B, and 39-B with equivalent chain lengths of 33.4, 37.4, and 39.4, respectively, were mixtures of 13,17- and 15,19-dimethyltritriacontane, 13,17-, 15,19-, and 17,21-dimethylheptatriacontane, and 13,17-, 15,19-, and 17,21-dimethylnonatriacontane, respectively. GLC peak 37-C (equivalent chain length of 37.6) was a mixture of 11,15,19-, 13,17,21-, and 15,19,23-trimethylheptatriacontane.  相似文献   

10.
Summary Three distinct forms of lipolytic enzyme were identified in a commercialCandida lipase preparation. Two of these lipases (lipases A & C) were isolated and characterized. Lipase A had a higher optimal reaction pH and a better thermal stability than those of lipase C. Lipase A and C displayed different acyl chain length specificity on the lipolysis of p-nitrophenol esters.  相似文献   

11.
A new model of enzymatic 1,3-specific alcoholysis of triacylglycerols has been developed. The irreversibility of the acyl bounds cleavage in glycerides, a reversible monoglycerides isomerization and an irreversible enzyme deactivation have been assumed. The Ping Pong Bi Bi mechanism with competitive inhibition by alcohol has been applied to describe rates of acyl bonds cleavage. The enzymatic propanolysis and iso-propanolysis of triacetin and tricaprylin catalyzed by immobilized lipase B from Candida antarctica (Novozym 435) have been investigated to verify the model. Good agreement between experimental data and calculations has been obtained. It was shown that the rate of tricaprylin alcoholysis is higher than the triacetin alcoholysis and that the rate of iso-propanolysis reactions are higher than propanolysis. The irreversible enzyme deactivation affects the conversion of glycerides whereas the competitive alcohol inhibition may be neglected. Empirical correlations of rates for monoglycerides isomerization and enzyme deactivation have been proposed.  相似文献   

12.
Dumas F  Tocanne JF  Leblanc G  Lebrun MC 《Biochemistry》2000,39(16):4846-4854
The structural and functional consequences of a mismatch between the hydrophobic thickness d(P) of a transmembrane protein and that d(L) of the supporting lipid bilayer were investigated using melibiose permease (MelB) from Escherichia coli reconstituted in a set of bis saturated and monounsaturated phosphatidylcholine species differing in acyl-chain length. Influence of MelB on the midpoint gel-to-liquid-phase transition temperature, T(m), of the saturated lipids was investigated through fluorescence polarization experiments, with 1,6-diphenyl-1,3,5-hexatriene as the probe, for varying protein/lipid molar ratio. Diagrams in temperature versus MelB concentration showed positive or negative shifts in T(m) with the short-chain lipids DiC12:0-PC and DiC14:0-PC or the long-chain lipids DiC16:0-PC and DiC18:0-PC, respectively. Theoretical analysis of the data yielded a d(L) value of 3.0 +/- 0.1 nm for the protein, similar to the 3.02 nm estimated from hydropathy profiles. Influence of the acyl chain length on the carrier activity of MelB was investigated in the liquid phase, using the monounsaturated PCs. Binding of the sugar to the transporter showed no dependence on the acyl chain length. In contrast, counterflow and Deltapsi-driven experiments revealed strong dependence of melibiose transport on the lipid acyl chain length. Similar bell-shaped transport versus acyl chain length profiles were obtained, optimal activity being supported by diC16:1-PC. On account of a d(P) value of 2.65 nm for the lipid and of various local constraints which would all tend to elongate the acyl chains in contact with the protein, one can conclude that maximal activity was obtained when the hydrophobic thickness of the bilayer matched that of the protein.  相似文献   

13.
This paper describes the structure of acylcerebrosides isolated from rat brains. Three fractions (acylglycosylceramides I, II, III) were resolved according to their decreasing RF values on TLC. GLC analysis of acylglycosylceramides II and III indicates that their ester-linked fatty acids are short and rather unsaturated, while amide-linked fatty acids are longer and hydroxylated. Sugar GLC analysis indicates that acylglycosylceramides II and III contain only galactose. To determine the substitution position of the acyl group on the galactose moiety, the free hydroxyl groups of acylglycosylceramide were protected with dihydropyran, deacylated and subjected to permethylation. The methylated galactoside acetates obtained after hydrolysis and reduction were then analyzed by gas chromatography/mass spectrometry. Acylglycosylceramides II and III turned out to be complex mixtures of 2-O-acyl-, 3-O-acyl-, 4-O-acyl- and 6-O-acylgalactosylceramides. Moreover, the abundance of alpha-methylgalactoside reveals the existence of unsubstituted galactose, suggesting that some ester-linked fatty acids could be esterified to the hydroxyl group of hydroxy fatty acids linked to sphingosine. NMR spectrometry was used to confirm this ester linkage. The key spectral feature of the fatty acid-galactose linkage (4.45 ppm) did move to 4.15 ppm after saponification of acylglycosylceramide II; on the other hand, acylglycosylceramide III contained only the spectral feature 4.15 ppm, corresponding to a high percentage of unsubstituted galactose and consistent with the presence in the molecule of a fatty acid esterified by the omega-OH group of the hydroxy fatty acid (3.95 ppm).  相似文献   

14.
The properties of the 500-fold purified high-molecular-weight lipase have been studied. The rate of hydrolysis of the triglycerides decreases with increasing fatty acid chain length. The lipolytic activity also increases with increase in unsaturation in the fatty acyl moiety. Diglycerides are hydrolyzed at more than twice the rate for triglycerides while monoglycerides are not hydrolyzed. Methyl esters are generally hydrolyzed at a higher rate which increases with increasing chain length of the fatty acid but the enzyme does not act on phospholipids. Emulsifying agents such as Tween 20, gum arabic, and albumin increase the rate of hydrolysis. Metal ions such as Hg2+, Zn2+, Cu2+, and Fe2+ strongly inhibit the lipolytic activity of the high-molecular-weight lipase while Ca2+ or Mg2+ by themselves show no stimulating effect. Treatment of the high-molecular-weight lipase with P-chloromercurybenzoate inhibits hydrolytic activity by 70% while iodoacetic acid has no effect.  相似文献   

15.
The properties of the gramicidin A channel in membranes made from a series of monoglycerides have been studied. In agreement with previous studies, the dissociation rate constant kD of the dimeric channel was found to increase strongly with increasing chain length of the monoglyceride, corresponding to a decrease of the mean life-time of the channel. The value of kD, however, was not strictly correlated with the membrane thickness, as seen from a comparison of membranes with different solvent content. Furthermore, the life-time of the channel increased with the concentration of the permeable ion. This effect was tentatively explained by an electrostatic stabilization of the channel. The single-channel conductance lambda was found to decrease with increasing membrane thickness d, if d was varied by increasing the chain length of the lipid. On the other hand, if d was changed by varying the solvent content of the membranes formed from one and the same lipid, lambda remained constant. These observations were explained by the assumption of local inhomogeneities in the membrane thickness. A striking difference between the lambda values obtained from autocorrelation analysis in the presence of many presence of many channels (lambda a) and those obtained from single-channel experiments (lambda sc) occurred with membranes from longer chain-length monoglycerides. This difference disappeared at low ion concentrations. Electrostatic interactions between channels in local clusters were proposed for an interpretation of these findings.  相似文献   

16.
Programmable fusogenic vesicles (PFVs) are lipid-based drug-delivery systems that exhibit time-dependent destabilization. The rate at which this destabilization occurs is determined by the exchange rate of a bilayer-stabilizing component, polyethylene glycol-phosphatidylethanolamine (PEG-PE) from the vesicle surface. This exchange rate is controlled, in turn, by the acyl chain composition of the PEG-PE. We describe in vitro and in vivo studies using PFVs as delivery vehicles for the anticancer drug mitoxantrone. We demonstrate that the PEG-PE acyl composition determined the rate at which PFVs are eliminated from plasma after intravenous administration, and the rate of mitoxantrone leakage from PFV. The nature of the PEG-PE component also determined the antitumor efficacy of mitoxantrone-loaded PFV in murine and human in murine and human xenograft tumor models. Increased circulation time and improved activity were obtained for PFV containing PEG-PE with an 18-carbon acyl chain length, as a result of slower vesicle destabilization.  相似文献   

17.
The physico-chemical properties of three fully hydrated monoacyl maltoside glycolipids were investigated with Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and small-angle X-ray scattering (SAXS). The different synthesized maltoside glycoconjugates vary in the length and saturation of the fatty acid moiety, whereas the constant head group region contains a beta-linked maltose with a OC(2)-NH spacer. The compounds with saturated acyl chains showed a complex pattern of temperature-dependent behaviour, regarding the adopted three-dimensional aggregate structure of the molecules and the main phase transition from the gel to liquid crystalline phase of the acyl chains. A substitution of the saturated acyl chain with an unsaturated acyl chain led to a complete change of the structural preferences, from a high ordered stacking of the bilayers to an unilamellar arrangement of completely disordered and fluid membranes. The presence of the NH group in the spacer, compared to the compounds lacking the NH group allows the formation of a hydrogen bonding network, which influences the observed phase properties. The results of these studies of the hydrated monoacylated maltose glycolipids are discussed in relation to the thermotropic phase properties of the pure compounds in the absence of water.  相似文献   

18.
Rogge CE  Fox BG 《Biochemistry》2002,41(31):10141-10148
Stearoyl acyl carrier protein Delta(9) desaturase catalyzes the NADPH- and O(2)-dependent insertion of a cis double bond between the C-9 and C-10 positions of the acyl chain in the kinetically preferred natural substrate 18:0-ACP. In this work, substrate analogues with an oxygen atom singly replacing the methylene groups at the 8, 9, 10, and 11 positions of the stearoyl chain were synthesized, converted to acyloxy-ACPs, and used as probes of desaturase reactivity. Evidence for desaturation, acyloxy chain scission, and register-shift in binding prior to chain scission was obtained. Reactions with acyloxy-ACPs having either O-8 or O-11 substitutions gave a single desaturation product consistent with the insertion of a cis double bond between C-9 and C-10. The k(cat)/K(M) values for the O-8- and O-11-substituted acyloxy-ACPs were comparable to that of the natural substrate, indicating that the presence of an ether group adjacent to the site of reactivity did not significantly interfere either with the desaturation reaction or with the binding of substrate in the proper register for desaturation between C-9 and C-10. For reactions with the O-9 and O-10 acyloxy-ACPs, the k(cat) values were decreased to approximately 3% of that observed for 18:0-ACP, and upon reaction, the acyloxy chain was broken to yield an omega-hydroxy fatty alkanoyl-ACP and a volatile long-chain aldehyde. For the O-9 substitution, 8-hydroxyoctanoate and 1-nonanal were obtained, corresponding to the anticipated binding register and subsequent reaction between the O-9 and C-10 positions. In contrast, the O-10 substitution yielded 9-hydroxynonanoyl-ACP and 1-octanal, corresponding to an obligate "register-shift" of acyloxy chain binding prior to reaction between the O-10 and C-11 positions. Register-shift is thus defined as a mechanistically relevant misalignment of acyl chain binding that results in reaction at positions other than between C-9 and C-10. The inability of the O-10 acyloxy probe to undergo reaction between the C-9 and O-10 positions provides evidence that the Delta9D-catalyzed desaturation of stearoyl-ACP may initiate at C-10. Possible mechanisms of the acyl chain scission and implications of these results for the desaturation mechanism are considered.  相似文献   

19.
N-Acyl homoserine lactone (AHL) quorum-sensing signals are the vital elements of bacterial quorum-sensing systems, which regulate diverse biological functions, including virulence. The AHL-lactonase, a quorumquenching enzyme encoded by aiiA from Bacillus sp., inactivates AHLs by hydrolyzing the lactone bond to produce corresponding N-acyl homoserines. To characterize the enzyme, the recombinant AHL-lactonase and its four variants were purified. Kinetic and substrate specificity analysis showed that AHL-lactonase had no or little residue activity to non-acyl lactones and noncyclic esters, but displayed strong enzyme activity toward all tested AHLs, varying in length and nature of the substitution at the C3 position of the acyl chain. The data also indicate that the amide group and the ketone at the C1 position of the acyl chain of AHLs could be important structural features in enzyme-substrate interaction. Surprisingly, although carrying a (104)HX- HXDH(109) short sequence identical to the zinc-binding motif of several groups of metallohydrolytic enzymes, AHL-lactonase does not contain or require zinc or other metal ions for enzyme activity. Except for the amino acid residue His-104, which was shown previously to not be required for catalysis, kinetic study and conformational analysis using circular dichroism spectrometry showed that substitution of the other key residues in the motif (His-106, Asp-108, and His-109), as well as His-169 with serine, respectively, caused conformational changes and significant loss of enzyme activity. We conclude that AHL-lactonase is a highly specific enzyme and that the (106)HXDH(109) approximately H(169) of AHL-lactonase represents a novel catalytic motif, which does not rely on zinc or other metal ions for activity.  相似文献   

20.
In a reaction medium mixture of 9:11 t-BuOH and pyridine (v/v) the effect of fatty acid chain length (C-4-C-12) on C. antarctica lipase B (Novozym 435, EC 3.1.1.3) catalysed esterification was studied. alpha and beta maltose 6'-O-acyl esters in an anomeric molar ratio of 1.0:1.1 were synthesised independently of the chain length, but the initial specific reaction rate increased with decreasing chain length of the acyl donor. The product yield followed the same trend with a lauryl ester yield of 1.1% (mol/mol) and a butyl ester yield of 27.6% (mol/mol) after 24 h of reaction. With sucrose as the acyl acceptor the 6'-O-acyl and 6-O-acyl monoesters were formed with fatty acids of chain length C-4 and C-10 while the 6',6-O-acyl diester was formed only with butanoic acid (C-4:0) as acyl donor. The 6'-O-acyl and 6-O-acyl monoesters and the 6',6-O-acyl diester of butanoic acid were produced in a molar ratio of 1.0:0.5:0.2 and with decanoic acid (C-10:0) the 6'-O-acyl and 6-O-acyl monoesters were formed in the ratio of 1.0:0.3. The highest initial reaction rate and yield were obtained with the shortest chain length of the acyl donor. Initial reaction rates and ester yields were affected by the solubility of the disaccharide, with higher reaction rates and yields with maltose than with sucrose, while no formation of esters were observed with either cellobiose or lactose as acyl acceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号