首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The lymphokines IL-2 and IL-4 promoted the growth of human PHA-triggered T cells, but only IL-2 induced the production of IFN-gamma and TNF. The addition of purified monocytes strongly enhanced the production of IFN-gamma in IL-2-stimulated T cell cultures but did not influence the production of TNF or the level of T cell proliferation. The addition of IL-1 to T cells activated by PHA and optimal concentrations of IL-2 resulted in a strong induction of IFN-gamma production but had no influence on TNF production or T cell proliferation. IL-6 did not influence IFN-gamma or TNF production or T cell proliferation induced by PHA-IL-2 and did not modulate IL-1-induced IFN-gamma production. The production of IFN-gamma by CD4+ 45R+ Th cells was strongly enhanced by IL-1, whereas CD8+ T cells were less responsive to IL-1 and CD4+ 45R+ T cells were unresponsive to IL-1. We demonstrate, at the clonal level, that the optimal production of IFN-gamma by human Th cells requires both IL-1 and IL-2, whereas the production of TNF and T cell proliferation are induced by IL-2 alone. We suggest that IL-1 acts as a second signal for IFN-gamma production and that it may have an important function in regulating the pattern of lymphokines produced by T cell subsets during activation.  相似文献   

2.
Memory CD8 T cells mediate rapid and effective immune responses against previously encountered Ags. However, these cells display considerable phenotypic and functional heterogeneity. In an effort to identify parameters that correlate with immune protection, we compared cell surface markers, proliferation, and cytokine production of distinct virus- and tumor-specific human CD8 populations. Phenotypic analysis of epitope-specific CD8 T cells showed that Ag specificity is associated with distinct CCR7/CD45RA expression profiles, suggesting that Ag recognition drives the expression of these molecules on effector/memory T cells. Moreover, the majority of central memory T cells (CD45RAlowCCR7dull) secreting cytokines in response to an EBV epitope produces both IL-2 and IFN-gamma, whereas effector memory CD8 cells (CD45RAdullCCR7-) found in EBV, CMV, or Melan-A memory pools are mostly composed of cells secreting exclusively IFN-gamma. However, these various subsets, including Melan-A-specific effector memory cells differentiated in cancer patients, display similar Ag-driven proliferation in vitro. Our findings show for the first time that human epitope-specific CD8 memory pools differ in IL-2 production after antigenic stimulation, although they display similar intrinsic proliferation capacity. These results provide new insights in the characterization of human virus- and tumor-specific CD8 lymphocytes.  相似文献   

3.
Peyer's patches (PP) are believed to be the principal sites for induction of tolerance to Ags from food and commensal flora, yet the phenotype of T cells activated within the PP is largely unexplored. We hypothesize that exposure to Ags within the PP promotes differentiation of T cells with immunoregulatory functions. Cytokine production and cell surface marker expression of murine PP mononuclear cells (MC) are compared with those from mesenteric lymph nodes and peripheral lymph nodes (PLN). In response to stimulation through the TCR/CD3 complex, PP MC exhibit vigorous proliferation, modest production of IL-2, and significantly elevated synthesis of IL-10. Exogenous IL-12 enhances both IL-10 and IFN-gamma secretion by activated PP MC. Cell surface marker analysis reveals that PP T cells consist of activated and memory subpopulations compared with the predominantly naive T cells identified in the PLN and mesenteric lymph nodes. Upon stimulation, only CD45RB(low)CD4(+) PP T cells produce IL-10, whereas secretion of IL-2, IL-4, and IFN-gamma was not detected. Furthermore, PP MC, but not PLN MC, stimulated through the TCR/CD3 complex suppress proliferation of purified PLN T cells in vitro, evidence for a regulatory function among PP lymphocytes. We conclude that PP favor differentiation of an IL-10-producing, regulatory CD45RB(low)CD4(+) T cell population and that inhibition of T cell proliferation by activated PP MC may reflect regulatory activity consistent with T regulatory cells.  相似文献   

4.
The CD45RA and CD45RO isoforms have been reported to define complementary subsets among CD4+ T cells: CD45RA CD4+ T cells are considered "virgin T cells" and CD45RO "primed T cells." We investigated the secretion of lymphokines by human CD4+ CD45RO and CD4+ CD45RA T helper cells after mitogen stimulation. CD45RA and CD45RO CD4+ T cells were isolated by negative immunoselection using magnetic beads. CD45RO cells, but not CD45RA cells, proliferate well in response to pokeweed mitogen (PWM) or insoluble anti-CD3. Both subpopulations produced interleukin (IL)-2, IL-6, and interferon (IFN)-gamma when stimulated with PWM for 1-4 days. Only Day 1 supernatants from CD45RO cells contained moderate amounts of IL-4. After 14 days of continuous culture and stimulation with PWM, the CD45RA subset had lost the expression of CD45RA and gained that of CD45RO. When long-term cultured CD45RA or CD45RO cells were treated with insoluble anti-CD3, they incorporated [3H]thymidine at similar levels, but only CD45RO cells secreted IL-4 and significantly increased their secretion of IFN-gamma. These data indicate that despite phenotype conversion, the two subpopulations maintain functional differences in the secretion of lymphokines, thus suggesting that circulating CD45RA and CD45RO cells may represent different lines of differentiation.  相似文献   

5.
IL-2 and IL-15 are lymphocyte growth factors produced by different cell types with overlapping functions in immune responses. Both cytokines costimulate lymphocyte proliferation and activation, while IL-15 additionally promotes the development and survival of NK cells, NKT cells, and intraepithelial lymphocytes. We have investigated the effects of IL-2 and IL-15 on proliferation, cytotoxicity, and cytokine secretion by human PBMC subpopulations in vitro. Both cytokines selectively induced the proliferation of NK cells and CD56(+) T cells, but not CD56(-) lymphocytes. All NK and CD56(+) T cell subpopulations tested (CD4(+), CD8(+), CD4(-)CD8(-), alphabetaTCR(+), gammadeltaTCR(+), CD16(+), CD161(+), CD158a(+), CD158b(+), KIR3DL1(+), and CD94(+)) expanded in response to both cytokines, whereas all CD56(-) cell subpopulations did not. Therefore, previously reported IL-15-induced gammadelta and CD8(+) T cell expansions reflect proliferations of NK and CD56(+) T cells that most frequently express these phenotypes. IL-15 also expanded CD8alpha(+)beta(-) and Valpha24Vbeta11 TCR(+) T cells. Both cytokines stimulated cytotoxicity by NK and CD56(+) T cells against K562 targets, but not the production of IFN-gamma, TNF-alpha, IL-2, or IL-4. However, they augmented cytokine production in response to phorbol ester stimulation or CD3 cross-linking by inducing the proliferation of NK cells and CD56(+) T cells that produce these cytokines at greater frequencies than other T cells. These results indicate that IL-2 and IL-15 act at different stages of the immune response by expanding and partially activating NK receptor-positive lymphocytes, but, on their own, do not influence the Th1/Th2 balance of adaptive immune responses.  相似文献   

6.
Viruses exploit a number of strategies to evade immune recognition. In this study, we describe a novel mechanism by which EBV, rather than avoiding detection, subverts the immune response by stimulating regulatory T cells that secrete IL-10. Human PBMC from all EBV-seropositive, but not -seronegative, donors responded to both purified latent membrane protein 1 and the corresponding immunodominant peptides with high levels of IL-10 secretion by CD4(+) T cells. These IL-10 responses, characteristic of T regulatory 1 cells, inhibited T cell proliferation and IFN-gamma secretion induced by both mitogen and recall Ag. It was confirmed that the inhibition was IL-10 dependent by the use of neutralizing Ab. The deviation of the immune response toward suppression is likely to be important in maintaining latency and EBV-associated tumors.  相似文献   

7.
T cell proliferation and cytokine production usually require stimulation via both the TCR/CD3 complex and the CD28 costimulatory receptor. Using purified human CD4+ peripheral blood T cells, we show that CD28 stimulation alone activates p38 alpha mitogen-activated protein kinase (p38 alpha). Cell proliferation induced by CD28 stimulation alone, a response attributed to CD4+CD45RO+ memory T cells, was blocked by the highly specific p38 inhibitors SB 203580 (IC50 = 10-80 nM) and RWJ 67657 (IC50 = 0.5-4 nM). In contrast, proliferation induced by anti-CD3 plus anti-CD28 mAbs was not blocked. Inhibitors of p38 also blocked CD4+ T cell production of IL-4 (SB 203580 IC50 = 20-100 nM), but not IL-2, in response to CD3 and CD28 stimulation. IL-5, TNF-alpha, and IFN-gamma production were also inhibited, but to a lesser degree than IL-4. IL-4 production was attributed to CD4+CD45RO+ T cells, and its induction was suppressed by p38 inhibitors at the mRNA level. In polarized Th1 and Th2 cell lines, SB 203580 strongly inhibited IL-4 production by Th2 cells (IC50 = 10-80 nM), but only partially inhibited IFN-gamma and IL-2 production by Th1 cells (<50% inhibition at 1 microM). In both Th1 and Th2 cells, CD28 signaling activated p38 alpha and was required for cytokine production. These results show that p38 alpha plays an important role in some, but not all, CD28-dependent cellular responses. Its preferential involvement in IL-4 production by CD4+CD45RO+ T cells and Th2 effector cells suggests that p38 alpha may be important in the generation of Th2-type responses in humans.  相似文献   

8.
Human memory CD8(+) T cell subsets, termed central memory and effector memory T cells, can be identified by expression of CD45RA, CD62 ligand (CD62L), and CCR7. Accordingly, functional differences have been described for each subset, reflecting unique roles in immunological memory. The common gamma-chain cytokines IL-15 and IL-7 have been shown to induce proliferation and differentiation of human CD8(+) T cell subsets, as well as increased effector functions (i.e., cytokines, cytotoxicity). In this study, we observed that addition of IL-15 or IL-7 to cultures of human CD8(+) T cells profoundly enhanced the IL-12-IL-18 pathway of IFN-gamma production. Importantly, IL-15 and IL-7 lowered the threshold concentrations of IL-12 and IL-18 required for induction of IFN-gamma by 100-fold. Comparison of IL-15 and IL-7 demonstrated that IL-15 was superior in its ability to enhance IL-12-IL-18-induced IFN-gamma, without evidence of a synergistic effect between IL-15 and IL-7. We also observed that IL-15- and IL-7-mediated enhancement of IL-12-IL-18-induced IFN-gamma production was a functional property of effector memory CD8(+) T cells. Despite a lack of association between cell division and acquisition of IL-12-IL-18-induced IFN-gamma, down-regulation of CD62L expression correlated well with increased IL-12-IL-18-induced IFN-gamma. Purified central memory T cells stimulated with IL-15 and IL-7 down-regulated CD62L and acquired potent IL-12-IL-18-induced IFN-gamma similar to effector memory T cells. Thus, in addition to its known role in development of T cell memory, IL-15 may amplify memory CD8(+) T cell effector functions by increasing sensitivity to proinflammatory cytokine stimulation.  相似文献   

9.
The frequency of circulating alloreactive human memory T cells correlates with allograft rejection. Memory T cells may be divided into effector memory (T(EM)) and central memory (T(CM)) cell subsets, but their specific roles in allograft rejection are unknown. We report that CD4+ T(EM) (CD45RO+ CCR7- CD62L-) can be adoptively transferred readily into C.B-17 SCID/bg mice and mediate the destruction of human endothelial cells (EC) in vascularized human skin grafts allogeneic to the T cell donor. In contrast, CD4+ T(CM) (CD45RO+ CCR7+ CD62L+) are inefficiently transferred and do not mediate EC injury. In vitro, CD4+ T(EM) secrete more IFN-gamma within 48 h in response to allogeneic ECs than do T(CM). In contrast, T(EM) and T(CM) secrete comparable amounts of IFN-gamma in response to allogeneic monocytes (Mo). In the same cultures, both T(EM) and T(CM) produce IL-2 and proliferate in response to IFN-gamma-treated allogeneic human EC or Mo, but T(CM) respond more vigorously in both assays. Blockade of LFA-3 strongly inhibits both IL-2 and IFN-gamma secretion by CD4+ T(EM) cultured with allogeneic EC but only minimally inhibits responses to allogeneic Mo. Blockade of CD80 and CD86 strongly inhibits IL-2 but not IFN-gamma production by in response to allogeneic EC or Mo. Transduction of EC to express B7-2 enhances allogeneic T(EM) production of IL-2 but not IFN-gamma. We conclude that human CD4+ T(EM) directly recognize and respond to allogeneic EC in vitro by secreting IFN-gamma and that this response depends on CD2 but not CD28. Consistent with EC activation of effector functions, human CD4+ T(EM) can mediate allogeneic EC injury in vivo.  相似文献   

10.
Cytokine production upon T cell activation results from the integration of multiple signaling pathways from TCR/CD3 and from costimulatory molecules such as CD28. Among these pathways, the possible role of p38 mitogen activated protein kinase (MAPK) is the least understood. Here, we used a highly specific p38 MAPK inhibitor, the SB203580 compound, to examine the role of this enzyme in the induction of various cytokines in human T cells stimulated with anti-CD3 and anti-CD28 mAb together or in combination with PMA. Cytokine induction was monitored by ELISA and at the mRNA level. While SB203580 had little effect on IL-2 production and proliferation, it significantly reduced the production of several other cytokines. The secretion of IL-4, IL-5, IL-13, and TNF-alpha was inhibited by 20-50% with modes of T cell activation involving the CD28 pathway, whereas their mRNA expression was little affected. In contrast, IFN-gamma induction via CD28/PMA or CD3/CD28, but not CD3/PMA, was markedly diminished both at the protein and at the mRNA levels. Most interestingly, SB203580 also suppressed IL-10 secretion and mRNA induction via CD28-dependent activation by 75-85% (IC50 approximately 0.2 microM). Subset analysis suggested that this inhibition did not reflect a differential effect on T cell subsets. Therefore, p38 MAPK activity appears to contribute to cytokine production, mostly via CD28-dependent signaling. Moreover, IL-10 seems to rely more on this activity than other cytokines for its induction in T cells.  相似文献   

11.
12.
The expression of lymphokine mRNA by human CD4+CD45R+ and CD4+CD45R- Th cells was assessed after mitogen stimulation. These Ag have previously been shown to relate closely to virgin and primed T cells, respectively. CD4+CD45R+ (virgin) and CD4+CD45R- (primed) cell fractions were isolated by sorting double-labeled cells with a fluorescence-activated cell sorter. CD4+CD45R+ cells produced high levels of IL-2 mRNA when stimulated with either PMA together with calcium ionophore, or with PHA, but they expressed only trace quantities of mRNA for IL-4 or IFN-gamma. In contrast, CD4+CD45R- cells produced high levels of mRNA for IL-2, IL-4, and IFN-gamma. After 14 days of continuous culture, CD4+CD45R+ Th cells lost expression of the CD45R Ag, but gained high level expression of CDw29, such that they were indistinguishable from the cell population which originally expressed this Ag. At the same time, they acquired the ability to synthesize IL-4 mRNA. It seemed likely that the broad lymphokine profile of primed Th cells might mask clonal heterogeneity. Analysis of 122 CD4+ T cell clones showed that all of them synthesized IL-2 mRNA. One clone failed to express IL-4 mRNA, but did produce those for IL-2 and IFN-gamma. A total of 34 of the clones was investigated to determine expression of IFN-gamma mRNA; two of these clones were negative for IFN-gamma mRNA, and both expressed IL-2 and IL-4 message. These data suggest that while fresh virgin and primed peripheral blood T cells show a clear resolution of lymphokine production, a simple subdivision of human CD4+ T cell clones on the basis of their lymphokine production (such as that reported for mouse Th cell clones) is not possible.  相似文献   

13.
During human aging, one of the major changes in the T cell repertoire is a dramatic expansion of T cells with the atypical CD28-CD8+ phenotype. In this study, we show that this increase is a consequence not only of an expansion in the CD28-CD8+ population but also of a decrease in the number of CD28+CD8+ T cells. The decrease in circulating CD28+CD8+ T cells is dramatically accelerated after the age of 50 and is not accompanied by an equivalent reduction in the CD28+CD8+ subset. Our findings confirm that aging leads to an accumulation of CD45RO+ T cells within the CD28+CD8+ subset as previously observed. Surprisingly, we found an increase in CD45RA+ expression with age in the CD28-CD8+ subset. Immune-phenotyping for activation markers, measurement of telomere DNA content, and cytokine production analysis indicate that the large majority of CD28-CD8+ T cells are Ag-experienced, despite their CD45RA+ phenotype. Our study further demonstrates that the poor proliferative response displayed by CD28-CD8+ T cells is not a consequence of telomere shortening. Also, analysis of cytokine production at the single cell level revealed that the proportions of IFN-gamma +, IL-4+, and IL-10+ T cells are considerably higher among the CD28-CD8+ than the CD28+CD8+ subset. In summary, these data explain the presence of CD45RA+ T cells in the elderly, shed light on the phylogenetic origin of CD28-CD8+ T cells, and suggest a role for these cells in the immune senescence process.  相似文献   

14.
PGE2 is a potent inflammatory mediator with profound immune regulatory actions. The present study examined the effects of PGE2 on the activation/proliferation of CD4+ T cells using 37 cloned CD4+ T cell lines. Ten T cell clones sensitive to PGE2 and 10 T cell clones resistant to PGE2, as measured by proliferation in response to anti-CD3 Ab, were selected for comparison. It was found that the PGE2-sensitive T cells were characterized by low production (<200 pg/ml) of both IL-2 and IL-4, while PGE2-resistant T cells secreted high levels (>1000 pg/ml) of IL-2, IL-4, or both. The roles of IL-2 and IL-4 were confirmed by the finding that addition of exogenous lymphokines could restore PGE2-inhibited proliferation, and PGE2-resistant Th1-, Th2-, and Th0-like clones became PGE2 sensitive when IL-2, IL-4, or both were removed using Abs specific for the respective lymphokines. In addition, we showed that the CD45RA expression in PGE2-sensitive T cells was significantly lower than that in PGE2-resistant cells (mean intensity, 1.2 +/- 0.6 vs 7.8 +/- 5.7; p = 0.001). In contrast, CD45RO expression in PGE2-sensitive T cells was significantly higher that that in PGE2-resistant cells (mean intensity, 55.7 +/- 15.1 vs 33.4 +/- 12.9; p = 0.02). In summary, PGE2 predominantly suppressed CD45RA-RO+ CD4+ T cells with low secretion of both IL-2 and IL-4.  相似文献   

15.
Suppressor of cytokine signaling 1 inhibits IL-10-mediated immune responses   总被引:8,自引:0,他引:8  
IL-10 has proved to be a key cytokine in regulating inflammatory responses by controlling the production and function of various other cytokines. The suppressor of cytokine signaling (SOCS) gene products are a family of cytoplasmic molecules that are essential mediators for negatively regulating cytokine signaling. It has been previously shown that IL-10 induced SOCS3 expression and that forced constitutive expression of SOCS3 inhibits IL-10/STAT3 activation and LPS-induced macrophage activation. In this report, we show that, in addition to SOCS3 expression, IL-10 induces SOCS1 up-regulation in all cell lines tested, including Ba/F3 pro-B cells, MC/9 mast cells, M1 leukemia cells, U3A human fibroblasts, and primary mouse CD4(+) T cells. Induction of SOCS molecules is dependent on STAT3 activation by IL-10R1. Cell lines constitutively overexpressing SOCS proteins demonstrated that SOCS1 and SOCS3, but not SOCS2, are able to partially inhibit IL-10-mediated STAT3 activation and proliferative responses. Pretreatment of M1 cells with IFN-gamma resulted in SOCS1 induction and a reduction of IL-10-mediated STAT3 activation and cell growth inhibition. IL-10-induced SOCS is associated with the inhibition of IFN-gamma signaling in various cell types, and this inhibition is independent of C-terminal serine residues of the IL-10R, previously shown to be required for other anti-inflammatory responses. Thus, the present results show that both SOCS1 and SOCS3 are induced by IL-10 and may be important inhibitors of both IL-10 and IFN-gamma signaling. IL-10-induced SOCS1 may directly inhibit IL-10 IFN-gamma signaling, while inhibition of other proinflammatory cytokine responses may use additional IL-10R1-mediated mechanisms.  相似文献   

16.
Membrane-associated Leishmania Ags (MLA) or soluble Leishmania Ags were used in vitro to stimulate cord blood or PBMC from healthy donors noninfected by Leishmania parasites. MLA, but not soluble Leishmania Ags, constantly induce strong proliferation of cord blood mononuclear cells and PBMC from noninfected individuals. Responding cells are CD3+, CD4+, TCRalphabeta+, CD45RO+, and CD45RA+ and secrete IFN-gamma and IL-10, but not IL-4. MLA do not activate NK cells nor NKT cells. Membrane Ags also induce purified macrophages from noninfected individuals to secrete IL-10 and TNF-alpha, but have no effect on IL-1alpha or IL-12 secretion. The effects of MLA are proteinase K-sensitive and resistant to lipid extraction. The lymphoproliferative responses are inhibited by anti-HLA-DR Abs and require Ag processing by APCs, excluding that the biological effect of MLA could be attributed to a superantigen. Finally, TCR repertoire analysis shows that the T cell expansion induced by MLA uses TCR with various variable beta segment rearrangements and CDR3 lengths, features much more characteristic to those observed with a polyclonal activator than with a conventional Ag. These results suggest a particular mechanism developed during the host's natural response to Leishmania parasites that allows direct activation of naive CD4 lymphocytes by parasite membrane-associated Ags.  相似文献   

17.
We have previously reported complex effects of cytokine-containing T cell supernatants on the interleukin (IL)4 plus phorbol 12-myristate 13-acetate (PMA)-induced proliferative response of murine thymocytes. Here we show that recombinant murine IL-2, IL-6, and IFN-gamma each differentially regulate the IL-4/PMA-driven growth of thymocyte subpopulations. Thymocytes fractionated into four subpopulations on the basis of CD4 and CD8 expression were stimulated to proliferate by IL-4/PMA. Interferon-gamma (IFN-gamma) caused almost complete inhibition of the CD4+/CD8- response but had no measurable effect on the growth of CD4-/CD8+ or CD4-/CD8- populations. This inhibitory effect was also observed on splenic CD4+/CD8- T cells. In contrast, IL-6 strongly enhanced the proliferative response of CD4+/CD8- thymocytes, but showed no effect on peripheral CD4+/CD8- T cells, suggesting that IL-6 may be an important regulator of growth in the thymus. IL-2 also enhanced the proliferation of both CD4-/CD8+ and CD4-/CD8- thymocytes to IL-4 and PMA. To test whether the IL-4/PMA stimulus provided all the signals required to initiate growth in each subpopulation, we titrated cell number and examined the relationship between cell dose and cell response. Growth of CD8+/CD4- cells was cell density independent, indicating that IL-4/PMA is sufficient stimulus to induce growth of these cells. In contrast, growth of CD4-/CD8- and CD4+/CD8- cells is cell density dependent, suggesting a requirement for another signal provided by the cells themselves. These observations suggest that more signals remain to be identified in this thymocyte growth system.  相似文献   

18.
IL-27 is a novel IL-6/IL-12 family cytokine that not only plays a role in the early regulation of Th1 differentiation, but also exerts an inhibitory effect on immune responses, including the suppression of proinflammatory cytokine production. However, the molecular mechanism by which IL-27 exerts the inhibitory effect remains unclear. In this study we demonstrate that IL-27 inhibits CD28-mediated IL-2 production and that suppressor of cytokine signaling 3 (SOCS3) plays a critical role in the inhibitory effect. Although IL-27 enhanced IFN-gamma production from naive CD4+ T cells stimulated with plate-coated anti-CD3 and anti-CD28 in the presence of IL-12, IL-27 simultaneously inhibited CD28-mediated IL-2 production. Correlated with the inhibition, IL-27 was shown to augment SOCS3 expression. Analyses using various mice lacking a signaling molecule revealed that the inhibition of IL-2 production was dependent on STAT1, but not on STAT3, STAT4, and T-bet, and was highly correlated with the induction of SOCS3 expression. Similar inhibition of CD28-mediated IL-2 production and augmentation of SOCS3 expression by IL-27 were observed in a T cell hybridoma cell line, 2B4. Forced expression of antisense SOCS3 or dominant negative SOCS3 in the T cell line blocked the IL-27-inudced inhibition of CD28-mediated IL-2 production. Furthermore, pretreatment with IL-27 inhibited IL-2-mediated cell proliferation and STAT5 activation, although IL-27 hardly affected the induction level of CD25 expression. These results suggest that IL-27 inhibits CD28-mediated IL-2 production and also IL-2 responses, and that SOCS3, whose expression is induced by IL-27, plays a critical role in the inhibitory effect in a negative feedback mechanism.  相似文献   

19.
Human IL-7: a novel T cell growth factor   总被引:15,自引:0,他引:15  
IL-7 is a hemopoietic growth factor that induces the proliferation of early B lineage cells. In the course of studies to determine its effect on human bone marrow cells, we noted a marked outgrowth of mature T cells. When T cells from the circulation were cultured with IL-7, a dose-dependent proliferative response was observed. The target cells included both the CD4+ and CD8+ subpopulations of T cells, but the memory T cells (CD45R-) were better responders than unprimed T cells (CD45R+). IL-7 induced the expression of receptors for IL-2 and transferrin and higher levels of the 4F2 activation Ag. Although T cell responses to suboptimal concentrations of IL-7 were enhanced by the addition of IL-2, the proliferative response to IL-7 was not inhibited by neutralizing antibody to the IL-2R (Tac), nor was IL-2 secretion detected in this response. This response pattern of mature T cells suggests an important role for IL-7 in normal T cell physiology in humans.  相似文献   

20.
Regulation of human T cell proliferation by IL-7   总被引:21,自引:0,他引:21  
The regulation of human T cell proliferation by rIL-7 was investigated. Purified peripheral blood T cells were stimulated to proliferate in a short-term assay by IL-7 in the presence of CD3 mAb or lectin. This stimulation was accompanied by a significant increase in the expression of IL-2R on both CD4+ and CD8+ T cells over that seen with mitogen alone. The proliferation of these cells in the presence of exogenous IL-7 involved both IL-2-dependent and - independent mechanisms as shown by the ability of neutralizing IL-2 antibody to partially inhibit the response. Anti-IL-4 and anti-IL-6 antibodies had no effect on IL-7-induced T cell growth. These results suggest that the costimulatory effect of IL-7 on human T cells is primarily direct, not involving other intermediate T cell growth factors. IL-7 was also found to be mitogenic in a long-term assay in the absence of any costimulus, with the onset of proliferation occurring later than that seen in the presence of mitogen. These results demonstrate that IL-7 provides a potent T cell stimulus either alone or in the presence of co-mitogen and, although this stimulus is accompanied by an increase in the level of IL-2R expression, it is not dependent on the action of IL-2 for its effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号