首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Although Cyclosporine A (CsA) is an effective therapy for immunosuppression, its use encompasses serious side effects that have been associated with oxidative stress. We previously reported the intracellular formation of both peroxynitrite and 3-nitrotyrosine in cultured bovine aortic endothelial cells (BAEC) when exposed to CsA. Here we show that re-addition of CsA to BAEC increases peroxynitrite formation in a concentration-dependent manner. This effect is inhibited by the glutathione donor and antioxidant, N-acetylcysteine (NAC). BAEC exposed to CsA showed impaired integrity of plasma membranes and increased cytolysis, a phenomenon prevented by NAC. When CsA was administered to mice, the increased presence of 3-nitrotyrosine was detected in the aortic endothelium, an effect also abrogated by the concomitant administration of NAC. An increase in nitrated MnSOD was detected in BAEC treated with CsA and the peroxynitrite donor SIN-1 and recapitulated in recombinant MnSOD, exposed to the conditioned media from BAEC. We propose that CsA promotes nitration of specific molecular targets, such as MnSOD, within vascular endothelial cells. This may represent a pathogenetic mechanism of vascular injury. Inhibition of this process by clinically applicable antioxidants, such as NAC, lends a basis for the exploration of therapeutic alternatives in patients treated with CsA.  相似文献   

2.
3.
Basic Fibroblast Growth Factor (FGF-2) is a growth and survival factor and represents one of the most potent differentiation agents of vascular system. In the present study we describe that adenoviral oncoprotein E1A regulates FGF-2 production and determines the acquisition of a pro-angiogenic phenotype in primary bovine aortic endothelial cells (BAEC). Following their transfection, wild type E1A proteins 12S and 13S (wtE1A) stimulated BAEC to differentiate on reconstituted basement membrane matrix (Matrigel). This outcome was paralleled by invasion and migration enhancement in wtE1A-transfected cells. This stimulating effect was absent with the E1A mutant dl646N. Accordingly, zymography and RT - PCR analyses showed that matrix metalloproteinase-9 protein- and mRNA-levels increased following wtE1A transfection. Interestingly, wtE1A-transfected BAEC showed FGF-2 mRNA- and protein-levels higher than controls. Further, FGF-2 neutralization reduced the amount of MMP-9 released in the supernatant of E1A-transfected cells and strongly inhibited BAEC differentiation, thus suggesting that wtE1A activates BAEC by a mechanism, at least partially, dependent on a FGF-2 autocrine/paracrine loop.  相似文献   

4.
We investigated nitric oxide (*NO)-mediated proteosomal activation in bovine aortic endothelial cells (BAEC) treated with varying fluxes of hydrogen peroxide (H(2)O(2)) generated from glucose/glucose oxidase (Glu/GO). Results revealed a bell-shaped *NO signaling response in BAEC treated with Glu/GO (2-20 mU/ml). GO treatment (2 mU/ml) enhanced endothelial nitric oxide synthase (eNOS) phosphorylation and *NO release in BAEC. With increasing GO concentrations, phospho eNOS and *NO levels decreased. Bell-shaped responses in proteasomal function and *NO induction were observed in BAEC treated with varying levels of GO (2-10 mU/ml). Proteosomal activation induced in GO-treated BAEC was inhibited by N(omega)-nitro-L-arginine-methyl ester pretreatment, suggesting that *NO mediates proteasomal activation. Intracellular *NO induced by H(2)O(2) was detected by isolating the 4,5-diaminoflourescein (DAF-2)/*NO/O(2)-derived "green fluorescent product" using the high-performance liquid chromatography-fluorescence technique, a more rigorous and quantitative methodology for detecting the DAF-2/*NO/O(2) reaction product. Finally, the relationships between H(2)O(2) flux, proteasomal activation/inactivation, endothelial cell survival, and apoptosis are discussed.  相似文献   

5.
6.
Wang Q  Liang B  Shirwany NA  Zou MH 《PloS one》2011,6(2):e17234
Autophagy is a cellular self-digestion process activated in response to stresses such as energy deprivation and oxidative stress. However, the mechanisms by which energy deprivation and oxidative stress trigger autophagy remain undefined. Here, we report that activation of AMP-activated protein kinase (AMPK) by mitochondria-derived reactive oxygen species (ROS) is required for autophagy in cultured endothelial cells. AMPK activity, ROS levels, and the markers of autophagy were monitored in confluent bovine aortic endothelial cells (BAEC) treated with the glycolysis blocker 2-deoxy-D-glucose (2-DG). Treatment of BAEC with 2-DG (5 mM) for 24 hours or with low concentrations of H(2)O(2) (100 μM) induced autophagy, including increased conversion of microtubule-associated protein light chain 3 (LC3)-I to LC3-II, accumulation of GFP-tagged LC3 positive intracellular vacuoles, and increased fusion of autophagosomes with lysosomes. 2-DG-treatment also induced AMPK phosphorylation, which was blocked by either co-administration of two potent anti-oxidants (Tempol and N-Acetyl-L-cysteine) or overexpression of superoxide dismutase 1 or catalase in BAEC. Further, 2-DG-induced autophagy in BAEC was blocked by overexpressing catalase or siRNA-mediated knockdown of AMPK. Finally, pretreatment of BAEC with 2-DG increased endothelial cell viability after exposure to hypoxic stress. Thus, AMPK is required for ROS-triggered autophagy in endothelial cells, which increases endothelial cell survival in response to cell stress.  相似文献   

7.
Caveolin-1 is a scaffolding/regulatory protein that interacts with diverse signaling molecules in endothelial cells. To explore the role of this protein in receptor-modulated signaling pathways, we transfected bovine aortic endothelial cells (BAEC) with small interfering RNA (siRNA) duplexes to down-regulate caveolin-1 expression. Transfection of BAEC with duplex siRNA targeted against caveolin-1 mRNA selectively "knocked-down" the expression of caveolin-1 by approximately 90%, as demonstrated by immunoblot analyses of BAEC lysates. We used discontinuous sucrose gradients to purify caveolin-containing lipid rafts from siRNA-treated endothelial cells. Despite the near-total down-regulation of caveolin-1 expression, the lipid raft targeting of diverse signaling proteins (including the endothelial isoform of nitric-oxide synthase, Src-family tyrosine kinases, Galphaq and the insulin receptor) was unchanged. We explored the consequences of caveolin-1 knockdown on kinase pathways modulated by the agonists sphingosine-1 phosphate (S1P) and vascular endothelial growth factor (VEGF). siRNA-mediated caveolin-1 knockdown enhanced basal as well as S1P- and VEGF-induced phosphorylation of the protein kinase Akt and did not modify the basal or agonist-induced phosphorylation of extracellular signal-regulated kinases 1/2. Caveolin-1 knock-down also significantly enhanced the basal and agonist-induced activity of the small GTPase Rac. We used siRNA to down-regulate Rac expression in BAEC, and we observed that Rac knockdown significantly reduced basal, S1P-, and VEGF-induced Akt phosphorylation, suggesting a role for Rac activation in the caveolin siRNA-mediated increase in Akt phosphorylation. By using siRNA to knockdown caveolin-1 and Rac expression in cultured endothelial cells, we have found that caveolin-1 does not seem to be required for the targeting of signaling molecules to caveolae/lipid rafts and that caveolin-1 differentially modulates specific kinase pathways in endothelial cells.  相似文献   

8.
Decay-accelerating factor (DAF), a membrane-bound complement regulatory protein, is up-regulated on endothelial cells (ECs) following treatment with vascular endothelial growth factor (VEGF), providing enhanced protection from complement-mediated injury. We explored the signaling pathways involved in this response. Incubation of human umbilical vein ECs with VEGF induced a 3-fold increase in DAF expression. Inhibition by flk-1 kinase inhibitor SU1498 and failure of placental growth factor (PlGF) to up-regulate DAF confirmed the role of VEGF-R2. The response was also blocked by pretreatment with phospholipase C-gamma (PLCgamma) inhibitor U71322 and protein kinase C (PKC) antagonist GF109203X. In contrast, no effect was seen with nitric oxide synthase inhibitor N(G)-monomethyl-l-arginine (l-NMMA). Use of PKC agonists and isozyme-specific pseudosubstrate peptide antagonists suggested a role for PKCalpha and -epsilon in VEGF-mediated DAF up-regulation. This was confirmed by transfection of ECs with PKCalpha and -epsilon dominant-negative constructs, which in combination completely abrogated induction of DAF by VEGF. In contrast, LY290042, a phosphoinositide 3-kinase (PI3K) inhibitor, significantly augmented DAF expression, suggesting a negative regulatory role for phosphoinositide 3-kinase. The widely used immunosuppressive drug cyclosporin A (CsA) inhibited DAF induction by VEGF in a dose-dependent manner. The VEGF-induced DAF expression was functionally effective, significantly reducing complement-mediated EC lysis, and this cytoprotective effect was reversed by CsA. These data provide evidence for a VEGF-R2-, phospholipase C-gamma-, and PKCalpha/epsilon-mediated cytoprotective pathway in ECs. This may represent an important mechanism for the maintenance of vascular integrity during chronic inflammation involving complement activation. Moreover, inhibition of this pathway by CsA may play a role in CsA-mediated vascular injury.  相似文献   

9.
Hemodynamic forces have profound effects on vasculature. Laminar shear stress upregulates superoxide dismutase (SOD) expression in endothelial cells. SOD converts superoxide anion to H(2)O(2), which, however, promotes atherosclerosis. Therefore, defense against H(2)O(2) may be crucial in reducing oxidative stress. Since glutathione peroxidase (GPx-1) reduces H(2)O(2) to H(2)O, the regulation of GPx-1 expression by mechanical stress was examined. Cultured bovine aortic endothelial cells (BAECs) were subjected to laminar shear stress and stretch force. Shear stress upregulated GPx-1 mRNA expression in a time- and force-dependent manner in BAECs, whereas stretch force was without effect. Furthermore, shear stress increased GPx activity. L-NAME, an inhibitor of nitric oxide synthase, did not affect shear stress-induced GPx-1 mRNA expression. The ability of laminar shear stress to induce GPx-1 expression in endothelial cells may be an important mechanism whereby shear stress protects vascular cells against oxidative stress.  相似文献   

10.
Modified low-density lipoprotein (LDL) induces reactive oxygen species (ROS) production by vascular cells. It is unknown if specific oxidized components in these LDL particles such as oxidized-1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (ox-PAPC) can stimulate ROS production. Bovine aortic endothelial cells (BAEC) were incubated with ox-PAPC (50 microg/ml). At 4 h, ox-PAPC significantly enhanced the rate of O2- production. Pretreatment of BAEC in glucose-free Dulbecco's modified Eagle's medium plus 10 mM 2-deoxyglucose (2-DOG), the latter being an antimetabolite that blocks NADPH production by the pentose shunt, significantly reduced the rate of O2- production. The intensity of NAD(P)H autofluorescence decreased by 28 +/- 12% in BAEC incubated with ox-PAPC compared to untreated cells, with a further decrease in the presence of 2-DOG. Ox-PAPC also increased Nox4 mRNA expression by 2.4-fold +/- 0.1 while pretreatment of BAEC with the small interfering RNA (siNox4) attenuated Nox4 RNA expression. Ox-PAPC further reduced the level of glutathione while pretreatment with apocynin (100 microM) restored the GSH level (control = 22.54 +/- 0.23, GSH = 18.06 +/- 0.98, apocynin = 22.55 +/- 0.60, ox-PAPC + apocynin = 21.17 +/- 0.36 nmol/10(6) cells). Treatment with ox-PAPC also increased MMP-2 mRNA expression accompanied by a 1.5-fold increase in MMP-2 activity. Ox-PAPC induced vascular endothelial OO2-(.) production that appears to be mediated largely by NADPH oxidase activity.  相似文献   

11.
FGF-2 and VEGF are potent angiogenesis inducers in vivo and in vitro. Here we show that FGF-2 induces VEGF expression in vascular endothelial cells through autocrine and paracrine mechanisms. Addition of recombinant FGF-2 to cultured endothelial cells or upregulation of endogenous FGF-2 results in increased VEGF expression. Neutralizing monoclonal antibody to VEGF inhibits FGF-2–induced endothelial cell proliferation. Endogenous 18-kD FGF-2 production upregulates VEGF expression through extracellular interaction with cell membrane receptors; high-Mr FGF-2 (22–24-kD) acts via intracellular mechanism(s). During angiogenesis induced by FGF-2 in the mouse cornea, the endothelial cells of forming capillaries express VEGF mRNA and protein. Systemic administration of neutralizing VEGF antibody dramatically reduces FGF-2-induced angiogenesis. Because occasional fibroblasts or other cell types present in the corneal stroma show no significant expression of VEGF mRNA, these findings demonstrate that endothelial cell-derived VEGF is an important autocrine mediator of FGF-2-induced angiogenesis. Thus, angiogenesis in vivo can be modulated by a novel mechanism that involves the autocrine action of vascular endothelial cell-derived FGF-2 and VEGF.  相似文献   

12.
13.
We studied the effect of intact red blood cells on the exogenous H2O2-mediated damage as well as on the hyperoxia-induced injury of cultured endothelial cells. Red blood cells protected endothelial cells against H2O2-mediated injury efficiently, but had no effect on the hyperoxia-induced damage. Failure of red blood cells to protect endothelial cells against hyperoxia-induced injury was not due to hemolysis. Furthermore, hyperoxia-exposed red blood cells were still capable of protecting endothelial cells against H2O2-mediated damage.  相似文献   

14.
Vascular endothelial growth factor (VEGF) is a potent endothelial cell growth and permeability factor highly expressed in rodent alveolar epithelium after injury and repair. To investigate VEGF synthesis in human lung epithelial cells, we examined VEGF expression by cultured cells under basal conditions and after cytokine treatment or oxidative stress. Basal VEGF expression was detected in transformed human epithelial cell lines (A549 and 1HAEo-) and in primary human bronchial epithelial cells with RT-PCR, Western blot, and immunocytochemistry. Among the cytokines tested, only transforming growth factor-beta1 increased the levels of excreted VEGF(165) as measured by ELISA. Under hypoxia (0% O(2) for 24 h), the VEGF(165) level increased fivefold, and this effect was O(2) concentration dependent. VEGF concentrations in the medium of all the cell types studied reached values similar to those found in bronchoalveolar lavage fluids from normal patients. Endothelial cells (human umbilical vein endothelial cells) exposed to conditioned medium from primary bronchial epithelial cell cultures showed an increased growth rate, which was inhibited in the presence of a specific neutralizing antibody to VEGF. These results suggest that lung epithelial cells participate in the endothelial repair and angiogenesis that follow lung injury through the synthesis of VEGF.  相似文献   

15.
The cytoprotective features of catalase-antibody conjugate prepared by covalent conjugation of catalase to rabbit antibody against mouse IgG is described. The bifunctional cross-linking agent m-maleimidobenzoic acid N-hydroxysuccinimide ester (MBS) was used for conjugation. Functionally active conjugate binds specifically to the plastic-adsorbed mouse IgG and to the surface of live human endothelial cells treated with mouse antiserum against human endothelial cells. Up to 4 units of catalase activity can bind to 1 cm2 of the endothelial monolayer. The targeted catalase protects endothelial cells from cytotoxic action of hydrogen peroxide: the minimal cytotoxic concentration of H2O2 for protected cells is 80-times higher than for intact cells. This effect is attributed partly to local reduction of H2O2 concentration in the cell microenvironment. Targeted catalase was estimated to reduce H2O2 concentration 8-fold near the cell surface with respect to average total concentration.  相似文献   

16.
Epidemiological and clinical studies provide compelling support for a causal relationship between Helicobacter pylori infection and endothelial dysfunction, leading to vascular diseases. However, clear biochemical evidence for this association is limited. In the present study, we have conducted a comprehensive investigation of endothelial injury in bovine aortic endothelial cells (BAECs) induced by H. pylori-conditioned medium (HPCM) prepared from H. pylori 60190 [vacuolating cytotoxin A (Vac(+))]. BAECs were treated with either unconditioned media, HPCM (0-25% vol/vol), or Escherichia coli-conditioned media for 24 h, and cell functions were monitored. Vac(+) HPCM significantly decreased BAEC proliferation, tube formation, and migration (by up to 44%, 65%, and 28%, respectively). Posttreatment, we also observed sporadic zonnula occludens-1 immunolocalization along the cell-cell border, and increased BAEC permeability to FD40 Dextran, indicating barrier reduction. These effects were blocked by 5-nitro-2-(3-phenylpropylamino)benzoic acid (VacA inhibitor) and were not observed with conditioned media prepared from either VacA-deleted H. pylori or E. coli. The cellular mechanism mediating these events was also considered. Vac(+) HPCM (but not Vac(-)) reduced nitric oxide (NO) by >50%, whereas S-nitroso-N-acetylpenicillamine, an NO donor, recovered all Vac(+) HPCM-dependent effects on cell functions. We further demonstrated that laminar shear stress, an endothelial NO synthase/NO stimulus in vivo, could also recover the Vac(+) HPCM-induced decreases in BAEC functions. This study shows, for the first time, a significant proatherogenic effect of H. pylori-secreted factors on a range of vascular endothelial dysfunction markers. Specifically, the VacA-dependent reduction in endothelial NO is indicated in these events. The atheroprotective impact of laminar shear stress in this context is also evident.  相似文献   

17.
18.
Anti-human leukocyte antigen class I (HLA I) antibodies were shown to activate several protein kinases in endothelial cells (ECs), which induces proliferation and cell survival. An important phenomenon in antibody-mediated rejection is the occurrence of interstitial edema. We investigated the effect of anti-HLA I antibodies on endothelial proliferation and permeability, as one possible underlying mechanism of edema formation. HLA I antibodies increased the permeability of cultured ECs isolated from umbilical veins. Anti-HLA I antibodies induced the production of vascular endothelial growth factor (VEGF) by ECs, which activated VEGF receptor 2 (VEGFR2) in an autocrine manner. Activated VEGFR2 led to a c-Src-dependent phosphorylation of vascular endothelial (VE)-cadherin and its degradation. Aberrant VE-cadherin expression resulted in impaired adherens junctions, which might lead to increased endothelial permeability. This effect was only observed after cross-linking of HLA I molecules by intact antibodies. Furthermore, our results suggest that increased endothelial proliferation following anti-HLA I treatment occurs via autocrine VEGFR2 activation. Our data indicate the ability of anti-HLA I to induce VEGF production in ECs. Transactivation of VEGFR2 leads to increased EC proliferation and paracellular permeability. The autocrine effect of VEGF on endothelial permeability might be an explanation for the formation of interstitial edema after transplantation.  相似文献   

19.
Therapeutic radiation is widely used in cancer treatments. The success of radiation therapy depends not only on the radiosensitivity of tumor cells but also on the radiosensitivity of endothelial cells lining the tumor vasculature. Vascular endothelial growth factor (VEGF) plays a critical role in protecting endothelial cells against a number of antitumor agents including ionizing radiation. Strategies designed to overcome the survival advantage afforded to endothelial cells by VEGF might aid in enhancing the efficacy of radiation therapy. In this report we examined the signaling cascade(s) involved in VEGF-mediated protection of endothelial cells against gamma-irradiation. gamma-Irradiation-induced apoptosis of human dermal microvascular endothelial cells (HDMECs) was predominantly mediated through the p38 MAPK pathway as an inhibitor of p38 MAPK (PD169316), and dominant negative mutants of p38 MAPK could significantly enhance HDMEC survival against gamma-irradiation. Inhibition of the PI3K and MAPK pathways markedly up-regulated gamma-irradiation-mediated p38 MAPK activation resulting in enhanced HDMEC apoptosis. In contrast, VEGF-treated HDMECs were protected from gamma-irradiation-induced apoptosis predominantly through the PI3K/Akt pathway. Bcl-2 expression was markedly elevated in VEGF-treated HDMECs, and it was significantly inhibited by the PI3K inhibitor LY294002. HDMECs exposed to irradiation showed a significant decrease in Bcl-2 expression. In contrast, VEGF-stimulated HDMECs, when irradiated, maintained higher levels of Bcl-2 expression. Taken together our results suggest that gamma-irradiation induces endothelial cell apoptosis predominantly via the activation of p38 MAPK, and VEGF protects endothelial cells against gamma-irradiation predominantly via the PI3K-Akt-Bcl-2 signaling pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号