首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The genes for ferredoxin from heterocysts (fdx H) and vegetative cells (pet F) of Anabaena sp. strain 7120 were subcloned into plasmid pUC 18/19. Both genes were expressed in Escherichia coli at high levels (10% of total protein). Pet F could be expressed from its own promoter. The ferredoxins were correctly assembled to the holoprotein. Heterocyst ferredoxin was purified from E. coli extracts on a large scale. Its biochemical and biophysical properties were identical to those of the authentic ferredoxin, isolated from Anabaena heterocysts.This paper is dedicated to Prof. A. Trebst on the occasion of his 60th birthday.  相似文献   

2.
The fragile histidine triad (Fhit) protein is a homodimeric protein with diadenosine 5',5"'-P(1),P(3)-triphosphate (Ap(3)A) asymmetrical hydrolase activity. We have cloned the human cDNA Fhit in the pPROEX-1 vector and expressed with high yield in Escherichia coli with the sequence Met-Gly-His(6)-Asp-Tyr-Asp-Ile-Pro-Thr-Thr followed by a rTEV protease cleavage site, denoted as "H6TV," fused to the N-terminus of Fhit. Expression of H6TV-Fhit in BL21(DE3) cells for 3 h at 37 degrees C produced 30 mg of H6TV-Fhit from 1 L of cell culture ( approximately 4 g of cells). The H6TV-Fhit protein was purified to homogeneity in a single step, with a yield of 80%, using nickel-nitrilotriacetate resin and imidazole buffer as eluting agent. Incubation of H6TV-Fhit with rTEV protease at 4 degrees C for 24 h resulted in complete cleavage of the H6TV peptide. There were no unspecific cleavage products. The purified Fhit protein could be stored for 3 weeks at 4 degrees C without loss of activity. The pure protein was stable at -20 degrees C for at least 18 months when stored in buffer containing 25% glycerol. Purified Fhit was highly active, with a K(m) value for Ap(3)A of 0.9 microM and a k(cat)(monomer) value of 7.2 +/- 1.6 s(-1) (n = 5). The catalytic properties of unconjugated Fhit protein and the H6TV-Fhit fusion protein were essentially identical. This indicates that the 24-amino-acid peptide containing the six histidines fused to the N-terminus of Fhit does not interfere in forming the active homodimers or in the binding of Ap(3)A.  相似文献   

3.
A strong and constitutive expression vector of Escherichia coli beta-glucuronidase with the isocitrate dehydrogenase promoter has been developed for producing a large amount of recombinant protein. More than 95% pure enzyme was obtained by a four step purification procedure-ammonium sulfate precipitation, DEAE ion-exchange chromatography, Superose 12 gel filtration, and hydroxyapatite steric ion-exchange chromatography. The overexpressed gene can produce 23 mg of pure enzyme from one liter of bacterial culture.  相似文献   

4.
Pertussis toxoid, diphtheria toxoid, and tetanus toxoid are key components of diphtheria-tetanus-acellular pertussis vaccines. The efficacy of the vaccines is well documented, however, the vaccines are expensive partly because the antigens are derived from three different bacteria. In this study, a fusion protein (PDT) composed of the immunoprotective S1 fragment of pertussis toxin, the full-length non-toxic diphtheria toxin, and fragment C of tetanus toxin was constructed via genetic means. The correct fusion was verified by restriction endonuclease analysis and Western immunoblotting. Escherichia coli carrying the recombinant plasmid (pCoPDT) produced a 161kDa protein that was recognized by antibodies specific to the three toxins. The expression of the PDT protein was inducible by isopropyl-beta-d-thio-galactoside but the total amount of protein produced was relatively low. Attempts to improve the protein yield by expression in an E. coli strain (Rosetta-gami 2) that could alleviate rare-codon usage bias and by supplementation of the growth media with amino acids deemed to be a limiting factor in translation were not successful. The PDT protein remained in the insoluble fraction when the recombinant E. coli was grown at 37 degrees C but the protein became soluble when the bacteria were grown at 22 degrees C. The PDT protein was isolated via affinity chromatography on a NiCAM column. The protein was associated with five other proteins via disulfide bonds and non-covalent interactions. Following treatment with beta-mercaptoethanol, the PDT fusion was purified to homogeneity by preparative polyacrylamide gel electrophoresis with a yield of 45 microg/L of culture. Antisera generated against the purified PDT protein recognized the native toxins indicating that some, if not all, of the native epitopes were conserved.  相似文献   

5.
Tyrosine hydroxylase is the rate-limiting step in the synthesis of dopamine and is tightly regulated. Previous studies have shown it to be covalently modified and potently inhibited by 3,4-dihydroxyphenylacetaldehyde (DOPAL), an endogenous neurotoxin via dopamine catabolism which is relevant to Parkinson's disease. In order to elucidate the mechanism of enzyme inhibition, a source of pure, active tyrosine hydroxylase was necessary. The cloning and novel purification of human recombinant TH from Escherichia coli is described here. This procedure led to the recovery of ~23 mg of pure, active and stable enzyme exhibiting a specific activity of ~17 nmol/min/mg. The enzyme produced with this procedure can be used to delineate the tyrosine hydroxylase inhibition by DOPAL and its relationship to Parkinson's disease. This procedure improves upon previous methods because the fusion protein gives rise to high expression and convenient affinity-capture, and the cleaved and highly purified hTH makes the product useful for a wider variety of applications.  相似文献   

6.
Escherichia coli YajC is a small integral membrane protein with a single transmembrane helix. The gene yajC is part of the secD operon and the protein is identified in the SecDF-YajC complex. However, the exact function of YajC remains a mystery. While its function is usually discussed in the context of the SecDF-YajC complex, studies have shown that SecD/F, rather than YajC, are essential for those functions. Recently YajC is identified as the mysterious protein that co-crystallized with AcrB. To further investigate the structure of YajC, we expressed and purified the protein in a detergent solubilized state. The protein assumed a folded structure containing mixed α/β secondary structures, consistent with the structural prediction. Using signal Cys mutations and thiol-specific probes, we found the C-terminus of YajC was cytoplasmic, while the N-terminus of YajC was buried in the membrane. In addition, we expressed and purified a truncated fragment of YajC that corresponded to the C-terminal cytoplasmic domain (YajC(CT)). YajC(CT) formed a compact structure rich in β-strands and existed as a trimer.  相似文献   

7.
The increasing interest in the structural arrangements and functional interdependencies of individual modules within large multidomain proteins requires the development of new methods allowing efficient production and purification of large human proteins. Heterologous expression in bacteria is still the most convenient and widely-used approach. However, most of the existing tools are not well suited to expression of cysteine-rich proteins in a native-like soluble form, and with the increasing protein size refolding may result in obtaining non-native conformations or improper disulfide bridging pattern. Here, we present an efficient method of expression and purification of muskelin, a large, multidomain, cysteine-rich eukaryotic protein involved in cell adhesion and regulation of cytoskeleton dynamics. Using a broad range of purification and solubility tags, expression strains and conditions we optimized the procedure to acquire a natively folded protein of crystallization-scale quantity and purity. The correct protein conformation and disulfide bonding were anticipated from the results of circular dichroism spectra and Ellman’s assay. Successful crystallization trials are a step towards muskelin crystal-structure determination, while the optimized expression and purification procedure can easily be applied to produce other eukaryotic proteins in the bacterial expression system.  相似文献   

8.
Ferredoxin reductase (Fd-reductase) supplies reducing equivalents obtained from NADPH to mitochondrial cytochrome P450 enzymes via the small iron-sulfur protein ferredoxin. Two cDNAs (differing by the presence or absence of an 18-bp insert in the coding region) for the human Fd-reductase were subcloned into a newly constructed general purpose expression vector, p delta blue; protein expression under control of the bacteriophage lambda pL promoter was then induced in Escherichia coli. Western blot analysis of subcellular fractions indicated that Fd-reductase protein expressed from both plasmids was present in both inclusion bodies and soluble fractions. However, only the form lacking the insert exhibited Fd-reductase activity. The active material was purified and was found to have electrophoretic, chromatographic, optical, and circular dichroism properties comparable to the bovine homologue. The apparent Km of the expressed protein for NADPH was determined to be 0.7 +/- 0.1 microM and the apparent Km for human ferredoxin was found to be 106 +/- 8 nM. While yields of active enzyme were relatively low (approximately 0.1 mg/liter of culture), the production of Fd-reductase in E. coli will allow structural and mechanistic studies of the enzyme and its interactions with ferredoxin.  相似文献   

9.
We have recently shown, using a well-defined in vitro model, that connexin 43 (Cx43) is directly involved in human cytotrophoblastic cell fusion into a multinucleated syncytiotrophoblast. Cx43 appears to interact with partner proteins within a fusogenic complex, in a multi factorial and dynamic process. This fusogenic complex remains to be characterized and constituent proteins need to be identified. In order to identify proteins interacting with the entire Cx43 molecule (extracellular, transmembrane and intracellular domains), we produced and purified full-length recombinant Cx43 fused to glutathione S-transferase (GST-Cx43) and used it as "bait" in GST pull-down experiments. Cx43 cDNA was first cloned into the pDEST15 vector in order to construct a GST-fusion protein, using the Gateway system. The fusion protein GST-Cx43 was then expressed in Escherichia coli strain BL21-AI? and purified by glutathione-affinity chromatography. The purified fusion protein exhibited the expected size of 70 kDa on SDS-PAGE, western blot and GST activity. A GST pull-down assay was used to show the capacity of the full-length recombinant protein to interact with known partners. Our results suggest that this method has the capacity to produce sufficient full-length recombinant protein for investigations aimed at identifying Cx43 partner proteins.  相似文献   

10.
An expression system has been designed for the rapid and economic expression of recombinant neurotensin for biophysical studies. A synthetic gene for neurotensin (Glu(1)-Leu(2)-Tyr(3)-Glu(4)-Asn(5)-Lys(6)-Pro(7)-Arg(8)-Arg(9)-Pro(1 0)-Tyr(11)-Ile(12)-Leu(13)) was cloned into the pGEX-5X-2 vector to allow expression of neurotensin as a glutathione S-transferase (GST) fusion protein. The inclusion of a methionine residue between the glutathione S-transferase and the neurotensin has facilitated the rapid cleavage of the neurotensin from its carrier protein. Purification of recombinant neurotensin was performed by reverse-phase HPLC. This method produced a relatively high yield of peptide and offers the potential for economic partial or uniform labeling of small peptides (<15 amino acids) with isotopes for NMR or other biophysical techniques.  相似文献   

11.
12.
Expression and purification of recombinant mouse, rat, and human glycine N-methyltransferases (GNMTs) in pTYB and pET expression vectors was done in order to prepare the proteins for structure studies of the enzymes from different sources. When human and mouse GNMTs were expressed in pTYB vector as a fusion protein with intein and the chitin binding domain, an unusual cleavage of intein was found. This cleavage takes place at two sites near the N-terminus of intein. This resulted in the appearance of an abnormal GNMT protein after on-column cleavage of the fusion protein, which could not be separated from normal GNMT. For this reason expression of mouse, rat, and human GNMTs was done in the pET-17b expression vector, resulting in the expression of soluble protein at about 20-40mg/L of culture. A new procedure for GNMT isolation after expression in the pET vector was developed. This included only two steps, ammonium sulfate precipitation and ion-exchange chromatography, and resulted in preparations containing 95-97% pure protein. All expressed proteins were tetrameric with molecular weights of 130kDa as determined by size-exclusion chromatography. Activity in Tris buffer at pH 9 of mouse, rat, and human GNMTs was found to be 255, 260, and 540U/mg, respectively. This implies that expressed and purified GNMT proteins are biologically active and suitable for biochemical and structural studies.  相似文献   

13.

Background

Recombinant DNA technologies have played a pivotal role in the elucidation of structure-function relationships in hemoglobin (Hb) and other globin proteins. Here we describe the development of a plasmid expression system to synthesize recombinant Hbs in Escherichia coli, and we describe a protocol for expressing Hbs with low intrinsic solubilities. Since the α- and β-chain Hbs of different species span a broad range of solubilities, experimental protocols that have been optimized for expressing recombinant human HbA may often prove unsuitable for the recombinant expression of wildtype and mutant Hbs of other species.

Methodology/Principal Findings

As a test case for our expression system, we produced recombinant Hbs of the deer mouse (Peromyscus maniculatus), a species that has been the subject of research on mechanisms of Hb adaptation to hypoxia. By experimentally assessing the combined effects of induction temperature, induction time and E. coli expression strain on the solubility of recombinant deer mouse Hbs, we identified combinations of expression conditions that greatly enhanced the yield of recombinant protein and which also increased the efficiency of post-translational modifications.

Conclusion/Significance

Our protocol should prove useful for the experimental study of recombinant Hbs in many non-human animals. One of the chief advantages of our protocol is that we can express soluble recombinant Hb without co-expressing molecular chaperones, and without the need for additional reconstitution or heme-incorporation steps. Moreover, our plasmid construct contains a combination of unique restriction sites that allows us to produce recombinant Hbs with different α- and β-chain subunit combinations by means of cassette mutagenesis.  相似文献   

14.
More than 40 protein species including RNA polymerase were found to be phosphorylated in Escherichia coli on analyses of 32P-labeled cell lysates by single and two-dimensional gel electrophoresis and autoradiography. The protein species and the level of phosphorylation varied depending on the cell growth phase. With [gamma-32P]ATP as a substrate, cell lysates phosphorylated endogenous proteins in vitro which were predominantly phosphorylated in vivo. Both serine and threonine were the major phosphate acceptors in whole cell lysates. Starting from a partially purified RNA polymerase preparation with the protein phosphorylation activity and using an E. coli protein with an apparent Mr = 90K (K represents X 1000) as the substrate, we purified a protein kinase with a native Mr approximately 120K to apparent homogeneity. The protein kinase is either a heterodimer of 61K and 66K polypeptides or a homodimer of one of these polypeptides. We also isolated a 100K protein with self-phosphorylation activity.  相似文献   

15.
Rat liver protein disulfide isomerase (PDI) catalyzes the oxidative folding of proteins containing disulfide bonds. We have developed an efficient method for its overproduction in Escherichia coli. Using a T7 RNA polymerase expression system, isolated yields of 15-30 mg/liter of recombinant rat PDI are readily obtained. Convenient purification of the enzyme from E. coli lysates involves ion-exchange (DEAE) chromatography combined with zinc chelate chromatography. The recombinant PDI shows catalytic activity identical to that of PDI isolated from bovine liver in both the reduction of insulin and the oxidative folding of ribonuclease A. The enzyme is expressed in E. coli as a soluble, cytoplasmic protein. After complete reduction and denaturation in 6 M guanidinium hydrochloride, PDI regains complete activity within 3 min after removal of the denaturant, implying that disulfide bonds are not essential for the maintenance of PDI tertiary structure. Both the protein isolated from E. coli and the protein isolated from liver contained free cysteine residues (1.8 +/- 0.2 and 1.4 +/- 0.3 SH/monomer, respectively).  相似文献   

16.
17.
The recently classified group III trypsins include members like Atlantic cod (Gadus morhua) trypsin Y as well as seven analogues from other cold-adapted fish species. The eight group III trypsins have been characterized from their cDNAs and deduced amino acid sequences but none of the enzymes have been isolated from their native sources. This study describes the successful expression and purification of a recombinant HP-thioredoxin-trypsin Y fusion protein in the His-Patch ThioFusion Escherichia coli expression system and its purification by chromatographic methods. The recombinant form of trypsin Y was previously expressed in Pichia pastoris making it the first biochemically characterized group III trypsin. It has dual substrate specificity towards trypsin and chymotrypsin substrates and demonstrates an increasing activity at temperatures between 2 and 21 degrees C with a complete inactivation at 30 degrees C. The aim of the study was to facilitate further studies of recombinant trypsin Y by finding an expression system yielding higher amounts of the enzyme than possible in our hands in the P. pastoris system. Also, commercial production of trypsin Y will require an efficient and inexpensive expression system like the His-Patch ThioFusion E. coli expression system described here as the enzyme is produced in very low amounts in the Atlantic cod.  相似文献   

18.
A full-length cDNA clone, pKK-DTD4, complementary to rat liver cytosolic DT-diaphorase [NAD(P)H:quinone oxidoreductase (EC 1.6.99.2)] mRNA was expressed in Escherichia coli. The pKK-DTD4 cDNA was obtained by extending the 5'-end sequence of a rat liver DT-diaphorase cDNA clone, pDTD55, to include an ATG initiation codon and the NH2-terminal codons using polymerase chain reaction (PCR). Restriction sites for EcoRI and HindIII were incorporated at the 5'- and 3'-ends of the cDNA, respectively, by the PCR reaction. The resulting full-length cDNA was inserted into an expression vector, pKK2.7, at the EcoRI and HindIII restriction sites. E. coli strain AB1899 was transformed with the constructed expression plasmid, and DT-diaphorase was expressed under the control of the tac promotor. The expressed DT-diaphorase exhibited high activity of menadione reduction and was inhibited by dicumarol at a concentration of 10(-5)M. After purification by Cibacron Blue affinity chromatography, the expressed enzyme migrated as a single band on 12.5% sodium dodecyl sulfate-polyacrylamide gel with a molecular weight equivalent to that of the purified rat liver cytosolic DT-diaphorase. The purified expressed protein was recognized by polyclonal antibodies against rat liver DT-diaphorase on immunoblot analysis. It utilized either NADPH or NADH as electron donor at equal efficiency and displayed high activities in reduction of menadione, 1,4-benzoquinone, and 2,6-dichlorophenolindophenol which are typical substrates for DT-diaphorase. The expressed DT-diaphorase exhibited a typical flavoprotein spectrum with absorption peaks at 380 and 452 nm. Flavin content determination showed that it contained 2 mol of FAD per mole of the enzyme. Edman protein sequencing of the first 20 amino acid residues at the NH2 terminus of the expressed protein indicated that the expressed DT-diaphorase is not blocked at the NH2 terminus and has an alanine as the first amino acid. The remaining 19 amino acid residues at the NH2 terminus were identical with those of the DT-diaphorase purified from rat liver cytosol.  相似文献   

19.
Expression and purification of a recombinant LL-37 from Escherichia coli   总被引:2,自引:0,他引:2  
Human cathelicidin-derived LL-37 is a 37-residue cationic, amphipathic alpha-helical peptide. It is an active component of mammalian innate immunity. LL-37 has several biological functions including a broad spectrum of antimicrobial activities and LPS-neutralizing activity. In order to determine the high-resolution three-dimensional structure of LL-37 using NMR spectroscopy, it is important to obtain the peptide with isotopic labels such as (15)N, (13)C and/or (2)H. Since it is less expensive to obtain such a peptide biologically, in this study, we report for the first time a method to express in E. coli and purify LL-37 using Glutathione S-transferase (GST) fusion system. LL-37 gene was inserted into vector pGEX-4T3 and expressed as a GST-LL-37 fusion protein in BL21(DE3) strain. The recombinant GST-LL-37 protein was purified with a yield of 8 mg/l by affinity chromatography and analyzed its biochemical and spectroscopic properties. Factor Xa was used to cleave a 4.5-kDa LL-37 from the GST-LL-37 fusion protein and the peptide was purified using a reverse-phase HPLC on a Vydac C(18) column with a final yield of 0.3 mg/l. The protein purified using reverse-phase HPLC was confirmed to be LL-37 by the analyses of Western blot and MALDI-TOF-Mass spectrometry. E. coli cells harboring the expression vector pGEX-4T3-LL-37 were grown in the presence of the (15)N-labeled M9 minimal medium and culture conditions were optimized to obtain uniform (15)N enrichment in the constitutively expressed LL-37 peptide. These results suggest that our production method will be useful in obtaining a large quantity of recombinant LL-37 peptide for NMR studies.  相似文献   

20.
Inositol-lipid-specific phospholipase C-delta 1 (PtdIns-PLC delta 1) was expressed in Escherichia coli as a fusion protein containing a short 22-amino-acid lac-Z-derived amino terminus. Under appropriate conditions, the phospholipase constituted approximately 0.2% of the detergent-soluble protein and could be purified to near homogeneity in a simple three step protocol. The catalytic properties of the purified enzyme closely resemble those of the eukaryote-derived protein. The suitability of bacterial expression for the investigation of PtdIns-PLC delta regulation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号