首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
d-Lactate was identified as one of the few available organic acids that supported the growth of Gluconobacter oxydans 621H in this study. Interestingly, the strain used d-lactate as an energy source but not as a carbon source, unlike other lactate-utilizing bacteria. The enzymatic basis for the growth of G. oxydans 621H on d-lactate was therefore investigated. Although two putative NAD-independent d-lactate dehydrogenases, GOX1253 and GOX2071, were capable of oxidizing d-lactate, GOX1253 was the only enzyme able to support the d-lactate-driven growth of the strain. GOX1253 was characterized as a membrane-bound dehydrogenase with high activity toward d-lactate, while GOX2071 was characterized as a soluble oxidase with broad substrate specificity toward d-2-hydroxy acids. The latter used molecular oxygen as a direct electron acceptor, a feature that has not been reported previously in d-lactate-oxidizing enzymes. This study not only clarifies the mechanism for the growth of G. oxydans on d-lactate, but also provides new insights for applications of the important industrial microbe and the novel d-lactate oxidase.  相似文献   

2.
Homogenates of various lower land plants, aquatic angiosperms, and green algae were assayed for glycolate oxidase, a peroxisomal enzyme present in green leaves of higher plants, and for glycolate dehydrogenase, a functionally analogous enzyme characteristic of certain green algae. Green tissues of all lower land plants examined (including mosses, liverworts, ferns, and fern allies), as well as three freshwater aquatic angiosperms, contained an enzyme resembling glycolate oxidase, in that it oxidized l- but not d-lactate in addition to glycolate, and was insensitive to 2 mm cyanide. Many of the green algae (including Chlorella vulgaris, previously claimed to have glycolate oxidase) contained an enzyme resembling glycolate dehydrogenase, in that it oxidized d- but not l-lactate, and was inhibited by 2 mm cyanide. Other green algae had activity characteristic of glycolate oxidase and, accordingly, showed a substantial glycolate-dependent O2 uptake. It is pointed out that this distribution pattern of glycolate oxidase and glycolate dehydrogenase among the green plants may have phylogenetic significance.  相似文献   

3.
4.
The oxidation of d- and l-glycerate by rat liver   总被引:1,自引:1,他引:0  
1. The interconversion of hydroxypyruvate and l-glycerate in the presence of NAD and rat-liver l-lactate dehydrogenase has been demonstrated. Michaelis constants for these substrates together with an equilibrium constant have been determined and compared with those for pyruvate and l-lactate. 2. The presence of d-glycerate dehydrogenase in rat liver has been confirmed and the enzyme has been purified 16–20-fold from the supernatant fraction of a homogenate, when it is free of l-lactate dehydrogenase, with a 23–29% recovery. The enzyme catalyses the interconversion of hydroxypyruvate and d-glycerate in the presence of either NAD or NADP with almost equal efficiency. d-Glycerate dehydrogenase also catalyses the reduction of glyoxylate, but is distinct from l-lactate dehydrogenase in that it fails to act on pyruvate, d-lactate or l-lactate. The enzyme is strongly dependent on free thiol groups, as shown by inhibition with p-chloromercuribenzoate, and in the presence of sodium chloride the reduction of hydroxypyruvate is activated. Michaelis constants for these substrates of d-glycerate dehydrogenase and an equilibrium constant for the NAD-catalysed reaction have been calculated. 3. An explanation for the lowered Vmax. with d-glycerate as compared with dl-glycerate for the rabbit-kidney d-α-hydroxy acid dehydrogenase has been proposed.  相似文献   

5.
Shewanella oneidensis couples oxidation of lactate to respiration of many substrates. Here we report that llpR (l-lactate-positive regulator, SO_3460) encodes a positive regulator of l-lactate utilization distinct from previously studied regulators. We also demonstrate d-lactate inhibition of l-lactate utilization in S. oneidensis, resulting in preferential utilization of the d isomer.  相似文献   

6.
The Arabidopsis thaliana locus At5g06580 encodes an ortholog to Saccharomyces cerevisiae d-lactate dehydrogenase (AtD-LDH). The recombinant protein is a homodimer of 59-kDa subunits with one FAD per monomer. A substrate screen indicated that AtD-LDH catalyzes the oxidation of d- and l-lactate, d-2-hydroxybutyrate, glycerate, and glycolate using cytochrome c as an electron acceptor. AtD-LDH shows a clear preference for d-lactate, with a catalytic efficiency 200- and 2000-fold higher than that for l-lactate and glycolate, respectively, and a Km value for d-lactate of ∼160 μm. Knock-out mutants showed impaired growth in the presence of d-lactate or methylglyoxal. Collectively, the data indicated that the protein is a d-LDH that participates in planta in the methylglyoxal pathway. Web-based bioinformatic tools revealed the existence of a paralogous protein encoded by locus At4g36400. The recombinant protein is a homodimer of 61-kDa subunits with one FAD per monomer. A substrate screening revealed highly specific d-2-hydroxyglutarate (d-2HG) conversion in the presence of an organic cofactor with a Km value of ∼580 μm. Thus, the enzyme was characterized as a d-2HG dehydrogenase (AtD-2HGDH). Analysis of knock-out mutants demonstrated that AtD-2HGDH is responsible for the total d-2HGDH activity present in A. thaliana. Gene coexpression analysis indicated that AtD-2HGDH is in the same network as several genes involved in β-oxidation and degradation of branched-chain amino acids and chlorophyll. It is proposed that AtD-2HGDH participates in the catabolism of d-2HG most probably during the mobilization of alternative substrates from proteolysis and/or lipid degradation.l- and d-lactate dehydrogenases belong to evolutionarily unrelated enzyme families (1). l-Lactate is oxidized by l-lactate:NAD oxidoreductase (EC 1.1.1.27), which catalyzes the reaction l-lactate + NAD → pyruvate + NADH, and by l-lactate cytochrome c oxidoreductase (l-lactate cytochrome c oxidoreductase, EC 1.1.2.3), which catalyzes the reaction l-lactate + 2 cytochrome c (oxidized) → pyruvate + 2 cytochrome c (reduced). Both groups are found in eubacteria, archebacteria, and eukaryotes. All known plant sequences belong to the EC 1.1.1.27 group (1). On the other hand, d-lactate is oxidized by d-lactate:NAD oxidoreductase (d-lactate:NAD oxidoreductase, EC 1.1.1.28), which catalyzes the reaction d-lactate + NAD → pyruvate + NADH, and by d-lactate cytochrome c oxidoreductase (d-lactate cytochrome c oxidoreductase, EC 1.1.2.4), which catalyzes the reaction d-lactate + 2 cytochrome c (oxidized) → pyruvate + 2 cytochrome c (reduced).Although l-lactate dehydrogenase belongs to the most intensely studied enzyme families (2, 3), our knowledge about the structure, kinetics, and biological function of d-LDH3 is limited. d-LDHs have mainly been identified in prokaryotes and fungi where they play an important role in anaerobic energy metabolism (410). In Saccharomyces cerevisiae and Kluyveromyces lactis, a mitochondrial flavoprotein d-lactate ferricytochrome c oxidoreductase (d-lactate cytochrome c oxidoreductase), catalyzing the oxidation of d-lactate to pyruvate, is required for the utilization of d-lactate (8, 11). In S. cerevisiae it was suggested that d-LDH is involved in the metabolism of methylglyoxal (MG) (12).In eukaryotic cells, d-lactate results from the glyoxalase system (13, 14). This system is the main MG catabolic pathway, comprising the enzymes glyoxalase I (lactoylglutathione lyase, EC 4.4.1.5) and glyoxalase II (hydroxyacylglutathione hydrolase, EC 3.1.2.6). MG (CH3-CO-CHO; see structure in Fig. 4) is a cytotoxic compound formed primarily as a by-product of glycolysis through nonenzymatic phosphate elimination from dihydroxyacetone phosphate and glyceraldehyde 3-phosphate (15), and its production in various plants is enhanced under stress conditions such as salt, drought, cold, and heavy metal stress (16, 17). Moreover, the overexpression of glyoxalase I or II was shown to confer resistance to salt stress in tobacco and rice (17, 18). It is assumed that the role of the MG pathway, from MG synthase to d-lactate cytochrome c oxidoreductase in the extant metabolism, is to detoxify MG, whereas in the early state of metabolic development it might function as an anaplerotic route for the tricarboxylic acid cycle (15).Open in a separate windowFIGURE 4.Scheme showing the involvement of AtD-LDH in the methylglyoxal pathway and of AtD-2HGDH in the respiration of substrates from proteolysis and/or lipid degradation. d-Lactate resulting from the glyoxalase system is converted to pyruvate by AtD-LDH. The electrons originated may be transferred to the respiratory chain through cytochrome c in the intermembrane space. d-2-HG produced in the peroxisomes (as shown in supplemental Fig. S3) is transported to the mitochondria and converted to 2-ketoglutarate by AtD-2HGDH. Electrons are donated to the electron transport chain through the ETF/ETFQO system. Dotted files represent possible transport processes. 2-KG, 2-ketoglutarate. CIII, complex III. CIV, complex IV. e, electron. ETF, electron transfer protein. ETFQO, ETF-ubiquinone oxidoreductase. GSH, glutathione. Pyr, pyruvate. TCA cycle, tricarboxylic acid cycle; UQ, ubiquinone.Glyoxalase I catalyzes the formation of S-d-lactoylglutathione from the hemithioacetal formed nonenzymatically from MG and glutathione, although glyoxalase II catalyzes the hydrolysis of S-d-lactoylglutathione to regenerate glutathione and liberate d-lactate. Glyoxalase I and II activities are present in all tissues of eukaryotic organisms. Glyoxalase I is found in the cytosol, whereas glyoxalase II localizes to the cytosol and mitochondria (13, 19, 20). Although glyoxalase I and II were extensively characterized, there are only few reports on the characterization of d-LDH. Recently, Atlante et al. (13) showed that externally added d-lactate caused oxygen consumption by mitochondria and that this metabolite was oxidized by a mitochondrial flavoprotein in Helianthus tuberosus.The complete sequence of Arabidopsis thaliana opened the way to search for genes encoding d-LDHs. Based on similarity with the d-LDH from S. cerevisiae (DLD1), an A. thaliana ortholog was identified. In this study, the isolation and structural and biochemical characterization of the recombinant mature d-LDH from A. thaliana (AtD-LDH) and its paralog, which was found to be a d-2-hydroxyglutarate dehydrogenase (AtD-2HGDH), is described. Whereas AtD-LDH has a narrow substrate specificity and the preferred substrates are d-lactate and d-2-hydroxybutyrate, AtD-2HGDH showed activity exclusively with d-2-hydroxyglutarate. Based on gene coexpression analysis and analysis of corresponding knock-out mutants, the participation of these previously unrecognized mitochondrial activities in plant metabolism is discussed.  相似文献   

7.
In this study, we screened and isolated D-lactic acid-producing bacteria from soil and tree barks collected in Thailand. Among the isolates obtained, Terrilactibacillus laevilacticus SK5-6 exhibited good D-lactate production in the primary screening fermentation (99.27 g/L final lactate titer with 0.90 g/g yield, 1.38 g/L?h, and 99.00% D-enantiomer equivalent). Terrilactibacillus laevilacticus SK5-6 is a Gram-positive, endospore-forming, homofermentative D-lactate producer that can ferment a wide range of sugars to produce D-lactate. Unlike the typical D-lactate producers, such as catalase-negative Sporolactobacillus sp., T. laevilacticus SK5-6 possesses catalase activity; therefore, a two-phase fermentation was employed for D-lactate production. During an aerobic preculture stage, a high-density cell mass was rapidly obtained due to aerobic respiration. When transferred to the fermentation stage at the correct physiological stage (inoculum age) and proper concentration of cell mass (inoculum size), T. laevilacticus rapidly converted glucose into D-lactate under anaerobic conditions, resulting in a high final lactate titer (102.22 g/L), high yield (0.84 g/g), and high productivity (2.13 g/L?h). When the process conditions were shifted from an aerobic to an anaerobic environment, unlike other lactate-producing bacteria, the mixed acid fermentation route was not activated in the culture of T. laevilacticus SK5-6 during the fermentation stage when some trace oxygen still remained. Our study demonstrates the excellent characteristics of this isolate for D-lactate production; in particular, a high product yield was obtained without byproduct formation. Based on these key characteristics of T. laevilacticus SK5-6, we suggest that this isolate is a novel D-lactate producer for use in industrial fermentation.  相似文献   

8.
9.
Both enantiomers of lactic acid, l-lactic acid and d-lactic acid, can be produced in a sustainable way by a photosynthetic microbial cell factory and thus from CO2, sunlight, and water. Several properties of polylactic acid (a polyester of polymerized lactic acid) depend on the controlled blend of these two enantiomers. Recently, cyanobacterium Synechocystis sp. strain PCC6803 was genetically modified to allow formation of either of these two enantiomers. This report elaborates on the d-lactic acid production achieved by the introduction of a d-specific lactate dehydrogenase from the lactic acid bacterium Leuconostoc mesenteroides into Synechocystis. A typical batch culture of this recombinant strain initially shows lactic acid production, followed by a phase of lactic acid consumption, until production “outcompetes” consumption at later growth stages. We show that Synechocystis is able to use d-lactic acid, but not l-lactic acid, as a carbon source for growth. Deletion of the organism''s putative d-lactate dehydrogenase (encoded by slr1556), however, does not eliminate this ability with respect to d-lactic acid consumption. In contrast, d-lactic acid consumption does depend on the presence of glycolate dehydrogenase GlcD1 (encoded by sll0404). Accordingly, this report highlights the need to match a product of interest of a cyanobacterial cell factory with the metabolic network present in the host used for its synthesis and emphasizes the need to understand the physiology of the production host in detail.  相似文献   

10.
The transport of some sugars at the antiluminal face of renal cells was studied using teased tubules of flounder (Pseudopleuronectes americanus). The analytical procedure allowed the determination of both free and total (free plus phosphorylated) tissue sugars. The inulin space of the preparation was 0.333 ± 0.017 kg/kg wet wt (7 animals, 33 analyses). The nonmetabolizable α-methyl-D-glucoside entered the cells by a carrier-mediated (phloridzin-sensitive), ouabain-insensitive process. The steady-state tissue/medium ratio was systematically below that for diffusion equilibrium. D-Glucose was a poor inhibitor of α-methyl-glucoside transport, D-galactose was ineffective. The phloridzin-sensitive transport processes of 2-deoxy-D-glucose,D-galactose,and 2-deoxy-D-galactose were associated with considerable phosphorylation. Kinetic evidence suggested that these sugars were transported in free form and subsequently were phosphorylated. 2-Deoxy-D-glucose accumulated in the cells against a slight concentration gradient. This transport was greatly inhibited by D-glucose, whereas α-methyl-glucoside and also D-galactose and its 2-deoxy-derivative were ineffective. D-Galactose and 2-deoxy-D-galactose mutually competed for transport; D-glucose, 2-deoxy-D-glucose, and α-methyl-D-glucoside were ineffective. Studies using various sugars as inhibitors suggest the presence of three carrier-mediated pathways of sugar transport at the antiluminal cell face of the flounder renal tubule: the pathway of α-methyl-D-glucoside (not shared by D-glucose); the pathway commonly shared by 2-deoxy-D-glucose and D-glucose; the pathway shared by D-galactose and 2-deoxy-D-galactose.  相似文献   

11.
Ting IP 《Plant physiology》1968,43(12):1919-1924
Phosphoenolpyruvate carboxylase was purified from corn root tips about 80-fold by centrifugation, ammonium sulfate fractionation, and anion exchange and gel filtration chromatography. The resulting preparation was essentially free from malate dehydrogenase, isocitrate dehydrogenase, malate enzyme, NADH oxidase, and pyruvate kinase activity. Kinetic analysis indicated that l-malate was a noncompetitive inhibitor of P-enolpyruvate carboxylase with respect to P-enolpyruvate (KI = 0.8 mm). d-Malate, aspartate, and glutamate inhibited to a lesser extent; succinate, fumarate, and pyruvate did not inhibit. Oxaloacetate was also a noncompetitive inhibitor of P-enolpyruvate carboxylase with an apparent KI of 0.4 mm. A comparison of oxaloacetate and l-malate inhibition suggested that the mechanisms of inhibition were different. These data indicated that l-malate may regulate CO2 fixation in corn root tips by a feedback or end product type of inhibition.  相似文献   

12.
d-Alanyl:d-lactate (d-Ala:d-Lac) and d-alanyl:d-serine ligases are key enzymes in vancomycin resistance of Gram-positive cocci. They catalyze a critical step in the synthesis of modified peptidoglycan precursors that are low binding affinity targets for vancomycin. The structure of the d-Ala:d-Lac ligase VanA led to the understanding of the molecular basis for its specificity, but that of d-Ala:d-Ser ligases had not been determined. We have investigated the enzymatic kinetics of the d-Ala:d-Ser ligase VanG from Enterococcus faecalis and solved its crystal structure in complex with ADP. The overall structure of VanG is similar to that of VanA but has significant differences mainly in the N-terminal and central domains. Based on reported mutagenesis data and comparison of the VanG and VanA structures, we show that residues Asp-243, Phe-252, and Arg-324 are molecular determinants for d-Ser selectivity. These residues are conserved in both enzymes and explain why VanA also displays d-Ala:d-Ser ligase activity, albeit with low catalytic efficiency in comparison with VanG. These observations suggest that d-Ala:d-Lac and d-Ala:d-Ser enzymes have evolved from a common ancestral d-Ala:d-X ligase. The crystal structure of VanG showed an unusual interaction between two dimers involving residues of the omega loop that are deeply anchored in the active site. We constructed an octapeptide mimicking the omega loop and found that it selectively inhibits VanG and VanA but not Staphylococcus aureus d-Ala:d-Ala ligase. This study provides additional insight into the molecular evolution of d-Ala:d-X ligases and could contribute to the development of new structure-based inhibitors of vancomycin resistance enzymes.  相似文献   

13.
Rat liver peroxisomes isolated by density gradient centrifugation were disrupted at pH 9, and subdivided into a soluble fraction containing 90% of their total proteins and virtually all of their catalase, D-amino acid oxidase, L-α-hydroxy acid oxidase and isocitrate dehydrogenase activities, and a core fraction containing urate oxidase and 10% of the total proteins. The soluble proteins were chromatographed on Sephadex G-200, diethylaminoethyl (DEAE)-cellulose, hydroxylapatite, and sulfoethyl (SE)-Sephadex. None of these methods provided complete separation of the protein components, but these could be distributed into peaks in which the specific activities of different enzymes were substantially increased. Catalase, D-amino acid oxidase, and L-α-hydroxy acid oxidase contribute a maximum of 16, 2, and 4%, respectively, of the protein of the peroxisome. The contribution of isocitrate dehydrogenase could be as much as 25%, but is probably much less. After dissolution of the cores at pH 11 , no separation between their urate oxidase activity and their protein was achieved by Sephadex G-200 chromatography.  相似文献   

14.
As a crucial metabolic intermediate, l-lactate is involved in redox balance, energy balance, and acid–base balance in organisms. Moderate exercise training transiently elevates plasma l-lactate levels and ameliorates obesity-associated type 2 diabetes. However, whether moderate l-lactate administration improves obesity-associated insulin resistance remains unclear. In this study, we defined 800 mg/kg/day as the dose of moderate l-lactate administration. In mice fed with a high-fat diet (HFD), moderate l-lactate administration for 12 weeks was shown to alleviate weight gain, fat accumulation, and insulin resistance. Along with the phenotype alterations, white adipose tissue thermogenesis was also found to be elevated in HFD-fed mice. Meanwhile, moderate l-lactate administration suppressed the infiltration and proinflammatory M1 polarization of adipose tissue macrophages (ATMs) in HFD-fed mice. Furthermore, l-lactate treatment suppressed the lipopolysaccharide-induced M1 polarization of bone marrow–derived macrophages (BMDMs). l-lactate can bind to the surface receptor GPR132, which typically drives the downstream cAMP–PKA signaling. As a nutrient sensor, AMP-activated protein kinase (AMPK) critically controls macrophage inflammatory signaling and phenotype. Thus, utilizing inhibitors of the kinases PKA and AMPK as well as siRNA against GPR132, we demonstrated that GPR132–PKA–AMPKα1 signaling mediated the suppression caused by l-lactate treatment on BMDM M1 polarization. Finally, l-lactate addition remarkably resisted the impairment of lipopolysaccharide-treated BMDM conditional media on adipocyte insulin sensitivity. In summary, moderate l-lactate administration suppresses ATM proinflammatory M1 polarization through activation of the GPR132–PKA–AMPKα1 signaling pathway to improve insulin resistance in HFD-fed mice, suggesting a new therapeutic and interventional approach to obesity-associated type 2 diabetes.  相似文献   

15.
Reduction of FeIIIEDTA by excised roots of soybean seedlings (Glycine max L.) is stimulated by l-malate in the bathing solution. Reduction occurs much more rapidly with roots of seedlings grown in the absence of iron than with roots of seedlings grown with iron. Cell-wall preparations from these roots catalyze reduction of FeIIIEDTA by NADH. They also contain NAD+-dependent l-malate dehydrogenase. Enzymic activity of the cell-wall preparations is not affected by previous iron nutrition of the plants, but the amount of l-malate in the roots is increased when seedlings have been deprived of iron. We propose that reduction of iron before absorption by soybean roots occurs in the cell-wall space, with l-malate secreted from the roots serving as the source of electrons. Part of the iron reductase activity of the cell walls can be solubilized by extraction with 1 molar NaCl. The enzyme has been partially purified.  相似文献   

16.
Depsipeptides are peptide-like polymers consisting of amino acids and hydroxy acids, and are expected to be new functional materials for drug-delivery systems and polymer science. In our previous study, D-alanyl-D-lactate, a type of depsipeptide, was enzymatically synthesized using D-alanine-D-alanine ligase from Thermotoga maritima ATCC 43589 (TmDdl) by Y207F substitution. Thereafter, in this study, further mutagenesis was introduced, based on structural comparison between TmDdl and a well-characterized D-alanine-D-alanine ligase from Escherichia coli. The S137A/Y207F mutant showed higher D-alanyl-D-lactate and lower D-alanyl-D-alanine synthesizing activity than the Y207F mutant. This suggests that substitution at the S137 residue contributes to product selectivity. Saturated mutagenesis on S137 revealed that the S137G/Y207F mutant showed the highest D-alanyl-D-lactate synthesizing activity. Moreover, the mutant showed broad substrate specificity toward D-amino acid and recognized D-lactate and D,L-isoserine as substrates. On the basis of these characteristics, various depsipeptides can be produced using S137G/Y207F-replaced TmDdl.  相似文献   

17.
L-Alanine and 3-O-methyl-D-glucose accumulation by mucosal strips from rabbit ileum has been investigated with particular emphasis on the interaction between Na and these transport processes. L-Alanine is rapidly accumulated by mucosal tissue and intracellular concentrations of approximately 50 mM are reached within 30 min when extracellular L-alanine concentration is 5 mM. Evidence is presented that intracellular alanine exists in an unbound, osmotically active form and that accumulation is an active transport process. In the absence of extracellular Na, the final ratio of intracellular to extracellular L-alanine does not differ significantly from unity and the rate of net uptake is markedly inhibited. Amino acid accumulation is also inhibited by 5 x 10-5 M ouabain. 3-O-methyl-D-glucose accumulation by this preparation is similarly affected by ouabain and by incubation in a Na-free medium. The effects of amino acid accumulation, of ouabain, and of incubation in a Na-free medium on cell water content and intracellular Na and K concentrations have also been investigated. These results are discussed with reference to the two hypotheses which have been suggested to explain the interaction between Na and intestinal nonelectrolyte transport.  相似文献   

18.
We previously reported on the impacts of the overexpression of individual genes of the glycolytic pathway encoding glucokinase (GLK), glyceraldehyde phosphate dehydrogenase (GAPDH), phosphofructokinase (PFK), triosephosphate isomerase (TPI), and bisphosphate aldolase (FBA) on D-lactate productivity in Corynebacterium glutamicum under oxygen-deprived conditions. Searching for synergies, in the current study, we simultaneously overexpressed the five glycolytic genes in a stepwise fashion to evaluate the effect of the cumulative overexpression of glycolytic genes on D-lactate production. Interestingly, the final D-lactate concentration markedly differed depending on whether or not the PFK encoding gene was overexpressed when combined with overexpressing other glycolytic genes. The simultaneous overexpression of the GLK, GAPDH, TPI, and FBA encoding genes led to the highest initial D-lactate concentration at 10 h. However, this particular recombinant strain dramatically slowed producing D-lactate when a concentration of 1300 mM was reached, typically after 32 h. In contrast, the strain overexpressing the PFK encoding gene together with the GLK, GAPDH, TPI, and FBA encoding genes showed 12.7 % lower initial D-lactate concentration at 10 h than that observed with the strain overexpressing the genes coding for GLK, GAPDH, TPI, and FBA. However, this recombinant strain continued to produce D-lactate after 32 h, reaching 2169 mM after a mineral salts medium bioprocess incubation period of 80 h. These results suggest that overexpression of the PFK encoding gene is essential for achieving high production of D-lactate. Our findings provide interesting options to explore for using C. glutamicum for cost-efficient production of D-lactate at the industrial scale.  相似文献   

19.
The metabolism of myo-inositol-2-14C, d-glucuronate-1-14C, d-glucuronate-6-14C, and l-methionine-methyl-14C to cell wall polysaccharides was investigated in excised root-tips of 3 day old Zea mays seedlings. From myo-inositol, about one-half of incorporated label was recovered in ethanol insoluble residues. Of this label, about 90% was solubilized by treatment, first with a preparation of pectinase-EDTA, then with dilute hydrochloric acid. The only labeled constituents in these hydrolyzates were d-galacturonic acid, d-glucuronic acid, 4-O-methyl-d-glucuronic acid, d-xylose, and l-arabinose, or larger oligosaccharide fragments containing these units. Medium external to excised root-tips grown under sterile conditions in myo-inositol-2-14C contained labeled polysaccharide.  相似文献   

20.
The homologous gene of D-amino acid oxidase (DAO) in prokaryotic organisms is predominantly found in a group of bacteria called the Actinobacteria. We have analyzed the DAO of the model actinomycete Streptomyces coelicolor and the effect of D-amino acids on this bacterium. When expressed in Escherichia coli, the translated product of the putative dao gene of this bacterium exhibited oxidase activity against neutral and basic D-amino acids, with a higher activity toward D-valine and D-isoleucine, but not to their corresponding L-amino acids. This substrate specificity was largely different from that of the DAO of the actinobacterium Arthrobacter protophormiae. The gene message and DAO activity were constitutively detected in S. coelicolor cells, and unlike eukaryotic DAOs, the presence of a D-amino acid did not significantly induce expression. The D-amino acids that were a good substrate for S. coelicolor DAO inhibited cell growth, delayed morphological development and affected cell morphology, but they did not inhibit biofilm formation. Disruption of the dao gene had no effect on the morphology and morphological development of S. coelicolor cells, the assimilation of D-valine or the sensitivity to growth inhibition by D-valine under the experimental conditions, showing that in this bacterium DAO does not play a significant role in either morphological development or the assimilation and detoxification of D-amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号