共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of mismatch repair and RAD1 genes on interchromosomal crossover recombination in Saccharomyces cerevisiae 下载免费PDF全文
We have previously shown that recombination between 400-bp substrates containing only 4-bp differences, when present in an inverted repeat orientation, is suppressed by >20-fold in wild-type strains of S. cerevisiae. Among the genes involved in this suppression were three genes involved in mismatch repair--MSH2, MSH3, and MSH6--and one in nucleotide excision repair, RAD1. We now report the involvement of these genes in interchromosomal recombination occurring via crossovers using these same short substrates. In these experiments, recombination was stimulated by a double-strand break generated by the HO endonuclease and can occur between completely identical (homologous) substrates or between nonidentical (homeologous) substrates. In addition, a unique feature of this system is that recombining DNA strands can be given a choice of either type of substrate. We find that interchromosomal crossover recombination with these short substrates is severely inhibited in the absence of MSH2, MSH3, or RAD1 and is relatively insensitive to the presence of mismatches. We propose that crossover recombination with these short substrates requires the products of MSH2, MSH3, and RAD1 and that these proteins have functions in recombination in addition to the removal of terminal nonhomology. We further propose that the observed insensitivity to homeology is a result of the difference in recombinational mechanism and/or the timing of the observed recombination events. These results are in contrast with those obtained using longer substrates and may be particularly relevant to recombination events between the abundant short repeated sequences that characterize the genomes of higher eukaryotes. 相似文献
2.
Saccharomyces cerevisiae cells expressing both a- and alpha-mating-type (MAT) genes (termed mating-type heterozygosity) exhibit higher rates of spontaneous recombination and greater radiation resistance than cells expressing only MATa or MATalpha. MAT heterozygosity suppresses recombination defects of four mutations involved in homologous recombination: complete deletions of RAD55 or RAD57, an ATPase-defective Rad51 mutation (rad51-K191R), and a C-terminal truncation of Rad52, rad52-Delta327. We investigated the genetic basis of MAT-dependent suppression of these mutants by deleting genes whose expression is controlled by the Mata1-Matalpha2 repressor and scoring resistance to both campothecin (CPT) and phleomycin. Haploid rad55Delta strains became more damage resistant after deleting genes required for nonhomologous end-joining (NHEJ), a process that is repressed in MATa/MATalpha cells. Surprisingly, NHEJ mutations do not suppress CPT sensitivity of rad51-K191R or rad52-Delta327. However, rad51-K191R is uniquely suppressed by deleting the RME1 gene encoding a repressor of meiosis or its coregulator SIN4; this effect is independent of the meiosis-specific homolog, Dmc1. Sensitivity of rad52-Delta327 to CPT was unexpectedly increased by the MATa/MATalpha-repressed gene YGL193C, emphasizing the complex ways in which MAT regulates homologous recombination. The rad52-Delta327 mutation is suppressed by deleting the prolyl isomerase Fpr3, which is not MAT regulated. rad55Delta is also suppressed by deletion of PST2 and/or YBR052C (RFS1, rad55 suppressor), two members of a three-gene family of flavodoxin-fold proteins that associate in a nonrandom fashion with chromatin. All three recombination-defective mutations are made more sensitive by deletions of Rad6 and of the histone deacetylases Rpd3 and Ume6, although these mutations are not themselves CPT or phleomycin sensitive. 相似文献
3.
Jaqueline De Azevêdo Silva João Alexandre Trés Pancotto Eduardo Antônio Donadi Sergio Crovella Paula Sandrin-Garcia 《Molecular biology reports》2014,41(4):2249-2256
Systemic lupus erythematosus (SLE) is a complex autoimmune disorder with a strong genetic background. Nevertheless, SLE might also be triggered due to environmental factors, such as UV light exposure. DNA double strand breaks (DSBs) may be induced secondarily by UV radiation, increasing DNA immunogenicity and in SLE patients DNA repair is diminished, allowing the accumulation of DSBs and genomic instability. LIG4 and RAD52 genes play important roles in DNA repair mechanisms and a recent microarray analysis showed their differential expression in active SLE patients. In this study we investigated a potential association between LIG4 and RAD52 single nucleotide polymorphisms (SNPs) and SLE predisposition in a Southeast Brazilian population. We assessed four Tag SNPs in LIG4 and three in RAD52 gene region, encompassing most of the gene sequence, in 158 SLE patients and 212 healthy controls. We also performed SNPs analysis considering clinical manifestation, gender and ethnicity in SLE patients. Our data did not show association between LIG4 and RAD52 SNPs and SLE, its clinical manifestations or ethnicity in the tested population. The analysis regarding ethnicity and SLE clinical manifestations indicated Caucasian-derived patients as more susceptible to cutaneous and hematological alterations than the African-derived. To our knowledge, this is the first association study involving LIG4 and RAD52 genes and SLE predisposition. 相似文献
4.
Requirement of RAD52 group genes for postreplication repair of UV-damaged DNA in Saccharomyces cerevisiae 下载免费PDF全文
In Saccharomyces cerevisiae, replication through DNA lesions is promoted by Rad6-Rad18-dependent processes that include translesion synthesis by DNA polymerases eta and zeta and a Rad5-Mms2-Ubc13-controlled postreplicational repair (PRR) pathway which repairs the discontinuities in the newly synthesized DNA that form opposite from DNA lesions on the template strand. Here, we examine the contributions of the RAD51, RAD52, and RAD54 genes and of the RAD50 and XRS2 genes to the PRR of UV-damaged DNA. We find that deletions of the RAD51, RAD52, and RAD54 genes impair the efficiency of PRR and that almost all of the PRR is inhibited in the absence of both Rad5 and Rad52. We suggest a role for the Rad5 pathway when the lesion is located on the leading strand template and for the Rad52 pathway when the lesion is located on the lagging strand template. We surmise that both of these pathways operate in a nonrecombinational manner, Rad5 by mediating replication fork regression and template switching via its DNA helicase activity and Rad52 via a synthesis-dependent strand annealing mode. In addition, our results suggest a role for the Rad50 and Xrs2 proteins and thereby for the MRX complex in promoting PRR via both the Rad5 and Rad52 pathways. 相似文献
5.
Samach A Melamed-Bessudo C Avivi-Ragolski N Pietrokovski S Levy AA 《The Plant cell》2011,23(12):4266-4279
RADiation sensitive52 (RAD52) mediates RAD51 loading onto single-stranded DNA ends, thereby initiating homologous recombination and catalyzing DNA annealing. RAD52 is highly conserved among eukaryotes, including animals and fungi. This article reports that RAD52 homologs are present in all plants whose genomes have undergone extensive sequencing. Computational analyses suggest a very early RAD52 gene duplication, followed by later lineage-specific duplications, during the evolution of higher plants. Plant RAD52 proteins have high sequence similarity to the oligomerization and DNA binding N-terminal domain of RAD52 proteins. Remarkably, the two identified Arabidopsis thaliana RAD52 genes encode four open reading frames (ORFs) through differential splicing, each of which specifically localized to the nucleus, mitochondria, or chloroplast. The A. thaliana RAD52-1A ORF provided partial complementation to the yeast rad52 mutant. A. thaliana mutants and RNA interference lines defective in the expression of RAD52-1 or RAD52-2 showed reduced fertility, sensitivity to mitomycin C, and decreased levels of intrachromosomal recombination compared with the wild type. In summary, computational and experimental analyses provide clear evidence for the presence of functional RAD52 DNA-repair homologs in plants. 相似文献
6.
Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. 总被引:4,自引:0,他引:4
Lorraine S Symington 《Microbiology and molecular biology reviews》2002,66(4):630-70, table of contents
The process of homologous recombination is a major DNA repair pathway that operates on DNA double-strand breaks, and possibly other kinds of DNA lesions, to promote error-free repair. Central to the process of homologous recombination are the RAD52 group genes (RAD50, RAD51, RAD52, RAD54, RDH54/TID1, RAD55, RAD57, RAD59, MRE11, and XRS2), most of which were identified by their requirement for the repair of ionizing-radiation-induced DNA damage in Saccharomyces cerevisiae. The Rad52 group proteins are highly conserved among eukaryotes, and Rad51, Mre11, and Rad50 are also conserved in prokaryotes and archaea. Recent studies showing defects in homologous recombination and double-strand break repair in several human cancer-prone syndromes have emphasized the importance of this repair pathway in maintaining genome integrity. Although sensitivity to ionizing radiation is a universal feature of rad52 group mutants, the mutants show considerable heterogeneity in different assays for recombinational repair of double-strand breaks and spontaneous mitotic recombination. Herein, I provide an overview of recent biochemical and structural analyses of the Rad52 group proteins and discuss how this information can be incorporated into genetic studies of recombination. 相似文献
7.
8.
9.
Sister chromatid-based DNA repair is mediated by RAD54, not by DMC1 or TID1 总被引:3,自引:0,他引:3 下载免费PDF全文
In the mitotic cell cycle of the yeast Saccharomyces cerevisiae, the sister chromatid is preferred over the homologous chromosome (non-sister chromatid) as a substrate for DNA double-strand break repair. However, no genes have yet been shown to be preferentially involved in sister chromatid-mediated repair. We developed a novel method to identify genes that are required for repair by the sister chromatid, using a haploid strain that can embark on meiosis. We show that the recombinational repair gene RAD54 is required primarily for sister chromatid-based repair, whereas TID1, a yeast RAD54 homologue, and the meiotic gene DMC1, are dispensable for this type of repair. Our observations suggest that the sister chromatid repair pathway, which involves RAD54, and the homologous chromosome repair pathway, which involves DMC1, can substitute for one another under some circumstances. Deletion of RAD54 in S.cerevisiae results in a phenotype similar to that found in mammalian cells, namely impaired DNA repair and reduced recombination during mitotic growth, with no apparent effect on meiosis. The principal role of RAD54 in sister chromatid-based repair may also be shared by mammalian and yeast cells. 相似文献
10.
The mismatch repair proteins, MutS and MutL, interact in a DNA mismatch and ATP-dependent manner to activate downstream events in repair. Here, we assess the role of ATP binding and hydrolysis in mismatch recognition by MutS and the formation of a ternary complex involving MutS and MutL bound to a mismatched DNA. We show that ATP reduces the affinity of MutS for mismatched DNA and that the modulation of DNA binding affinity by nucleotide is even more pronounced for MutS E694A, a protein that binds ATP but is defective for ATP hydrolysis. Despite the ATP hydrolysis defect, E694A, like WT MutS, undergoes rapid, ATP-dependent dissociation from a DNA mismatch. Furthermore, MutS E694A retains the ability to interact with MutL on mismatched DNA. The recruitment of MutL to a mismatched DNA by MutS is also observed for two mutant MutL proteins, E29A, defective for ATP hydrolysis, and R266A, defective for DNA binding. These results suggest that ATP binding in the absence of hydrolysis is sufficient to trigger formation of a MutS sliding clamp. However, recruitment of MutL results in the formation of a dynamic ternary complex that we propose is the intermediate that signals subsequent repair steps requiring ATP hydrolysis. 相似文献
11.
Multiple recombination pathways for sister chromatid exchange in Saccharomyces cerevisiae: role of RAD1 and the RAD52 epistasis group genes 总被引:3,自引:1,他引:3 下载免费PDF全文
Sister chromatid exchange (SCE) can occur by several recombination mechanisms, including those directly initiated by double-strand breaks (DSBs), such as gap repair and break-induced replication (BIR), and those initiated when DNA polymerases stall, such as template switching. To elucidate SCE recombination mechanisms, we determined whether spontaneous and DNA damage-associated SCE requires specific genes within the RAD52 and RAD3 epistasis groups in Saccharomyces cerevisiae strains containing two his3 fragments, his3-Δ5′ and his3-Δ3′::HOcs. SCE frequencies were measured after cells were exposed to UV, X-rays, 4-nitroquinoline 1-oxide (4-NQO) and methyl methanesulfonate (MMS), or when an HO endonuclease-induced DSB was introduced at his3-Δ3′::HOcs. Our data indicate that genes involved in gap repair, such as RAD55, RAD57 and RAD54, are required for DNA damage-associated SCE but not for spontaneous SCE. RAD50 and RAD59, genes required for BIR, are required for X-ray-associated SCE but not for SCE stimulated by HO-induced DSBs. In comparison with wild type, rates of spontaneous SCE are 10-fold lower in rad51 rad1 but not in either rad51 rad50 or rad51 rad59 double mutants. We propose that gap repair mechanisms are important in DNA damage-associated recombination, whereas alternative pathways, including a template switch pathway, play a role in spontaneous SCE. 相似文献
12.
Diouf B Cheng Q Krynetskaia NF Yang W Cheok M Pei D Fan Y Cheng C Krynetskiy EY Geng H Chen S Thierfelder WE Mullighan CG Downing JR Hsieh P Pui CH Relling MV Evans WE 《Nature medicine》2011,17(10):1298-1303
DNA mismatch repair enzymes (for example, MSH2) maintain genomic integrity, and their deficiency predisposes to several human cancers and to drug resistance. We found that leukemia cells from a substantial proportion of children (~11%) with newly diagnosed acute lymphoblastic leukemia have low or undetectable MSH2 protein levels, despite abundant wild-type MSH2 mRNA. Leukemia cells with low levels of MSH2 contained partial or complete somatic deletions of one to four genes that regulate MSH2 degradation (FRAP1 (also known as MTOR), HERC1, PRKCZ and PIK3C2B); we also found these deletions in individuals with adult acute lymphoblastic leukemia (16%) and sporadic colorectal cancer (13.5%). Knockdown of these genes in human leukemia cells recapitulated the MSH2 protein deficiency by enhancing MSH2 degradation, leading to substantial reduction in DNA mismatch repair and increased resistance to thiopurines. These findings reveal a previously unrecognized mechanism whereby somatic deletions of genes regulating MSH2 degradation result in undetectable levels of MSH2 protein in leukemia cells, DNA mismatch repair deficiency and drug resistance. 相似文献
13.
Wu Y Siino JS Sugiyama T Kowalczykowski SC 《The Journal of biological chemistry》2006,281(52):40001-40009
We examined the double-stranded DNA (dsDNA) binding preference of the Saccharomyces cerevisiae Rad52 protein and its homologue, the Rad59 protein. In nuclease protection assays both proteins protected an internal sequence and the dsDNA ends equally well. Similarly, using electrophoretic mobility shift assays, we found the affinity of both Rad52 and Rad59 proteins for DNA ends to be comparable with their affinity for internal sequences. The protein-DNA complexes were also directly visualized using atomic force microscopy. Both proteins formed discrete complexes, which were primarily found (90-94%) at internal dsDNA sites. We also measured the DNA end binding behavior of human Rad52 protein and found a slight preference for dsDNA ends. Thus, these proteins have no strong preference for dsDNA ends over internal sites, which is inconsistent with their function at a step of dsDNA break repair that precedes DNA processing. Therefore, we conclude that S. cerevisiae Rad52 and Rad59 proteins and their eukaryotic counterparts function by binding to single-stranded DNA formed as intermediates of recombination rather than by binding to the unprocessed DNA double-strand break. 相似文献
14.
Effects of controlled RAD52 expression on repair and recombination in Saccharomyces cerevisiae. 总被引:4,自引:0,他引:4 下载免费PDF全文
We have examined the effects of RAD52 overexpression on methyl methanesulfonate (MMS) sensitivity and spontaneous mitotic recombination rates. Cells expressing a 10-fold excess of RAD52 mRNA from the ENO1 promoter are no more resistant to MMS than are wild-type cells. Similarly, under the same conditions, the rate of mitotic recombination within a reporter plasmid does not exceed that measured in wild-type cells. This high level of expression is capable of correcting the defects of rad52 mutant cells in carrying out repair and recombination. From these observations, we conclude that wild-type amounts of Rad52 are not rate limiting for repair of MMS-induced lesions or plasmid recombination. By placing RAD52 under the control of the inducible GAL1 promoter, we find that induction results in a 12-fold increase in the fraction of recombinants within 4 h. After this time, the fraction increases less rapidly. When RAD52 expression is quickly repressed during induction, the amount of RAD52 mRNA decreases rapidly and no nascent recombinants are formed. This result suggests a short active half-life for the protein product. Induction of RAD52 in G1-arrested mutant cells also causes a rapid increase in recombinants, suggesting that replication is not necessary for plasmid recombination. 相似文献
15.
To prevent genome instability, recombination between sequences that contain mismatches (homeologous recombination) is suppressed by the mismatch repair (MMR) pathway. To understand the interactions necessary for this regulation, the genetic requirements for the inhibition of homeologous recombination were examined using mutants in the RAD52 epistasis group of Saccharomyces cerevisiae. The use of a chromosomal inverted-repeat recombination assay to measure spontaneous recombination between 91 and 100% identical sequences demonstrated differences in the fidelity of recombination in pathways defined by their dependence on RAD51 and RAD59. In addition, the regulation of homeologous recombination in rad51 and rad59 mutants displayed distinct patterns of inhibition by different members of the MMR pathway. Whereas the requirements for the MutS homolog, MSH2, and the MutL homolog, MLH1, in the suppression of homeologous recombination were similar in rad51 strains, the loss of MSH2 caused a greater loss in homeologous recombination suppression than did the loss of MLH1 in a rad59 strain. The nonequivalence of the regulatory patterns in the wild-type and mutant strains suggests an overlap between the roles of the RAD51 and RAD59 gene products in potential cooperative recombination mechanisms used in wild-type cells. 相似文献
16.
Differential expression and requirements for Schizosaccharomyces pombe RAD52 homologs in DNA repair and recombination 总被引:3,自引:0,他引:3 下载免费PDF全文
van den Bosch M Zonneveld JB Vreeken K de Vries FA Lohman PH Pastink A 《Nucleic acids research》2002,30(6):1316-1324
In fission yeast two RAD52 homologs have been identified, rad22A+ and rad22B+. Two-hybrid experiments and GST pull-down assays revealed physical interaction between Rad22A and Rad22B, which is dependent on the N-terminal regions. Interaction with Rhp51 is dependent on the C-terminal parts of either protein. Both Rad22A and Rad22B also interact with RPA. The expression of rad22B+ in mitotically dividing cells is very low in comparison with rad22A+ but is strongly enhanced after induction of meiosis, in contrast to rad22A+. Rad22B mutant cells are not hypersensitive to DNA-damaging agents (X-rays, UV and cisplatin) and display normal levels of recombination. In these respects the Schizosaccharomyces pombe rad22B mutant resembles the weak phenotype of vertebrate cells deficient for RAD52. Mutation of rad22A+ leads to severe sensitivity to DNA-damaging agents and to defects in recombination. In a rad22Arad22B double mutant a further increase in sensitivity to DNA-damaging agents and additional mitotic recombination defects were observed. The data presented here indicate that Rad22A and Rad22B have overlapping roles in repair and recombination, although specialized functions for each protein cannot be excluded. 相似文献
17.
Role of DNA mismatch repair and double-strand break repair in genome stability and antifungal drug resistance in Candida albicans 下载免费PDF全文
Drug resistance has become a major problem in the treatment of Candida albicans infections. Genome changes, such as aneuploidy, translocations, loss of heterozygosity, or point mutations, are often observed in clinical isolates that have become resistant to antifungal drugs. To determine whether these types of alterations result when DNA repair pathways are eliminated, we constructed yeast strains bearing deletions in six genes involved in mismatch repair (MSH2 and PMS1) or double-strand break repair (MRE11, RAD50, RAD52, and YKU80). We show that the mre11Δ/mre11Δ, rad50Δ/rad50Δ, and rad52Δ/rad52Δ mutants are slow growing and exhibit a wrinkly colony phenotype and that cultures of these mutants contain abundant elongated pseudohypha-like cells. These same mutants are susceptible to hydrogen peroxide, tetrabutyl hydrogen peroxide, UV radiation, camptothecin, ethylmethane sulfonate, and methylmethane sulfonate. The msh2Δ/msh2Δ, pms1Δ/pms1Δ, and yku80Δ/yku80Δ mutants exhibit none of these phenotypes. We observed an increase in genome instability in mre11Δ/mre11Δ and rad50Δ/rad50Δ mutants by using a GAL1/URA3 marker system to monitor the integrity of chromosome 1. We investigated the acquisition of drug resistance in the DNA repair mutants and found that deletion of mre11Δ/mre11Δ, rad50Δ/rad50Δ, or rad52Δ/rad52Δ leads to an increased susceptibility to fluconazole. Interestingly, we also observed an elevated frequency of appearance of drug-resistant colonies for both msh2Δ/msh2Δ and pms1Δ/pms1Δ (MMR mutants) and rad50Δ/rad50Δ (DSBR mutant). Our data demonstrate that defects in double-strand break repair lead to an increase in genome instability, while drug resistance arises more rapidly in C. albicans strains lacking mismatch repair proteins or proteins central to double-strand break repair. 相似文献
18.
A novel allele of Saccharomyces cerevisiae RFA1 that is deficient in recombination and repair and suppressible by RAD52. 总被引:6,自引:2,他引:6 下载免费PDF全文
To understand the mechanisms involved in homologous recombination, we have performed a search for Saccharomyces cerevisiae mutants unable to carry out plasmid-to-chromosome gene conversion. For this purpose, we have developed a colony color assay in which recombination is induced by the controlled delivery of double-strand breaks (DSBs). Recombination occurs between a chromosomal mutant ade2 allele and a second plasmid-borne ade2 allele where DSBs are introduced via the site-specific HO endonuclease. Besides isolating a number of new alleles in known rad genes, we identified a novel allele of the RFA1 gene, rfa1-44, which encodes the large subunit of the heterotrimeric yeast single-stranded DNA-binding protein RPA. Characterization of rfa1-44 revealed that it is, like members of the RAD52 epistasis group, sensitive to X rays, high doses of UV, and HO-induced DSBs. In addition, rfa1-44 shows a reduced ability to undergo sporulation and HO-induced gene conversion. The mutation was mapped to a single-base substitution resulting in an aspartate at amino acid residue 77 instead of glycine. Moreover, all radiation sensitivities and repair defects of rfa1-44 are suppressed by RAD52 in a dose-dependent manner, and one RAD52 mutant allele, rad52-34, displays nonallelic noncomplementation when crossed with rfa1-44. Presented is a model accounting for this genetic interaction in which Rfa1, in a complex with Rad52, serves to assemble other proteins of the recombination-repair machinery at the site of DSBs and other kinds of DNA damage. We believe that our findings and those of J. Smith and R. Rothstein (Mol. Cell. Biol. 15:1632-1641, 1995) are the first in vivo demonstrations of the involvement of a eukaryotic single-stranded binding protein in recombination and repair processes. 相似文献
19.
The structure and function of RAD6 and RAD18 DNA repair genes of Saccharomyces cerevisiae 总被引:2,自引:0,他引:2
The RAD6 and RAD18 genes of Saccharomyces cerevisiae are required for postreplication repair of discontinuities occurring in newly synthesized DNA following exposure to uv light. In addition, rad6 mutants are highly defective in mutagenesis induced by uv and other DNA damaging agents and in sporulation. RAD6 encodes a protein of 172 amino acids with a highly acidic carboxyl terminus. Deletion of the carboxyl terminal 23 residues, 20 of which are acidic, has little or no effect on uv sensitivity or uv mutagenesis, but sporulation is greatly reduced. Addition of the first four residues of the polyacidic tail restores sporulation to 50% the level observed in RAD+/RAD+ diploids. RAD6 protein has been previously shown to be a ubiquitin-conjugating (E2) enzyme that attaches ubiquitin to histones H2A and H2B in vitro. Our experiments show that deletion of varying lengths of the polyacidic tail of RAD6 protein greatly reduces its ubiquitin-conjugating activity. The RAD18 encoded protein contains features which suggest that it binds DNA and nucleotides. Ten of the 12 cysteine residues occur in regions that could form zinc finger domains for nucleic acid binding. The other interesting feature in RAD18 protein is the presence of a putative nucleotide binding sequence. The possible in vivo functions of the RAD6 and RAD18 proteins are discussed. 相似文献
20.
RAD1 and RAD10, but not other excision repair genes, are required for double-strand break-induced recombination in Saccharomyces cerevisiae. 总被引:7,自引:1,他引:7 下载免费PDF全文
HO endonuclease-induced double-strand breaks (DSBs) in the yeast Saccharomyces cerevisiae can be repaired by the process of gap repair or, alternatively, by single-strand annealing if the site of the break is flanked by directly repeated homologous sequences. We have shown previously (J. Fishman-Lobell and J. E. Haber, Science 258:480-484, 1992) that during the repair of an HO-induced DSB, the excision repair gene RAD1 is needed to remove regions of nonhomology from the DSB ends. In this report, we present evidence that among nine genes involved in nucleotide excision repair, only RAD1 and RAD10 are required for removal of nonhomologous sequences from the DSB ends. rad1 delta and rad10 delta mutants displayed a 20-fold reduction in the ability to execute both gap repair and single-strand annealing pathways of HO-induced recombination. Mutations in RAD2, RAD3, and RAD14 reduced HO-induced recombination by about twofold. We also show that RAD7 and RAD16, which are required to remove UV photodamage from the silent HML, locus, are not required for MAT switching with HML or HMR as a donor. Our results provide a molecular basis for understanding the role of yeast nucleotide excision repair gene and their human homologs in DSB-induced recombination and repair. 相似文献