首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Transformation of Sprague-Dawley rat embryo (RE) cells and a cloned Fischer rat embryo cell line (CREF) with wild-type (Ad5) or a temperature-sensitive DNA-minus mutant (H5ts125) of type 5 adenovirus results in a reduction in binding of epidermal growth factor (EGF) to cell surface receptors. A reduction in EGF binding is also seen in a Syrian hamster embryo cell line transformed by a hexon mutant of Ad5. In contrast, a human embryonic kidney cell line (293) transformed by sheared Ad5 DNA or transfected clones of KB cells expressing the E1 transforming region of Ad5 do not show a decrease in receptor binding. When cocultivated, the adenovirus transformed rat cells were able to induce the growth in agar of normal CREF cells. Medium from Ad5 transformed RE cells stimulated the growth in agar of CREF cells and also inhibited [125I]-EGF binding in CREF cells. When fractionated by gel filtration, two peaks of [125I]-EGF inhibiting activities were obtained with apparent molecular weights of 35,000 and 16,000. These results provide the first evidence that cells transformed by an adenovirus can produce a growth factor(s) that inhibits EGF-receptor binding and induces anchorage-independent growth of normal cells.  相似文献   

2.
Pre-colostrum and colostrum from goats cause a marked inhibition of the binding of 125I-labelled epidermal growth factor (125I-EGF) to Swiss 3T3 cells. The ability of these secretions to inhibit 125I-EGF binding is closely correlated with the ability to stimulate DNA synthesis in quiescent 3T3 cell cultures, suggesting that goat mammary secretions may contain an EGF-related mitogen. However, the material in colostrum which inhibits 125I-EGF binding to Swiss 3T3 cells is a basic protein with Mr greater than 20000 and is thus quite different from mouse and human EGF. Furthermore, the colostral-mediated inhibition of 125I-EGF binding, although rapid and apparently competitive, differs from the inhibition of binding induced by native, unlabelled EGF. Thus, the inhibitory effect of colostrum is markedly decreased when the assay temperature is shifted from 37 degrees C to 4 degrees C whereas unlabelled EGF is an effective competitive inhibitor at both 37 degrees C and 4 degrees C. Incubation of cells with EGF causes a reduction in cell surface EGF receptors whereas exposure to colostrum does not induce down-regulation of the EGF receptor. Our results suggest that the colostral factor does not bind directly to EGF receptors but inhibits 125I-EGF binding by an indirect mechanism which involves a temperature-sensitive step.  相似文献   

3.
Lysosomotropic amines, such as chloroquine and methylamine, increase the intracellular accumulation of 125I-EGF by inhibiting lysosomal degradation. It has been shown previously that BALB/c-3T3 cells, prelabeled at 4 degrees C with 125I-EGF for 3 h and subsequently chased at 37 degrees C in the presence of chloroquine, internalized the surface bound 125I-EGF which was subsequently released into the extracellular medium in a high molecular weight form which co-migrated with native 125I-EGF. The secreted 125I-EGF rebound to the cells from which it was released more efficiently than does peptide in the extracellular media. We now show that when the BALB/c-3T3 cells were prelabeled at 37 degrees C for 2 h in the presence of chloroquine, the internalized 125I-EGF released into the medium was in a high molecular weight form which co-migrated with native 125I-EGF and did not rebind anymore efficiently than did peptide in the extracellular media. This lack of rebinding was not due to an alteration in the 125I-EGF molecule since it was still capable of rebinding to naive A431 cells, nor was it due to the exhaustion of EGF receptors on the BALB/c-3T3 cells. The inhibition of rebinding was observed only when the cells were treated with EGF in the presence of chloroquine, and was not due to a general down-regulation of membrane receptors. The differences between the rebinding of 125I-EGF at 4 degrees C and 37 degrees C suggest that EGF may be processed via different pathways in the cell.  相似文献   

4.
The E5 protein of the bovine papillomavirus induces cellular transformation when transfected into NIH 3T3 cells, and the extent of focal transformation is enhanced by cotransfection with the epidermal growth factor (EGF) receptor (Martin et al., Cell 59:21-32, 1989). To determine whether E5 affects EGF:receptor interactions we analyzed the kinetics of 125I-EGF processing using a mathematical model that enabled us to evaluate rate constants for ligand association (ka), dissociation (kd), internalization (ke), recycling (kr), and degradation (kh). These rate constants were measured in NIH 3T3 cells transfected with the human EGF receptor (ER cells) and in cells transfected with both the EGF receptor and E5 (E5/ER cells). We found that the rate constant for 125I-EGF association ka was significantly decreased in E5/ER cells, but was apparently occupancy-independent in both cell lines. The 125I-EGF dissociation rate constant kd was significantly lower in E5 transformed cells, and increased with occupancy in both cell lines. This suggests that E5 alters the receptor before or during EGF binding so that ligand association is slower; however, once complexes are formed, EGF is bound more tightly to the receptor. Rate constants for internalization ke were also found to be occupancy-dependent, although at a given level of occupancy ke was similar for both cell lines. Also, there was no apparent effect of E5 on the recycling rate constant kr. The 125I-EGF degradation rate constant kh was 30% lower in E5 transformed cells, and was occupancy-independent. The overall effect of E5 is to stabilize intact EGF:receptor complexes which may alter mitogenic signaling of the receptor.  相似文献   

5.
Preincubation of Swiss 3T3 cells or human fibroblasts with purified platelet-derived growth factor (PDGF) at 4 degrees C or 37 degrees C rapidly inhibits subsequent binding of 125I-epidermal growth factor (125I-EGF). The effect does not result from competition by PDGF for binding to the EGF receptor since (a) very low concentrations of PDGF are effective, (b) cells with EGF receptors but no PDGF receptors are not affected, and (c) the inhibition persists even if the bound PDGF is eluted before incubating the cells with 125I-EGF. PDGF does not affect 125I-insulin binding nor does EGF affect 125I-PDGF binding under these conditions. Endothelial cell-derived growth factor also competes for binding to PDGF receptors and inhibits 125I-EGF binding. The inhibition demonstrated by PDGF seems to result from an increase in the Kd for 125I-EGF binding with no change in the number of EGF receptors.  相似文献   

6.
Incubation of cells with labelled hormone in the presence of the lysosomotropic agent chloroquine produces an enhanced intracellular accumulation of hormone and receptor. Using a pulse-chase paradigm in which cell surface receptors were labelled with 125I-EGF at 4 degrees C, it was found that when 100 microM chloroquine was present in the 37 degrees C chase medium intact hormone was accumulated in the medium. Without chloroquine, low molecular weight (mw) degradation products were found in the medium. The processes of receptor-mediated endocytosis and subcellular distribution of 125I-EGF-receptor complexes were unchanged by chloroquine. The source of the intact hormone accumulating in the medium was therefore an intracellular compartment(s). The 125I-EGF released from the cells could rebind to surface receptors and be re-internalized; rebinding was inhibited by unlabelled EGF or Concanavalin A in the incubation medium. The concentration of unlabelled EGF required to inhibit rebinding was more than three orders of magnitude greater than the amount of 125I-EGF whose rebinding was inhibited. Thus, the 125I-EGF released from intracellular sites was rebound preferentially over exogenous EGF. The possible pathways for secretion of intact 125I-EGF and mechanisms of its preferential rebinding are discussed.  相似文献   

7.
We previously conducted a phase I/II study using arterial infusions of ONYX-015 (dl1520), a replication-selective adenoviral vector, with E1b deleted, for patients with metastatic colorectal cancer. No dose-limiting toxicities occurred, but >90% of the patients experienced fever. The effects of temperature on the replication of dl1520 in normal and transformed cells had not been studied. Therefore, replication and cell viability assays were performed with a panel of nontransformed and transformed cell lines cultured at 37 and 39.5 degrees C and treated with adenovirus type 5 (Ad5) or dl1520. Ad5-mediated cytolytic effects were inhibited and production of infectious particles decreased by >1,000-fold in the nontransformed cells at 39.5 degrees C. Seven of nine of the tumor cell lines retained significant cell-killing effects when treated with Ad5 at 39.5 degrees C. When dl1520 was used, no cytolytic effects were observed at 39.5 degrees C in the nontransformed cell lines; however, cytolytic effects occurred in six of nine tumor cell lines at 39.5 degrees C. Notably, a subset of the tumor cell lines demonstrated increased dl1520-mediated cytolytic effect and replication at 39.5 degrees C. Suppression of Ad5 and dl1520 replication at 39.5 degrees C was not related to p53 status or HSP70 expression. Also, at 39.5 degrees C, E1a expression was inhibited in nontransformed cells but was still abundant in the transformed cells, indicating that a novel early block in viral replication occurred in the nontransformed cells. Fever may therefore augment the therapeutic index of oncolytic viruses by inhibiting replication in normal cells while permitting or enhancing viral replication in some tumor cells.  相似文献   

8.
The synthetic diacylglycerol 1-oleoyl-2-acetyl glycerol (OAG) and phorbol esters activate protein kinase C in intact cells. We report here that OAG inhibits the binding of 125I-labelled epidermal growth factor (125I-EGF) to Swiss 3T3 cells. The inhibition was detected as early as 1 min after treatment at 37 degrees C and persisted for at least 120 min. The effect of OAG was reversed upon removal of this diacylglycerol. Detailed Scatchard analysis of 125I-EGF binding to Swiss 3T3 cells at 4 degrees C after a 1 h incubation with a saturating dose of OAG at 37 degrees C, demonstrates that this OAG pretreatment does not change the apparent number of EGF receptors but causes a marked decrease in their apparent affinity for the ligand. Prolonged treatment (40 h) of the cells with phorbol dibutyrate (PBt2) which causes a marked decrease in the number of phorbol ester binding sites and in the activity of protein kinase C, prevented the inhibition of 125I-EGF binding by both PBt2 and OAG. The results support the possibility that protein kinase C plays a role in the transmodulation of the EGF receptor in intact cells.  相似文献   

9.
10.
Thyrotropin releasing hormone (TRH) causes phosphatidylinositol bisphosphate hydrolysis to form inositol trisphosphate and diacylglycerol. Since diacylglycerol activates protein kinase C (Ca2+/phospholipid-dependent enzyme), this enzyme may be involved in mediating the physiological response to TRH. Activation of protein kinase C leads to phosphorylation of receptors for epidermal growth factor (EGF) and decreased EGF affinity. The present study examined the effect of TRH on EGF binding to intact GH4C1 rat pituitary tumor cells to test whether TRH activates protein kinase C. Cells were incubated with TRH at 37 degrees C and specific 125I-EGF binding was then measured at 4 degrees C. 125I-EGF binding was decreased by a 10-min treatment with 0.1-100 nM TRH to 30-40% of control in a dose-dependent manner. 125I-EGF binding was not altered if cells were incubated at 4 degrees C, although TRH receptors were saturated or in a variant pituitary cell line without TRH receptors. TRH (10 min at 37 degrees C) decreased EGF receptor affinity but caused little change in receptor density, 125I-EGF internalization, or degradation. When cells were incubated continuously with TRH, there was a recovery of 125I-EGF binding after 24 h. Incubation with the protein kinase C activating phorbol ester TPA caused an immediate (less than 10 min) profound (greater than 85%) decrease in 125I-EGF binding followed by partial recovery at 24 h. Maximally effective doses of TRH and TPA decreased EGF receptor affinity with half-times of 3 min. EGF treatment (5 min) caused an increase in the tyrosine phosphate content of several proteins; prior incubation with TRH resulted in a small decline in the EGF response. GH4C1 cells were incubated with 500 nM TPA for 24 h in order to down-regulate protein kinase C. Protein kinase C depletion was confirmed by immunoblots and the effects of TRH and TPA on 125I-EGF binding were tested. TRH and TPA were both much less effective in cells pretreated with phorbol esters. TRH increased cytoplasmic pH measured with an intracellularly trapped pH sensitive dye after mild acidification with nigericin. This TRH response is presumed to be the result of protein kinase C-mediated activation of the amiloride-sensitive Na+/H+ exchanger and was blunted in protein kinase C-depleted cells. All of these results are consistent with the view that TRH acts rapidly in the intact cell to activate protein kinase C and that a consequence of this activation is EGF receptor phosphorylation and Na+/H+ exchanger activation.  相似文献   

11.
GH4C1 cells, a clonal strain of rat pituitary tumor cells, have high-affinity, functional receptors for the inhibitory hypothalamic peptide somatostatin (SRIF) and for epidermal growth factor (EGF). In this study we have examined the events that follow the initial binding of SRIF to its specific plasma membrane receptors in GH4C1 cells and have compared the processing of receptor-bound SRIF with that of EGF. When cells were incubated with [125I-Tyr1]SRIF at temperatures ranging from 4 to 37 degrees C, greater than 80% of the specifically bound peptide was removed by extraction with 0.2 M acetic acid, 0.5 M NaCl, pH 2.5. In contrast, the subcellular distribution of receptor-bound 125I-EGF was temperature dependent. Whereas greater than 95% of specifically bound 125I-EGF was removed by acid treatment after a 4 degrees C binding incubation, less than 10% was removed when the binding reaction was performed at 22 or 37 degrees C. In pulse-chase experiments, receptor-bound 125I-EGF was transferred from an acid-sensitive to an acid-resistant compartment with a half-time of 2 min at 37 degrees C. In contrast, the small amount of [125I-Tyr1]SRIF that was resistant to acid treatment did not increase during a 2-h chase incubation at 37 degrees C. Chromatographic analysis of the radioactivity released from cells during dissociation incubations at 37 degrees C showed that greater than 90% of prebound 125I-EGF was released as 125I-tyrosine, whereas prebound [125I-Tyr1]SRIF was released as a mixture of intact peptide (55%) and 125I-tyrosine (45%). Neither chloroquine (0.1 mM), ammonium chloride (20 mM), nor leupeptin (0.1 mg/ml) increased the amount of [125I-Tyr1]SRIF bound to cells at 37 degrees C. Furthermore, chloroquine and leupeptin did not alter the rate of dissociation or degradation of prebound [125I-Tyr1]SRIF. In contrast, these inhibitors increased the amount of cell-associated 125I-EGF during 37 degrees C binding incubations and decreased the subsequent rate of release of 125I-tyrosine. The results presented indicate that, as in other cell types, EGF underwent rapid receptor-mediated endocytosis in GH4C1 cells and was subsequently degraded in lysosomes. In contrast, SRIF remained at the cell surface for several hours although it elicits its biological effects within minutes. Furthermore, a constant fraction of the receptor-bound [125I-Tyr1]SRIF was degraded at the cell surface before dissociation. Therefore, after initial binding of [125I-Tyr1]SRIF and 125I-EGF to their specific membrane receptors, these peptides are processed very differently in GH4C1 cells.  相似文献   

12.
The intracellular sorting of EGF-receptor complexes (EGF-RC) has been studied in human epidermoid carcinoma A431 cells. Recycling of EGF was found to occur rapidly after internalization at 37 degrees C. The initial rate of EGF recycling was reduced at 18 degrees C. A significant pool of internalized EGF was incapable of recycling at 18 degrees C but began to recycle when cells were warmed to 37 degrees C. The relative rate of EGF outflow at 37 degrees C from cells exposed to an 18 degrees C temperature block was slower (t1/2 approximately 20 min) than the rate from cells not exposed to a temperature block (t1/2 approximately 5-7 min). These data suggest that there might be both short- and long-time cycles of EGF recycling in A431 cells. Examination of the intracellular EGF-RC dissociation and dynamics of short- and long-time recycling indicated that EGF recycled as EGF-RC. Moreover, EGF receptors that were covalently labeled with a photoactivatable derivative of 125I-EGF recycled via the long-time pathway at a rate similar to that of 125I-EGF. Since EGF-RC degradation was also blocked at 18 degrees C, we propose that sorting to the lysosomal and long-time recycling pathway may occur after a highly temperature-sensitive step, presumably in the late endosomes.  相似文献   

13.
A N Corps  K D Brown 《FEBS letters》1988,233(2):303-306
Insulin-like growth factor 1 and insulin reduced the binding of 125I-labelled epidermal growth factor (125I-EGF) to Swiss 3T3 cells by 15-20% at 37 degrees C, but not at 4 degrees C. Scatchard analysis indicated that IGF-1 and insulin affected the higher-affinity component of EGF binding, an effect previously associated with the activation of protein kinase C. However, the inhibition of 125I-EGF binding by IGF-1 and insulin was increased, not reduced, when the cells were treated with high concentrations of phorbol esters to down-modulate protein kinase C. We suggest that IGF-1 and insulin activate a protein kinase with similar or overlapping specificity to that of protein kinase C.  相似文献   

14.
tsJT60, a temperature-sensitive (ts) mutant cell line of Fischer rat, is viable at both permissive (34 degrees C) and non-permissive (39.5 degrees C) temperatures. The cells grow normally in exponential growth phase at both temperatures, but when stimulated with fetal bovine serum (FBS) from G0 phase they re-enter S phase at 34 degrees C but not at 39.5 degrees. When tsJT60 cells were transformed with adenovirus (Ad) 5 wild type, they grew well at both temperatures, expressed E1A and E1B genes, and formed colonies in soft agar. When tsJT60 cells were transformed with Ad5 dl313, that lacks E1B gene, the transformed cells grew well at 34 degrees C but failed to form colony in soft agar. They died very soon at 39.5 degrees C. 3Y1 cells (a parental line of tsJT60) transformed with dl313 grew well at both temperatures, although neither expressed E1B gene nor formed colonies in soft agar. The phenotype of being lethal at 39.5 degrees C of dl313-transformed tsJT60 cells was complemented by cell fusion with 3Y1BUr cells (5-BrdU-resistant 3Y1), but not with tsJT60TGr cells (6-thioguanine resistant tsJT60). These results indicate that the lethal phenotype is related to the ts mutation of tsJT60 cells and also to the deletion of E1B gene of Ad5.  相似文献   

15.
The E1A gene of adenovirus type 5 (Ad5) induces morphological transformation and anchorage-independent growth in cloned rat embryo fibroblast (CREF) cells. In contrast, CREF cells transfected with a beta 1 protein kinase C (PKC) gene and expressing low-levels of beta 1 PKC display a CREF-like morphology and do not form colonies when grown in agar. The combination of Ad5 E1A and low-level beta 1 PKC expression in the same CREF cell line results in an enhanced ability to grow when suspended in agar. In Ad5 E1A and Ad5 E1A + low-level beta 1 PKC expressing CREF clones, the tumor promoting agent 12-0-tetradecanoyl-phorbol-13-acetate (TPA) further enhances anchorage-independence. In contrast, TPA does not induce CREF cells or transfected CREF cells expressing low-levels of beta 1 PKC to grow in agar. Low-level beta 1 PKC expression in transfected CREF cells is associated with a modest 1.2 to 1.6-fold increase in binding of [3H]-phorbol-12,13-dibutyrate (PDBu) and only a 2.3-fold increase in PKC enzymatic activity. In contrast, specific beta 1 PKC-retroviral vector transformed CREF clones (CREF-RV-PKC) display higher levels of PKC mRNA, PDBu binding and PKC enzymatic activity. A majority of CREF-RV-PKC clones exhibit a transformed morphology and grow more rapidly in monolayer culture, form macroscopic colonies in agar in the absence of TPA and in many independent clones TPA further enhances anchorage-independent growth. This effect is not directly related to the level of enhanced [3H]-PDBu binding. The present study indicates that the effect of beta 1 PKC on cellular phenotype in immortal rat embryo cells is complex and is affected by its mode of insertion into CREF cells, i.e. transfection versus retroviral insertion. In addition, the combination of a transfected Ad5 E1A and a beta 1 PKC gene in the same CREF clone results in an enhanced expression of the transformed phenotype in both the absence and presence of TPA.  相似文献   

16.
Transformation of a specific clone of Fischer rat embryo (CREF) cells with wild-type 5 adenovirus (Ad5) or the E1a plus E1b transforming gene regions of Ad5 results in epithelioid transformants that grow efficiently in agar but that do not induce tumors when inoculated into nude mice or syngeneic Fischer rats. In contrast, CREF cells transformed by a host-range Ad5 mutant, H5hrl, which contains a single base-pair deletion of nucleotide 1055 in E1a resulting in a 28-kd protein (calculated) in place of the wild-type 51-kd acidic protein, display a cold-sensitive transformation phenotype and an incomplete fibroblastic morphology but surprisingly do induce tumors in nude mice and syngeneic rats. Tumors develop in both types of animals following injection of CREF cells transformed by other cold-sensitive Ad5 E1a mutants (H5dl101 and H5in106), which contain alterations in their 13S mRNA and consequently truncated 289AA proteins. CREF cells transformed with only the E1a gene (0-4.5 m.u.) from H5hrl or H5dl101 also produce tumors in these animals. To directly determine the role of the 13S E1a encoded 289AA protein and the 12S E1a encoded 243AA protein in initiating an oncogenic phenotype in adenovirus-transformed CREF cells, we generated transformed cell lines following infection with the Ad2 mutant pm975, which synthesizes the 289AA E1a protein but not the 243AA protein, and the Ad5 mutant H5dl520 and the Ad2 mutant H2dl1500, which do not produce the 289AA E1a protein but synthesize the normal 243AA E1a protein. All three types of mutant adenovirus-transformed CREF cells induced tumors in nude mice and syngeneic rats. Tumor formation by these mutant adenovirus-transformed CREF cells was not associated with changes in the arrangement of integrated adenovirus DNA or in the expression of adenovirus early genes. These results indicate, therefore, that oncogenic transformation of CREF cells can occur in the presence of a wild-type 13S E1a protein or a wild-type 12S E1a protein when either protein is present alone, but does not occur when both wild-type E1a proteins are present.  相似文献   

17.
Epidermal Growth Factor (EGF), a small polypeptide which acts as a mitogen for many cell types, has previously been shown to bind to a specific plasma membrane receptor on 3T3 cells. If 125I-EGF is bound to 3T3 cells for one hour at 4°C, it remains predominantly associated with the plasma membrane-containing fractions obtained by subjecting cell supernatants to equilibrium sedimentation on sucrose gradients. When binding is followed by a 10-minute incubation at 37°C, over 50% of the 125I-EGF is associated with two internal membrane-containing peaks having higher densities than the plasma membrane. After one hour at 37°C, over 80% of the 125I-EGF is degraded and removed from the cells. The most rapidly labeled internal peak corresponds in density to brain-coated vesicles (CVs). Antiserum prepared against coated vehicles from brain precipitates the 125I-EGF in this peak. In addition, CVs containing 125I-EGF can be co-purified from 3T3 cells exposed to 125I-EGF, using brain as a carrier. Several lines of evidence suggest that the other 125I-EGF-labeled intracellular peak is 125I-EGF in lysosomes. These results provide kinetic and biochemical evidence for a unidirectional pathway for EGF catabolism by 3T3 cells. EGF first binds to the plasma membrane bound receptors, is then moved to the cytoplasm in CVs, and finally appears in lysosomes, where it is degraded and released from the cells. Ten-millimolar NH4Cl blocks lysosomal hydrolysis of EGF almost completely. Subsequently, EGF internalization is inhibited. This finding suggests that the pathway for EGF internalization and degradation is tightly coupled.  相似文献   

18.
Treatment of Swiss mouse 3T3 cells and human epidermoid carcinoma A431 cells with protamine at 37 degrees C increased the 125I-epidermal growth factor (EGF) binding activity at 4 degrees C. The effect of protamine on the increase of 125I-EGF binding activity appeared to be time, temperature, and dose dependent. This up-modulation of 125I-EGF binding by protamine correlated with protamine enhancement of EGF-stimulated mitogenesis, with respect to the magnitude of the effect and the dose response curves. Scatchard plot analyses indicated that protamine induced an increase in numbers of both high and low affinity EGF receptors without affecting their affinities. Protamine also increased functionally active EGF receptors in plasma membranes and solubilized membranes. This was evidenced by Scatchard plot analyses and by a protamine-induced increase of 125I-EGF-EGF receptor complex and an increase in EGF-stimulated phosphorylation of the EGF receptor. Combined with column chromatography of the solubilized EGF receptor on protamine-agarose gel, these results suggest that protamine may increase the EGF receptor number by directly activating cryptic EGF receptors in the plasma membrane.  相似文献   

19.
Recycling of epidermal growth factor in A431 cells   总被引:3,自引:0,他引:3  
The fate of epidermal growth factor (EGF) after internalization by A431 cells was studied. First, cells containing 125I-EGF-receptor complexes in endosomes were obtained. Subsequent incubation of the cells at 37 degrees C resulted in the recycling of 125I-EGF from endosomes to the cell surface in the receptor-bound state and the gradual release of recycled ligand into the medium. The excess of unlabeled EGF blocked both rebinding and re-internalization of recycled 125I-EGF to produce enhanced accumulation of ligand in the medium. The rate of recycling was shown to be much higher than that of EGF degradation.  相似文献   

20.
Incubation of intact rat adipocytes with physiological concentrations of catecholamines inhibits the specific binding of 125I-insulin and 125I-epidermal growth factor (EGF) by 40 to 70%. Affinity labeling of the alpha subunit of the insulin receptor demonstrates that the inhibition of hormone binding is directly reflective of a specific decrease in the degree of receptor occupancy. The stereospecificity and dose dependency of the binding inhibitions are typical of a classic beta 1-adrenergic receptor response with half-maximal inhibition occurring at 10 nM R-(-)-isoproterenol. Specific alpha-adrenergic receptor agonists and beta-adrenergic receptor antagonists have no effect, while beta-adrenergic receptor antagonists block the inhibition of 125I-insulin and 125I-EGF binding to receptors induced by beta-adrenergic receptor agonists. Further, these effects are mimicked by incubation of adipocytes with dibutyryl cyclic AMP or with 3-isobutyl-1-methylxanthine. The beta-adrenergic inhibition of both 125I-insulin and 125I-EGF binding is very rapid, requiring only 10 min of isoproterenol pretreatment at 37 degrees C for a maximal effect. Removal of isoproterenol by washing the cells in the presence of alprenolol leads to complete reversal of these effects. The inhibition of 125I-EGF binding is temperature dependent whereas the inhibition of 125I-insulin binding is relatively insensitive to the temperature of isoproterenol pretreatment. Scatchard analysis of 125I-insulin and 125I-EGF binding demonstrated that the decrease of insulin receptor-binding activity may be due to a decrease in the apparent number of insulin receptors while the inhibition of EGF receptor binding can be accounted for by a decrease in apparent EGF receptor affinity. The decrease in the insulin receptor-binding activity is physiologically expressed as a dose-dependent decrease of insulin responsiveness in the adipocyte with respect to two known responses, stimulation of insulin-like growth factor II receptor binding and activation of the glucose-transport system. These results demonstrate a beta-adrenergic receptor-mediated cyclic AMP-dependent mechanism for the regulation of insulin and EGF receptors in the rat adipocyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号