首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The complete genome sequences of the lactic acid bacteria (LAB), Lactobacillus plantarum, Lactococcus lactis, and Lactobacillus johnsonii were used to compare location, sequence, organisation, and regulation of the ribosomal RNA (rrn) operons. All rrn operons of the examined LAB diverge from the origin of replication, which is compatible with their efficient expression. All operons show a common organisation of 5'-16S-23S-5S-3' structure, but differ in the number, location and specificity of the tRNA genes. In the 16S-23S intergenic spacer region, two of the five rrn operons of Lb. plantarum and three of the six of Lb. johnsonii contain tRNA-ala and tRNA-ile genes, while L. lactis has a tRNA-ala gene in all six operons. The number of tRNA genes following the 5S rRNA gene ranges up to 14, 16, and 21 for L. lactis, Lb. johnsonii and Lb. plantarum, respectively. The tRNA gene complements are similar to each other and to those of other bacteria. Micro-heterogeneity was found within the rRNA structural genes and spacer regions of each strain. In the rrn operon promoter regions of Lb. plantarum and L. lactis marked differences were found, while the promoter regions of Lb. johnsonii showed a similar tandem promoter structure in all operons. The rrn promoters of L. lactis show either a single or a tandem promoter structure. All promoters of Lb. plantarum contain two or three -10 and -35 regions, of which either zero to two were followed by an UP-element. The Lb. plantarum rrnA, rrnB, and rrnC promoter regions display similarity to the rrn promoter structure of Esherichia coli. Differences in regulation between the five Lb. plantarum promoters were studied using a low copy promoter-probe plasmid. Taking copy number and growth rate into account, a differential expression over time was shown. Although all five Lb. plantarum rrn promoters are significantly different, this study shows that their activity was very similar under the circumstances tested. An active promoter was also identified within the Lb. plantarum rrnC operon preceding a cluster of 17 tRNA genes.  相似文献   

2.
D C Huang  M Novel  X F Huang  G Novel 《Gene》1992,118(1):39-46
The nucleotide sequence of an insertion sequence (IS) observed during mating experiments using the lactose-protease plasmid, pUCL22, of Lactococcus (Lc.) lactis subsp. lactis CNRZ270, was found to be similar to that of ISS1 from Lc. lactis subsp. lactis ML3. The IS was named ISS1RS. The chromosome of this strain contains several copies of ISS1-like IS as assessed by hybridization. One of these copies was cloned and named ISS1CH. Its sequence differs from that of the plasmid-borne copy, and appears to be more closely related to ISS1N from Lc. lactis subsp. cremoris SK11. This suggests independent introduction of both ISS1 elements. Moreover, the observation of plasmid genes integrated in the CNRZ270 chromosome near ISS1CH suggests that their presence is the result of integration by a Campbell mechanism using both IS homologies. ISS1-like sequences were also found on plasmids of numerous Lc. lactis strains, as well as one out of seven Lactobacillus (Lb.) casei and one out of three Lb. plantarum strains examined.  相似文献   

3.
4.
Virulence of nontypeable Haemophilus influenzae (NTHi) is dependent on the decoration of lipooligosaccharide with sialic acid. This sugar must be derived from the host, as NTHi cannot synthesize sialic acids. NTHi can also use sialic acid as a carbon source. The genes encoding the sialic acid transporter and the genes encoding the catabolic activities are localized to two divergently transcribed operons, the siaPT operon and the nan operon respectively. In this study, we identified SiaR as a repressor of sialic acid transport and catabolism in NTHi. Inactivation of siaR resulted in the unregulated expression of the genes in both operons. Unregulated catabolism of sialic acid in the siaR mutant resulted in the reduction of surface sialylation and an increase in serum sensitivity. In addition to SiaR-mediated repression, CRP, the cAMP receptor protein, was shown to activate expression of the siaPT operon but not the nan operon. We describe a model in which SiaR and CRP work to modulate intracellular sialic acid levels. Our results demonstrate the importance of SiaR-mediated regulation to balance the requirement of surface sialylation and the toxic accumulation of intracellular sialic acid.  相似文献   

5.
6.
7.
8.
9.
We have identified a cluster of six genes involved in trehalose transport and utilization (thu) in Sinorhizobium meliloti. Four of these genes, thuE, -F, -G, and -K, were found to encode components of a binding protein-dependent trehalose/maltose/sucrose ABC transporter. Their deduced gene products comprise a trehalose/maltose-binding protein (ThuE), two integral membrane proteins (ThuF and ThuG), and an ATP-binding protein (ThuK). In addition, a putative regulatory protein (ThuR) was found divergently transcribed from the thuEFGK operon. When the thuE locus was inactivated by gene replacement, the resulting S. meliloti strain was impaired in its ability to grow on trehalose, and a significant retardation in growth was seen on maltose as well. The wild type and the thuE mutant were indistinguishable for growth on glucose and sucrose. This suggested a possible overlap in function of the thuEFGK operon with the aglEFGAK operon, which was identified as a binding protein-dependent ATP-binding transport system for sucrose, maltose, and trehalose. The K(m)s for trehalose transport were 8 +/- 1 nM and 55 +/- 5 nM in the uninduced and induced cultures, respectively. Transport and growth experiments using mutants impaired in either or both of these transport systems show that these systems form the major transport systems for trehalose, maltose, and sucrose. By using a thuE'-lacZ fusion, we show that thuE is induced only by trehalose and not by cellobiose, glucose, maltopentaose, maltose, mannitol, or sucrose, suggesting that the thuEFGK system is primarily targeted toward trehalose. The aglEFGAK operon, on the other hand, is induced primarily by sucrose and to a lesser extent by trehalose. Tests for root colonization, nodulation, and nitrogen fixation suggest that uptake of disaccharides can be critical for colonization of alfalfa roots but is not important for nodulation and nitrogen fixation per se.  相似文献   

10.
11.
AIMS: To identify and characterize bacteriocion-producing lactic acid bacteria (LAB) in sourdoughs and to compare in vitro and in situ bacteriocin activity of sourdough- and nonsourdough LAB. METHODS AND RESULTS: Production of antimicrobial compounds by 437 Lactobacillus strains isolated from 70 sourdoughs was investigated. Five strains (Lactobacillus pentosus 2MF8 and 8CF, Lb. plantarum 4DE and 3DM and Lactobacillus spp. CS1) were found to produce distinct bacteriocin-like inhibitory substances (BLIS). BLIS-producing Lactococcus lactis isolated from raw barley showed a wider inhibitory spectrum than sourdough LAB, but they did not inhibit all strains of the key sourdough bacterium Lb. sanfranciscensis. Antimicrobial production by Lb. pentosus 2MF8 and Lc. lactis M30 was also demonstrated in situ. CONCLUSIONS: BLIS production by sourdough LAB appears to occur at a low frequency, showing limited inhibitory spectrum when compared with BLIS-producing Lc. lactis. Nevertheless, they are active BLIS producers under sourdough and bread-making conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: The activity of BLIS has been demonstrated in situ. It may influence the complex sourdough microflora and support the implantation and stability of selected insensitive bacteria, such as Lb. sanfranciscensis, useful to confer good characteristics to the dough.  相似文献   

12.
13.
Abstract Lactococcus lactis MG5267 is a plasmid-free strain in which the lactose operon is integrated in the bacterial chromosome. The chromosomal lac G gene which encodes phospho-β-galactosidase was inactivated by a double cross-over integration event. Unexpectedly, the resultant mutant was shown to retain a Lac-positive phenotype. The lysin gene from Listeria monocytogenes bacteriophage LM-4 was subsequently integrated into the chromosome of this strain such that expression of the heterologous gene was mediated by the lactose operon promoter. Expression of the lysin gene was shown to be regulated by growth on lactose. This represents an important strategy for the controlled and stabilised expression of biotechnologically useful genes in L lactis .  相似文献   

14.
Maltose and trehalose catabolic pathways are linked through their common enzyme, beta-phosphoglucomutase, and metabolite, beta-glucose 1-phosphate, in Lactococcus lactis. Maltose is degraded by the concerted action of maltose phosphorylase and beta-phosphoglucomutase, whereas trehalose is assimilated by a novel pathway, including the recently discovered enzyme, trehalose 6-phosphate phosphorylase, and beta-phosphoglucomutase. In the present study, 40 strains of lactic acid bacteria were investigated for utilization of metabolic reactions involving beta-glucose 1-phosphate. All genera of the low G+C content lactic acid bacteria belonging to the clostridial subbranch of Gram-positive bacteria were represented in the study. The strains, which fermented maltose or trehalose, were investigated for beta-phosphoglucomutase, maltose phosphorylase and trehalose 6-phosphate phosphorylase activity, as indications of maltose and trehalose catabolic pathways involving beta-glucose 1-phosphate interconversions. Eighty per cent of all strains fermented maltose and, of these strains, 63% were shown to use a maltose phosphorylase/beta- phosphoglucomutase pathway. One-third of the strains fermenting trehalose were found to harbour trehalose 6-phosphate phosphorylase activity, and these were also shown to possess beta-phosphoglucomutase activity. Mainly L. lactis and Enterococcus faecalis strains were found to harbour the novel trehalose 6-phosphate phosphorylase/beta-phosphoglucomutase pathway. As lower beta-glucose 1-phosphate interconverting enzyme activities were observed in the majority of glucose-cultivated lactic acid bacteria, glucose was suggested to repress the synthesis of these enzymes in most strains. Thus, metabolic reactions involving the beta-anomer of glucose 1-phosphate are frequently found in both maltose- and trehalose-utilizing lactic acid bacteria.  相似文献   

15.
Q. Cheng  C. A. Michels 《Genetics》1989,123(3):477-484
The MAL61 gene of Saccharomyces cerevisiae encodes maltose permease, a protein required for the transport of maltose across the plasma membrane. Here we report the nucleotide sequence of the cloned MAL61 gene. A single 1842 bp open reading frame is present within this region encoding the 614 residue putative MAL61 protein. Hydropathy analysis suggests that the secondary structure consists of two blocks of six transmembrane domains separated by an approximately 71 residue intracellular region. The N-terminal and C-terminal domains of 100 and 67 residues in length, respectively, also appear to be intracellular. Significant sequence and structural homology is seen between the MAL61 protein and the Saccharomyces high-affinity glucose transporter encoded by the SNF3 gene, the Kluyveromyces lactis lactose permease encoded by the LAC12 gene, the human HepG2 glucose transporter and the Escherichia coli xylose and arabinose transporters encoded by the xylE and araE genes, indicating that all are members of a family of sugar transporters and are related either functionally or evolutionarily. A mechanism for glucose-induced inactivation of maltose transport activity is discussed.  相似文献   

16.
Several carbohydrate permease systems in Salmonella typhimurium and Escherichia coli are sensitive to regulation by the phosphoenolpyruvate:sugar phosphotransferase system. Mutant Salmonella strains were isolated in which individual transport systems had been rendered insensitive to regulation by sugar substrates of the phosphotransferase system. In one such strain, glycerol uptake was insensitive to regulation; in another, the maltose transport system was resistant to inhibition; and in a third, the regulatory mutation specifically rendered the melibiose permease insensitive to regulation. An analogous mutation in E. coli abolished inhibition of the transport of beta-galactosides via the lactose permease system. The mutations were mapped near the genes which code for the affected transport proteins. The regulatory mutations rendered utilization of the particular carbohydrates resistant to inhibition and synthesis of the corresponding catabolic enzymes partially insensitive to repressive control by sugar substrates of the phosphotransferase system. Studies of repression of beta-galactosidase synthesis in E. coli were conducted with both lactose and isopropyl beta-thiogalactoside as exogenous sources of inducer. Employing high concentrations of isopropyl beta-thiogalactoside, repression of beta-galactosidase synthesis was not altered by the lactose-specific transport regulation-resistant mutation. By contrast, the more severe repression observed with lactose as the exogenous source of inducer was partially abolished by this regulatory mutation. The results support the conclusions that several transport systems, including the lactose permease system, are subject to allosteric regulation and that inhibition of inducer uptake is a primary cause of the repression of catabolic enzyme synthesis.  相似文献   

17.
Carbon catabolite repression of several catabolic operons in Bacillus subtilis is mediated by the repressor CcpA. An inactivation of the ccpA gene has two distinct phenotypes: (i) catabolite repression of catabolic operons is lost and (ii) the growth of bacteria on minimal medium is severely impaired. We have analyzed the physiological properties of a ccpA mutant strain and show that the ccpA mutation does not affect sugar transport. We have isolated extragenic suppressors of ccpA that suppress the growth defect (sgd mutants). Catabolite repression of beta-xylosidase synthesis was, however, not restored suggesting that the suppressor mutations allow differentiation between the phenotypes of the ccpA mutant. A close inspection of the growth requirements of the ccpA mutant revealed the inability of the mutant to utilize inorganic ammonium as a single source of nitrogen. An intact ccpA gene was found to be required for expression of the gltAB operon encoding glutamate synthase. This enzyme is necessary for the assimilation of ammonium. In a sgd mutant, gltAB operon expression was no longer dependent on ccpA, suggesting that the poor expression of the gltAB operon is involved in the growth defect of the ccpA mutant.  相似文献   

18.
19.
Conventional multivariate statistical techniques (hierarchical cluster analysis, linear discriminant analysis) and unsupervised (Kohonen Self Organizing Map) and supervised (Bayesian network) artificial neural networks were compared for as tools for the classification and identification of 352 SDS-PAGE patterns of whole cell proteins of lactic acid bacteria belonging to 22 species of the genera Lactobacillus, Leuconostoc, Enterococcus, Lactococcus and Streptococcus including 47 reference strains. Electrophoretic data were pre-treated using the logistic weighting function described by Piraino et al. [Piraino, P., Ricciardi, A., Lanorte, M. T., Malkhazova, I., Parente, E., 2002. A new procedure for data reduction in electrophoretic fingerprints of whole-cell proteins. Biotechnol. Lett. 24, 1477-1482]. Hierarchical cluster analysis provided a satisfactory classification of the patterns but was unable to discriminate some species (Leuconostoc, Lb. sakei/Lb. curvatus, Lb. acidophilus/Lb. helveticus, Lb. plantarum/Lb. paraplantarum, Lc. lactis/Lc. raffinolactis). A 7x7 Kohonen self-organizing map (KSOM), trained with the patterns of the reference strains, provided a satisfactory classification of the patterns and was able to discriminate more species than hierarchical cluster analysis. The map was used in predictive mode to identify unknown strains and provided results which in 85.5% of cases matched the classification obtained by hierarchical cluster analysis. Two supervised tools, linear discriminant analysis and a 23:5:2 Bayesian network were proven to be highly effective in the discrimination of SDS-PAGE patterns of Lc. lactis from those of other species. We conclude that data reduction by logistic weighting coupled to traditional multivariate statistical analysis or artificial neural networks provide an effective tool for the classification and identification of lactic acid bacteria on the basis of SDS-PAGE patterns of whole cell proteins.  相似文献   

20.
A beta-phosphoglucomutase (beta-PGM) mutant of Lactococcus lactis subsp. lactis ATCC 19435 was constructed using a minimal integration vector and double-crossover recombination. The mutant and the wild-type strain were grown under controlled conditions with different sugars to elucidate the role of beta-PGM in carbohydrate catabolism and anabolism. The mutation did not significantly affect growth, product formation, or cell composition when glucose or lactose was used as the carbon source. With maltose or trehalose as the carbon source the wild-type strain had a maximum specific growth rate of 0.5 h(-1), while the deletion of beta-PGM resulted in a maximum specific growth rate of 0.05 h(-1) on maltose and no growth at all on trehalose. Growth of the mutant strain on maltose resulted in smaller amounts of lactate but more formate, acetate, and ethanol, and approximately 1/10 of the maltose was found as beta-glucose 1-phosphate in the medium. Furthermore, the beta-PGM mutant cells grown on maltose were considerably larger and accumulated polysaccharides which consisted of alpha-1,4-bound glucose units. When the cells were grown at a low dilution rate in a glucose and maltose mixture, the wild-type strain exhibited a higher carbohydrate content than when grown at higher growth rates, but still this content was lower than that in the beta-PGM mutant. In addition, significant differences in the initial metabolism of maltose and trehalose were found, and cell extracts did not digest free trehalose but only trehalose 6-phosphate, which yielded beta-glucose 1-phosphate and glucose 6-phosphate. This demonstrates the presence of a novel enzymatic pathway for trehalose different from that of maltose metabolism in L. lactis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号