首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
BACKGROUND: Although the association between insulin resistance and cardiovascular risk is well established, the underlying molecular mechanisms are poorly understood. The antifibrinolytic molecule plasminogen activator inhibitor 1 (PAI-1) is a cardiovascular risk factor that is consistently elevated in insulin-resistant states such as obesity and non-insulin-dependent diabetes mellitus (NIDDM). The strong positive correlation between this elevated PAI-1 and the degree of hyperinsulinemia not only implicates insulin itself in this increase, but also suggests that PAI-1 is regulated by a pathway that does not become insulin resistant. The data in this report supports this hypothesis. MATERIALS AND METHODS: We show that insulin stimulates PAI-1 gene expression in metabolically insulin-resistant ob/ob mice and in insulin-resistant 3T3-L1 adipocytes. Moreover, we provide evidence that glucose transport and PAI-1 gene expression are mediated by different insulin signaling pathways. These observations suggest that the compensatory hyperinsulinemia that is frequently associated with insulin-resistant states, directly contribute to the elevated PAI-1. CONCLUSIONS: These results provide a potential mechanism for the abnormal increases in cardiovascular risk genes in obesity, NIDDM, and polycystic ovary disease.  相似文献   

2.
Apelin, a cytokine mainly secreted by adipocytes, is closely related with insulin resistance. The underlying molecular mechanisms of how apelin affects insulin resistance, however, are poorly understood. This study aimed to investigate the effect of apelin on glucose metabolism and insulin resistance in 3T3-L1 adipocytes. After 10 ng/ml TNF-α treatment for 24 h, insulin-stimulated glucose uptake was reduced by 47% in 3T3-L1 adipocytes. Apelin treatment improved glucose uptake in a time- and dose-dependent manner. Treatment of 1,000 nM apelin for 60 min maximally augmented glucose uptake in insulin-resistant 3T3-L1 adipocytes. Furthermore, apelin pre-incubation also increased adipocytes' insulin-stimulated glucose uptake, and PI3K/Akt pathway were involved in these effects. In addition, immunocytochemistry staining and western blotting analysis indicated that apelin could increase glucose transporter 4 translocation from the cytoplasm to the plasma membrane. Apelin also increased the anti-inflammatory adipokine adiponectin mRNA expression while reducing that of pro-inflammatory adipokine interleukin-6 in insulin-resistant 3T3-L1 adipocytes. These results suggest that apelin stimulates glucose uptake through the PI3K/Akt pathway, promotes GLUT4 translocation from the cytoplasm to the plasma membrane, and modulates inflammatory responses in insulin-resistant 3T3-L1 adipocytes.  相似文献   

3.
4.
5.
We have previously reported that attenuation of hyperinsulinemia by diazoxide (DZ), an inhibitor of glucose-mediated insulin secretion, increased insulin sensitivity and reduced body weight in obese Zucker rats. These findings prompted us to investigate the effects of DZ on key insulin-sensitive enzymes regulating adipose tissue metabolism, fatty acid synthase (FAS), and lipoprotein lipase (LPL), as well as on circulating levels of leptin. We also determined the direct effects of diazoxide on FAS in 3T3-L1 adipocytes. Seven-week-old female obese and lean Zucker rats were treated with DZ (150 mg/kg/d) or vehicle (C, control) for a period of 6 wk. Changes in plasma parameters by DZ include significant decreases in triglycerides, free fatty acids, glucose, and insulin, consistent with our previous reports. DZ obese rats exhibited lower plasma leptin levels (P<0.03) compared to their C animals. DZ significantly reduced adipose tissue FAS activity in both lean (P<0.0001) and obese (P<0.01) animals. LPL mRNA content was also decreased significantly in DZ-treated obese animals (P<0.009) as compared to their respective controls without a significant effect on lean animals. The possibility that DZ exerted a direct effect on adipocytes was further tested in cultured 3T3-L1 adipocytes. Although diazoxide (5 microM) alone did not change FAS activity in cultured 3T3-L1 adipocytes, it significantly attenuated insulin's effect on FAS activity (P<0.001). We demonstrate that DZ regulates key insulin-sensitive enzymes involved in regulation of adipose tissue metabolism. These findings suggest that modification of insulin-sensitive pathways can be therapeutically beneficial in obesity management.  相似文献   

6.
Previously, we found that a loss of plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate (PIP2)-regulated filamentous actin (F-actin) structure contributes to insulin-induced insulin resistance. Interestingly, we also demonstrated that chromium picolinate (CrPic), a dietary supplement thought to improve glycemic status in insulin-resistant individuals, augments insulin-regulated glucose transport in insulin-sensitive 3T3-L1 adipocytes by lowering PM cholesterol. Here, to gain mechanistic understanding of these separate observations, we tested the prediction that CrPic would protect against insulin-induced insulin resistance by improving PM features important in cytoskeletal structure and insulin sensitivity. We found that insulin-induced insulin-resistant adipocytes display elevated PM cholesterol with a reciprocal decrease in PM PIP2. This lipid imbalance and insulin resistance was corrected by the cholesterol-lowering action of CrPic. The PM lipid imbalance did not impair insulin signaling, nor did CrPic amplify insulin signal transduction. In contrast, PM analyses corroborated cholesterol and PIP2 interactions influencing cytoskeletal structure. Because extensive in vitro study documents an essential role for cytoskeletal capacity in insulin-regulated glucose transport, we next evaluated intact skeletal muscle from obese, insulin-resistant Zucker (fa/fa) rats. Because insulin resistance in these animals likely involves multiple mechanisms, findings that cholesterol-lowering restored F-actin cytoskeletal structure and insulin sensitivity to that witnessed in lean control muscle were striking. Also, experiments using methyl-beta-cyclodextrin to shuttle cholesterol into or out of membranes respectively recapitulated the insulin-induced insulin-resistance and protective effects of CrPic on membrane/cytoskeletal interactions and insulin sensitivity. These data predict a PM cholesterol basis for hyperinsulinemia-associated insulin resistance and importantly highlight the reversible nature of this abnormality.  相似文献   

7.
BackgroundThe expressions of genes related to lipid metabolism are decreased in adipocytes with insulin resistance. In this study, we examined the effects of fatty acids on the reduced expressions and histone acetylation of lipid metabolism-related genes in 3T3-L1 adipocytes treated with insulin resistance induced by tumor necrosis factor (TNF)-α.MethodsShort-, medium-, and long-chain fatty acid were co-administered with TNF-α in 3T3-L1 adipocytes. Then, mRNA expressions and histone acetylation of genes involved in lipid metabolism were determined using mRNA microarrays, qRT-PCR, and chromatin immunoprecipitation assays.ResultsWe found in microarray and subsequent qRT-PCR analyses that the expression levels of several lipid metabolism-related genes, including Gpd1, Cidec, and Cyp4b1, were reduced by TNF-α treatment and restored by co-treatment with a short-chain fatty acid (C4: butyric acid) and medium-chain fatty acids (C8: caprylic acid and C10: capric acid). The pathway analysis of the microarray showed that capric acid enhanced mRNA levels of genes in the PPAR signaling pathway and adipogenesis genes in the TNF-α-treated adipocytes. Histone acetylation around Cidec and Gpd1 genes were also reduced by TNF-α treatment and recovered by co-administration with short- and medium-chain fatty acids.General significanceMedium- and short-chain fatty acids induce the expressions of Cidec and Gpd1, which are lipid metabolism-related genes in insulin-resistant adipocytes, by promoting histone acetylation around these genes.  相似文献   

8.
9.
目的 研究灵芝多糖对3T3-L1胰岛素抵抗细胞模型PI-3K p85和GLUT4蛋白表达的影响,探讨灵芝多糖改善胰岛素抵抗的分子机制.方法 3T3-L1前脂肪细胞经1-甲基-3-异丁基-黄嘌呤、地塞米松、胰岛素诱导分化成3T3-L1脂肪细胞,以葡萄糖氧化酶法测定培养液中残余的葡萄糖含量.比较二甲双胍组,检测培养液中葡萄糖含量及PI-3K p85和GLUT4蛋白表达变化.结果 地塞米松联合胰岛素诱导3T3-L1脂肪细胞产生胰岛素抵抗,细胞对葡萄糖的摄取量减少.灵芝多糖可改善3T3-L1脂肪细胞胰岛素抵抗.胰岛素抵抗细胞的PI-3K p85和GLUT4蛋白表达明显减少;应用灵芝多糖后,相关蛋白表达增加.结论 灵芝多糖通过提高PI-3K p85和GLUT4蛋白的表达,参与胰岛素抵抗状态下3T3-L1细胞的葡萄糖代谢.  相似文献   

10.
11.
Insulin receptor substrate (IRS)-1 is a key protein in insulin signaling. Several studies have shown that the expression of IRS-1 can be modulated by protein degradation via the proteasome and the degradation of IRS-1 can be related to insulin-resistant states. The degradation of IRS-1 has been shown to be induced by SOCS-1 and SOCS-3 via the ubiquitin pathway. The goal of our study was to determine if the induction of SOCS-3 correlated with increased IRS-1 degradation in cultured 3T3-L1 adipocytes. Interestingly, our studies have shown that there is little correlation between the induction in SOCS-3 expression and the degradation of IRS-1 in mature 3T3-L1 adipocytes. Our results clearly demonstrate that treatment with leukemia inhibitory factor (LIF) or cardiotrophin (CT)-1 strongly induces the expression of SOCS-3 in mature 3T3-L1 adipocytes, but does not affect the degradation of IRS-1. On the contrary, tumor necrosis factor (TNF) alpha and insulin, which very weakly induce SOCS-3 expression, have profound effects on IRS-1 degradation. In summary, our results indicate that the expression of SOCS-3 does not correlate with the degradation of IRS-1 proteins in fat cells.  相似文献   

12.
Identification of enhanced serine kinase activity in insulin resistance   总被引:14,自引:0,他引:14  
Insulin receptor substrate (IRS) proteins play a crucial role as signaling molecules in insulin action. Serine phosphorylation of IRS proteins has been hypothesized as a cause of attenuating insulin signaling. The current study investigated serine kinase activity toward IRS-1 in several models of insulin resistance. An in vitro kinase assay was developed that used partially purified cell lysates as a kinase and glutathione S-transferase fusion proteins that contained various of IRS-1 fragments as substrates. Elevated serine kinase activity was detected in Chinese hamster ovary/insulin receptor (IR)/IRS-1 cells and 3T3-L1 adipocytes chronically treated with insulin, and in liver and muscle of obese JCR:LA-cp rats. It phosphorylated the 526-859 amino acid region of IRS-1, whereas phosphorylation of the 2-516 and 900-1235 amino acid regions was not altered. Phosphopeptide mapping of the 526-859 region of IRS-1 showed three major phosphopeptides (P1, P2, and P3) with different patterns of phosphorylation depending on the source of serine kinase activity. P1 and P2 were strongly phosphorylated when the kinase activity was prepared from insulin-resistant Chinese hamster ovary/IR/IRS-1 cells, weakly phosphorylated by the kinase activity from insulin-resistant 3T3-L1 adipocytes, and barely phosphorylated when the extract was derived from insulin-resistant liver. In contrast, P3 was phosphorylated by the serine kinase activity prepared from all insulin-resistant cells and tissues of animals. P1 and P2 phosphorylation can be explained by mitogen-activated protein kinase activity based on the phosphopeptide map generated by recombinant ERK2. In contrast, mitogen-activated protein kinase failed to phosphorylate the P3 peptide, suggesting that another serine kinase regulates this modification of IRS-1 in insulin-resistant state.  相似文献   

13.
In response to insulin, glucose transporter GLUT4 translocates from intracellular compartments towards the plasma membrane where it enhances cellular glucose uptake. Here, we show that sera from various species contain a factor that dose-dependently induces GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes, human adipocytes, myoblasts and myotubes. Notably, the effect of this factor on GLUT4 is fully maintained in insulin-resistant cells. Our studies demonstrate that the serum-induced increase in cell surface GLUT4 levels is not due to inhibition of its internalization and is not mediated by insulin, PDGF, IGF-1, or HGF. Similarly to insulin, serum also augments cell surface levels of GLUT1 and TfR. Remarkably, the acute effect of serum on GLUT4 is largely additive to that of insulin, while it also sensitizes the cells to insulin. In accordance with these findings, serum does not appear to activate the same repertoire of downstream signaling molecules that are implicated in insulin-induced GLUT4 translocation. We conclude that in addition to insulin, at least one other biological proteinaceous factor exists that contributes to GLUT4 regulation and still functions in insulin resistance. The challenge now is to identify this factor.  相似文献   

14.
Insulin resistance can occur in response to many different external insults, including chronic exposure to insulin itself as well as other agonists such as dexamethasone. It is generally thought that such defects arise due to a defect(s) at an early stage in the insulin signaling cascade. One model suggests that this involves activation of the mammalian target of rapamycin/S6 kinase pathway, which inactivates insulin receptor substrate via Ser/Thr phosphorylation. However, we have recently shown that insulin receptor substrate is not a major node for insulin resistance defects. To explore the mechanism of insulin resistance, we have developed a novel system to activate Akt independently of its upstream effectors as well as other insulin-responsive pathways such as mitogen-activated protein kinase. 3T3-L1 adipocytes were rendered insulin-resistant either with chronic insulin or dexamethasone treatment, but conditional activation of Akt2 stimulated hemagglutinin-tagged glucose transporter 4 translocation to the same extent in these insulin-resistant and control cells. However, addition of insulin to cells in which Akt was conditionally activated resulted in a reversion to the insulin-resistant state, indicating a feedforward inhibitory mechanism activated by insulin itself. This effect was overcome with wortmannin, implicating a role for phosphatidylinositol 3-kinase in this inhibitory process. We conclude that in chronic insulin- and dexamethasone-treated cells, acute activation with insulin itself is required to activate a feedforward inhibitory pathway likely emanating from phosphatidylinositol 3-kinase that converges on a target downstream of Akt to cause insulin resistance.  相似文献   

15.
Insulin activates glucose transport by promoting translocation of the insulin-sensitive fat/muscle-specific glucose transporter GLUT4 from an intracellular storage compartment to the cell surface. Here we report that an optimal insulin effect on glucose uptake in 3T3-L1 adipocytes is dependent upon expression of both PIKfyve, the sole enzyme for PtdIns 3,5-P(2) biosynthesis, and the PIKfyve activator, ArPIKfyve. Small-interfering RNAs that selectively ablated PIKfyve or ArPIKfyve in this cell type depleted the PtdIns 3,5-P(2) pool and reduced insulin-activated glucose uptake to a comparable degree. Combined loss of PIKfyve and ArPIKfyve caused further PtdIns 3,5-P(2) ablation that correlated with greater attenuation in insulin responsiveness. Loss of PIKfyve-ArPIKfyve reduced insulin-stimulated Akt phosphorylation and the cell surface accumulation of GLUT4 or IRAP, but not GLUT1-containing vesicles without affecting overall expression of these proteins. ArPIKfyve and PIKfyve were found to physically associate in 3T3-L1 adipocytes and this was insulin independent. In vitro labeling of membranes isolated from basal or insulin-stimulated 3T3-L1 adipocytes documented substantial insulin-dependent increases of PtdIns 3,5-P(2) production on intracellular membranes. Together, the data demonstrate for the first time a physical association between functionally related PIKfyve and ArPIKfyve in 3T3-L1 adipocytes and indicate that the novel ArPIKfyve-PIKfyve-PtdIns 3,5-P(2) pathway is physiologically linked to insulin-activated GLUT4 translocation and glucose transport.  相似文献   

16.
Phosphoinositide 3-kinase (PI3K) signaling promotes the translocation of the glucose transporter, GLUT4, to the plasma membrane in insulin-sensitive tissues to facilitate glucose uptake. In adipocytes, insulin-stimulated reorganization of the actin cytoskeleton has been proposed to play a role in promoting GLUT4 translocation and glucose uptake, in a PI3K-dependent manner. However, the PI3K effectors that promote GLUT4 translocation via regulation of the actin cytoskeleton in adipocytes remain to be fully elucidated. Here we demonstrate that the PI3K-dependent Rac exchange factor, P-Rex1, enhances membrane ruffling in 3T3-L1 adipocytes and promotes GLUT4 trafficking to the plasma membrane at submaximal insulin concentrations. P-Rex1-facilitated GLUT4 trafficking requires a functional actin network and membrane ruffle formation and occurs in a PI3K- and Rac1-dependent manner. In contrast, expression of other Rho GTPases, such as Cdc42 or Rho, did not affect insulin-stimulated P-Rex1-mediated GLUT4 trafficking. P-Rex1 siRNA knockdown or expression of a P-Rex1 dominant negative mutant reduced but did not completely inhibit glucose uptake in response to insulin. Collectively, these studies identify a novel RacGEF in adipocytes as P-Rex1 that, at physiological insulin concentrations, functions as an insulin-dependent regulator of the actin cytoskeleton that contributes to GLUT4 trafficking to the plasma membrane.  相似文献   

17.
Adipocytes are insulin-sensitive cells that play a major role in energy homeostasis. Obesity is the primary disease of fat cells and a major risk factor for the development of Type 2 diabetes, cardiovascular disease, and metabolic syndrome. The use of botanicals in the treatment of metabolic diseases is an emerging area of research. In previous studies, we screened over 425 botanical extracts for their ability to modulate adipogenesis and insulin sensitivity. We identified St. John's Wort (SJW) extracts as inhibitors of adipogenesis of 3T3-L1 cells and demonstrated that these extracts also inhibited insulin-sensitive glucose uptake in mature fat cells. In these follow-up studies we have further characterized the effects of SJW on insulin action in both murine and human fat cells. We have shown that SJW also attenuates insulin-sensitive glucose uptake in human adipocytes. Moreover, SJW inhibits IRS-1 tyrosine phosphorylation in both murine and human fat cells. Botanical extracts are complex mixtures. Many bioactive compounds have been identified in SJW, including hypericin (HI) and hyperforin (HF). We have examined the ability of HI and HF, purified from SJW, to modulate adipocyte development and insulin action in mature adipocytes. Our novel studies indicate that the profound effects of SJW on adipogenesis, IRS-1 activation, and insulin-stimulated glucose uptake are not mediated by HI and/or HF. Nonetheless, we propose that extracts of SJW may contribute to adipocyte related diseases by limiting differentiation of preadipocytes and significantly inducing insulin resistance in mature fat cells.  相似文献   

18.
Adipocytes are insulin-sensitive cells that play a major role in energy homeostasis. Obesity is the primary disease of fat cells and a major risk factor for the development of Type 2 diabetes, cardiovascular disease, and metabolic syndrome. The use of botanicals in the treatment of metabolic diseases is an emerging area of research. In previous studies, we screened over 425 botanical extracts for their ability to modulate adipogenesis and insulin sensitivity. We identified St. John's Wort (SJW) extracts as inhibitors of adipogenesis of 3T3-L1 cells and demonstrated that these extracts also inhibited insulin-sensitive glucose uptake in mature fat cells. In these follow-up studies we have further characterized the effects of SJW on insulin action in both murine and human fat cells. We have shown that SJW also attenuates insulin-sensitive glucose uptake in human adipocytes. Moreover, SJW inhibits IRS-1 tyrosine phosphorylation in both murine and human fat cells. Botanical extracts are complex mixtures. Many bioactive compounds have been identified in SJW, including hypericin (HI) and hyperforin (HF). We have examined the ability of HI and HF, purified from SJW, to modulate adipocyte development and insulin action in mature adipocytes. Our novel studies indicate that the profound effects of SJW on adipogenesis, IRS-1 activation, and insulin-stimulated glucose uptake are not mediated by HI and/or HF. Nonetheless, we propose that extracts of SJW may contribute to adipocyte related diseases by limiting differentiation of preadipocytes and significantly inducing insulin resistance in mature fat cells.  相似文献   

19.
Flavonoids are beneficial compounds against risk factors for metabolic syndrome, but their effects and the mechanisms on glucose homeostasis modulation are not well defined. In the present study, we first checked the efficacy of grapeseed procyanidin extract (GSPE) for stimulating glucose uptake in insulin-resistant 3T3-L1 adipocytes. Results show that when resistance is induced with chronic insulin treatment, GSPE maintain a higher stimulating capacity than insulin. In contrast, when dexamethasone is used as the resistance-inducing agent, GSPE is less effective. Next we evaluated how effective different GSPE treatments are at improving glucose metabolism in hyperinsulinemic animals (fed a cafeteria diet). GSPE reduced plasma insulin levels. The lower dose (25 mg GSPE/kg body weight per day) administered for 30 days improved the HOmeostasis Model Assessment-insulin resistance index. This was accompanied by down-regulation of Pparg2, Glut4 and Irs1 in mesenteric white adipose tissue. Similarly, a chronic GSPE treatment of insulin-resistant 3T3-L1 adipocytes down-regulated the mRNA levels of those adipocyte markers, although cells were still able to respond to the acute stimulation of glucose uptake.In summary, 25 mg/kg body weight per day of GSPE has a positive long-term effect on glucose homeostasis, and GSPE could be targeted at adipose tissue, where it might directly stimulate glucose uptake. This work also highlights the need to carefully consider the bioactive dose, since a higher dose does not necessarily correlate to a greater positive effect.  相似文献   

20.
Aside from glucose metabolism, insulin regulates a variety of pathways in peripheral tissues. Under insulin-resistant conditions, it is well known that insulin-stimulated glucose uptake is impaired, and many studies attribute this to a defect in Akt signaling. Here we make use of several insulin resistance models, including insulin-resistant 3T3-L1 adipocytes and fat explants prepared from high fat-fed C57BL/6J and ob/ob mice, to comprehensively distinguish defective from unaffected aspects of insulin signaling and its downstream consequences in adipocytes. Defective regulation of glucose uptake was observed in all models of insulin resistance, whereas other major actions of insulin such as protein synthesis and anti-lipolysis were normal. This defect corresponded to a reduction in the maximum response to insulin. The pattern of change observed for phosphorylation in the Akt pathway was inconsistent with a simple defect at the level of Akt. The only Akt substrate that showed consistently reduced phosphorylation was the RabGAP AS160 that regulates GLUT4 translocation. We conclude that insulin resistance in adipose tissue is highly selective for glucose metabolism and likely involves a defect in one of the components regulating GLUT4 translocation to the cell surface in response to insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号