首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Androgens, like progestins, are 3-ketosteroids with structural differences restricted to the 17beta substituent in the steroid D-ring. To better understand the specific recognition of ligands by the human androgen receptor (hAR), a homology model of the ligand-binding domain (LBD) was constructed based on the progesterone receptor LBD crystal structure. Several mutants of residues potentially involved in the specific recognition of ligands in the hAR were constructed and tested for their ability to bind agonists. Their transactivation capacity in response to agonist (R1881) and antagonists (cyproterone acetate, hydroxyflutamide, and ICI 176344) was also measured. Substitution of His(874) by alanine, only marginally impairs the ligand-binding and transactivation capacity of the hAR receptor. In contrast, mutations of Thr(877) and, to a greater extent, Asn(705) perturb ligand recognition, alter transactivation efficiency, and broaden receptor specificity. Interestingly, the N705A mutant acquires progesterone receptor (PR) properties for agonist ligands but, unlike wild type AR and PR, loses the capacity to repress transactivation with nonsteroidal antagonists. Models of the hAR.LBD complexes with several ligands are presented, which suggests new directions for drug design.  相似文献   

2.
3.
4.
5.
6.
7.
Agonist-dependent activation of the alpha(1)-adrenergic receptor is postulated to be initiated by disruption of an interhelical salt-bridge constraint between an aspartic acid (Asp-125) and a lysine residue (Lys-331) in transmembrane domains three and seven, respectively. Single point mutations that disrupt the charges of either of these residues results in constitutive activity. To validate this hypothesis, we used site-directed mutagenesis to switch the position of these amino acids to observe, if possible, regeneration of the salt-bridge reverses that the constitutive activity of the single point mutations. The transiently expressed switch mutant receptor displayed an altered pharmacological profile. The affinity of selective alpha(1b)-adrenergic receptor antagonists for the switch mutant (D125K/K331D) was no different from the wild-type alpha(1b)-adrenergic receptor, suggesting that both receptors are maintaining similar tertiary structures in the cell membrane. However, there was a significant 4-6-fold decrease in the affinity of protonated amine receptor agonists and a 3-6-fold increase in the affinity of carboxylated catechol derivatives for the switch mutant compared with the wild-type alpha(1b)-adrenergic receptor. This pharmacology is consistent with a reversed charge at position 125 in transmembrane domain three. Interestingly, the ability of either a negatively or positively charged agonist to generate soluble inositol phosphates was similar for both types of receptors. Finally, the switch mutant (D125K/K331D) displayed similar basal signaling activity as the wild-type receptor, reversing the constitutive activity of the single point mutations (D125K and K331D). This suggests an ionic constraint has been reformed in the switch mutant analogous to the restraint previously described for the wild-type alpha(1b)-adrenergic receptor. These results strongly establish the disruption of an electrostatic interaction as an initial step in the agonist-dependent activation of alpha(1)-adrenergic receptors.  相似文献   

8.
The role of the ligand in glucocorticoid receptor-mediated transactivation and transrepression of gene expression was investigated. Half-maximal transactivation of a mouse mammary tumor virus-chloramphenicol acetyltransferase reporter gene in transfected cells expressing the human glucocorticoid receptor mutant GRL753F, from which the rate of ligand dissociation is four to five times higher than the rate of dissociation from normal receptors, required a 200- to 300-fold-higher concentration of dexamethasone than was required in cells expressing the normal receptor. Immunocytochemical analysis demonstrated that this difference was not the result of a failure of the mutant receptor to accumulate in the nucleus after steroid treatment. In contrast, in cells cotransfected with a reporter gene containing the AP-1-inducible collagenase gene promoter, the concentration of dexamethasone required for 50% transrepression was the same for mutant and normal receptors. Efficient receptor-mediated transrepression was also observed with the double mutant GRL753F/C421Y, in which the first cysteine residue of the proximal zinc finger has been replaced by tyrosine, indicating that neither retention of the ligand nor direct binding of the receptor to DNA is required. RU38486 behaved as a full agonist with respect to transrepression. In addition, receptor-dependent transrepression, but not transactivation, was observed in transfected cells after heat shock in the absence of the ligand. Taken together, these results suggest that unlike transactivation, transrepression of AP-1 activity by the nuclear glucocorticoid receptor is ligand independent.  相似文献   

9.
To identify residues of the rat AT1A angiotensin II receptor involved with signal transduction and binding of the non-peptide agonist L-162,313 (5,7-dimethyl-2-ethyl-3-[[4-[2(n-butyloxycarbonylsulfonamido)-5-isobutyl-3-thienyl]phenyl]methyl]imidazol[4,5,6]-pyridine) we have performed ligand binding and inositol phosphate turnover assays in COS-7 cells transiently transfected with the wild-type and mutant forms of the receptor. Mutant receptors bore modifications in the extracellular region: T88H, Y92H, G1961, G196W, and D278E. Compound L-162,313 displaced [125I]-Sar1,Leu8-AngII from the mutants G196I and G196W with IC50 values similar to that of the wild-type. The affinity was, however, slightly affected by the D278E mutation and more significantly by the T88H and Y92H mutations. In inositol phosphate turnover assays, the ability of L-162,313 to trigger the activation cascade was compared with that of angiotensin II. These assays showed that the G196W mutant reached a relative maximum activation exceeding that of the wild-type receptor; the efficacy was slightly reduced in the G1961 mutant and further reduced in the T88H, Y92H, and D278E mutants. Our data suggest that residues of the extracellular domain of the AT1 receptor are involved in the binding of the non-peptide ligand, or in a general receptor activation phenomenon that involves conformational modifications for a preferential binding of agonists or antagonists.  相似文献   

10.
11.
12.
A major focus in the current discovery of drugs targeting nuclear receptors (NRs) is identifying drugs with reduced side effects by improving selectivity, not only from other receptors but also by selective modulation of the NR of interest. Cellular assays not only provide valuable information on functional activity, potency, and selectivity but also are ideally suited for differentiating partial agonists and antagonists. The ability to partially activate a receptor is believed to be closely tied to the ability to selectively modulate the NR, resulting in expression of a subset of the normally regulated genes. To this end, the authors have built a complete panel of cell-based steroid hormone receptor assays for the androgen receptor, estrogen receptor alpha, estrogen receptor beta, glucocorticoid receptor, mineralocorticoid receptor, and progesterone receptor by stably engineering a Gal4 DNA-binding domain/nuclear receptor ligand-binding domain fusion protein into an upstream activation sequence beta-lactamase reporter cell line. Each assay was validated with known agonists and antagonists for correct pharmacology and high-throughput compatibility. To demonstrate the utility of these assays, the authors profiled 35 pharmacologically relevant compounds in a dose-response format against the panel in both agonist and antagonist modes. The results demonstrated that selective estrogen receptor modulators can be identified and differentiated, as well as mixed and partial agonists and antagonists easily detected in the appropriate assays. Importantly, a comparison of the chimeric assays with full-length reporter gene assay data from the literature shows a good degree of correlation in terms of selectivity and pharmacology of important ligands. Taken together, these steroid hormone receptor assays provide good selectivity, sensitivity, and appropriate pharmacology for high-throughput screening and selectivity profiling of modulators of steroid hormone receptors.  相似文献   

13.
14.
Three subtypes of retinoic acid receptors (RAR), termed RAR alpha, RAR beta, and RAR gamma, have been described. They are composed of different structural domains, including distinct domains for DNA and ligand binding. RARs specifically bind all-trans-retinoic acid (RA), 9-cis-RA, and retinoid analogs. In this study, we examined the functional role of cysteine and arginine residues in the ligand-binding domain of hRAR alpha (hRAR alpha-LBD, amino acids 154 to 462). All conserved cysteine and arginine residues in this domain were mutated by site-directed mutagenesis, and the mutant proteins were characterized by blocking reactions, ligand-binding experiments, transactivation assays, and protease mapping. Changes of any cysteine residue of the hRAR alpha-LBD had no significant influence on the binding of all-trans RA or 9-cis RA. Interestingly, residue C-235 is specifically important in antagonist binding. With respect to arginine residues, only the two single mutations of R-276 and R-394 to alanine showed a dramatic decrease of agonist and antagonist binding whereas the R272A mutation showed only a slight effect. For all other arginine mutations, no differences in affinity were detectable. The two mutations R217A and R294A caused an increased binding efficiency for antagonists but no change in agonist binding. From these results, we can conclude that electrostatic interactions of retinoids with the RAR alpha-LBD play a significant role in ligand binding. In addition, antagonists show distinctly different requirements for efficient binding, which may contribute to their interference in the ligand-inducible transactivation function of RAR alpha.  相似文献   

15.
16.
A series of dihydro-9,10-ethano-anthracene-11-carboxamides as novel glucocorticoid receptor modulators is reported. SAR exploration identified compounds from this series displaying a promising dissociation profile in discriminating between transrepression and transactivation activities. 17a is a partial agonist of GR-mediated transactivation which elicits potent and efficacious transrepression in reporter gene assays. A hypothetical binding mode is provided which accounts for the induction of functional activity by a bridgehead methyl group.  相似文献   

17.
In an earlier study, we have demonstrated that by mutating five amino acid residues to those conserved in the opioid receptors, the OFQ receptor could be converted to a functional receptor that bound many opioid alkaloids with nanomolar affinities. Surprisingly, when the reciprocal mutations, Lys-214 --> Ala (TM5), Ile-277 --> Val/His-278 --> Gln/Ile-279 --> Val (TM6), and Ile-304 --> Thr (TM7), are introduced in the delta receptor, neither the individual mutations nor their various combinations significantly reduce the binding affinities of opioid alkaloids tested. However, these mutations cause profound alterations in the functional characteristics of the mutant receptors as measured in guanosine 5'-3-O-(thio)triphosphate binding assays. Some agonists become antagonists at some constructs as they lose their ability to activate them. Some alkaloid antagonists are transformed into agonists at other constructs, but their agonistic effects can still be blocked by the peptide antagonist TIPP. Even the delta inverse agonist 7-benzylidenenaltrexone becomes an agonist at the mutant containing both the Ile-277 --> Val/His-278 --> Gln/Ile-279 --> Val and Ile-304 --> Thr mutations. Thus, although the mutated residues are thought to be part of the binding pocket, they are critically involved in the control of the delta receptor activation process. These findings shed light on some of the structural bases of ligand efficacy. They are also compatible with the hypothesis that a ligand may achieve high affinity binding in several different ways, each having different effects on receptor activation.  相似文献   

18.
A new series of ligands for the glucocorticoid receptor (GR) is described. SAR development was guided by docking 3 into the GR active site and optimizing an unsubstituted phenyl ring for key interactions found in the steroid A-ring binding pocket. To identify compounds with an improved side effect profile over marketed steroids the functional activity of compounds was evaluated in cell based assays for transactivation (aromatase) and transrepression (IL-6). Through this effort, 36 has been identified as a partial agonist with a dissociated profile in these cell based assays.  相似文献   

19.
20.
Antagonism in the human mineralocorticoid receptor.   总被引:8,自引:0,他引:8       下载免费PDF全文
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号