首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A checkpoint operating in the G(2) phase of the cell cycle prevents entry into mitosis in the presence of DNA damage. UCN-01, a protein kinase inhibitor currently undergoing clinical trials for cancer treatment, abrogates G(2) checkpoint function and sensitizes p53-defective cancer cells to DNA-damaging agents. In most species, the G(2) checkpoint prevents the Cdc25 phosphatase from removing inhibitory phosphate groups from the mitosis-promoting kinase Cdc2. This is accomplished by maintaining Cdc25 in a phosphorylated form that binds 14-3-3 proteins. The checkpoint kinases, Chk1 and Cds1, are proposed to regulate the interactions between human Cdc25C and 14-3-3 proteins by phosphorylating Cdc25C on serine 216. 14-3-3 proteins, in turn, function to keep Cdc25C out of the nucleus. Here we report that UCN-01 caused loss of both serine 216 phosphorylation and 14-3-3 binding to Cdc25C in DNA-damaged cells. In addition, UCN-01 potently inhibited the ability of Chk1 to phosphorylate Cdc25C in vitro. In contrast, Cds1 was refractory to inhibition by UCN-01 in vitro, and Cds1 was still phosphorylated in irradiated cells treated with UCN-01. Thus, neither Cds1 nor kinases upstream of Cds1, such as ataxia telangiectasia-mutated, are targets of UCN-01 action in vivo. Taken together our results identify the Chk1 kinase and the Cdc25C pathway as potential targets of G(2) checkpoint abrogation by UCN-01.  相似文献   

2.
Summary The major driving forces in the eukaryotic cell cycle are the cyclin-dependent kinases (Cdk). Cdks can be activated through dephosphorylation of inhibitory phosphorylations catalyzed by the Cdc25 phosphatase family. In higher-eukaryotic cells, there exist three Cdc25 family members, Cdc25A, Cdc25B, and Cdc25C. While Cdc25A plays a major role at the G1-to-S phase transition, Cdc25B and C are required for entry into mitosis. The regulation of Cdc25C is crucial for the operation of the DNA-damage checkpoint. Two protein kinases, Chk1 and Cds1, can be activated in response to DNA damage or in the presence of unreplicated DNA. Chk1 and Cds1 may phosphorylate Cdc25C to prevent entry into mitosis through inhibition of Cdc2 (Cdk1) dephosphorylation.  相似文献   

3.
Recent evidence indicates that arrest of mammalian cells at the G(2)/M checkpoint involves inactivation and translocation of Cdc25C, which is mediated by phosphorylation of Cdc25C on serine 216. Data obtained with a phospho-specific antibody against serine 216 suggest that activation of the DNA damage checkpoint is accompanied by an increase in serine 216 phosphorylated Cdc25C in the nucleus after exposure of cells to gamma-radiation. Prior treatment of cells with 2 mM caffeine inhibits such a change and markedly reduces radiation-induced ataxia-telangiectasia-mutated (ATM)-dependent Chk2/Cds1 activation and phosphorylation. Chk2/Cds1 is known to localize in the nucleus and to phosphorylate Cdc25C at serine 216 in vitro. Caffeine does not inhibit Chk2/Cds1 activity directly, but rather, blocks the activation of Chk2/Cds1 by inhibiting ATM kinase activity. In vitro, ATM phosphorylates Chk2/Cds1 at threonine 68 close to the N terminus, and caffeine inhibits this phosphorylation with an IC(50) of approximately 200 microM. Using a phospho-specific antibody against threonine 68, we demonstrate that radiation-induced, ATM-dependent phosphorylation of Chk2/Cds1 at this site is caffeine-sensitive. From these results, we propose a model wherein caffeine abrogates the G(2)/M checkpoint by targeting the ATM-Chk2/Cds1 pathway; by inhibiting ATM, it prevents the serine 216 phosphorylation of Cdc25C in the nucleus. Inhibition of ATM provides a molecular explanation for the increased radiosensitivity of caffeine-treated cells.  相似文献   

4.
In the fission yeast Schizosaccharomyces pombe, the protein kinase Cds1 is activated by the S-M replication checkpoint that prevents mitosis when DNA is incompletely replicated. Cds1 is proposed to regulate Wee1 and Mik1, two tyrosine kinases that inhibit the mitotic kinase Cdc2. Here, we present evidence from in vivo and in vitro studies, which indicates that Cds1 also inhibits Cdc25, the phosphatase that activates Cdc2. In an in vivo assay that measures the rate at which Cdc25 catalyzes mitosis, Cds1 contributed to a mitotic delay imposed by the S-M replication checkpoint. Cds1 also inhibited Cdc25-dependent activation of Cdc2 in vitro. Chk1, a protein kinase that is required for the G2-M damage checkpoint that prevents mitosis while DNA is being repaired, also inhibited Cdc25 in the in vitro assay. In vitro, Cds1 and Chk1 phosphorylated Cdc25 predominantly on serine-99. The Cdc25 alanine-99 mutation partially impaired the S-M replication and G2-M damage checkpoints in vivo. Thus, Cds1 and Chk1 seem to act in different checkpoint responses to regulate Cdc25 by similar mechanisms.  相似文献   

5.
Degradation of Cdc25A phosphatase is an ubiquitous feature of stress. There are some discrepancies in the reported roles for different phosphorylation sites in the regulation of Cdc25A stability. Using a panel of doxycycline-inducible phosphorylation mutants we show that the stability of human Cdc25A protein is dependent upon phosphorylation at S75. In non-stressed conditions and in non-mitotic cells, Cdc25A is unstable and its stability is regulated in a Chk1-dependent manner. During mitosis, Cdc25A becomes stable and does not undergo degradation after DNA damage. We further show that Chk1 kinase regulates Cdc25A stability after UV irradiation. Similar to Chk1 kinase, p38 MAPK controls Cdc25A protein level after osmotic stress. Using phospho-specific antibodies, we find that both kinases can phosphorylate S75 and S123 in vitro. Inactivation of either Chk1 after UV-irradiation or p38 MAPK after osmotic stress prevents activation of a S phase checkpoint and S75 and S123 phosphorylation. However, introduction of stable Cdc25A (S75A or S75/123A) proteins is not sufficient to overcome this checkpoint. We propose that regulation of human Cdc25A stability by its phosphorylation at S75 may contribute to S phase checkpoint activation only in cooperation with other regulatory mechanisms.  相似文献   

6.
Degradation of Cdc25A phosphatase is an ubiquitous feature of stress. There are some discrepancies in the reported roles for different phosphorylation sites in the regulation of Cdc25A stability. Using a panel of doxycycline-inducible phosphorylation mutants we show that the stability of human Cdc25A protein is dependent upon phosphorylation at S75. In non-stressed conditions and in non-mitotic cells, Cdc25A is unstable and its stability is regulated in a Chk1-dependent manner. During mitosis, Cdc25A becomes stable and does not undergo degradation after DNA damage. We further show that Chk1 kinase regulates Cdc25A stability after UV irradiation. Similar to Chk1 kinase, p38 MAPK controls Cdc25A protein level after osmotic stress. Using phospho-specific antibodies, we find that both kinases can phosphorylate S75 and S123 in vitro. Inactivation of either Chk1 after UV-irradiation or p38 MAPK after osmotic stress prevents activation of a S phase checkpoint and S75 and S123 phosphorylation. However, introduction of stable Cdc25A (S75A or S75/123A) proteins is not sufficient to overcome this checkpoint. We propose that regulation of human Cdc25A stability by its phosphorylation at S75 may contribute to S phase checkpoint activation only in cooperation with other regulatory mechanisms.  相似文献   

7.
Although it is well established that Cdc2 kinase phosphorylates the DNA damage checkpoint protein Crb253BP1 in mitosis, the full impact of this modification is still unclear. The Tudor-BRCT domain protein Crb2 binds to modified histones at DNA lesions to mediate the activation of Chk1 by Rad3ATR kinase. We demonstrate here that fission yeast cells harbouring a hyperactive Cdc2CDK1 mutation (cdc2.1w) are specifically sensitive to the topoisomerase 1 inhibitor camptothecin (CPT) which breaks DNA replication forks. Unlike wild-type cells, which delay only briefly in CPT medium by activating Chk1 kinase, cdc2.1w cells bypass Chk1 to enter an extended cell-cycle arrest which depends on Cds1 kinase. Intriguingly, the ability to bypass Chk1 requires the mitotic Cdc2 phosphorylation site Crb2-T215. This implies that the presence of the mitotic phosphorylation at Crb2-T215 channels Rad3 activity towards Cds1 instead of Chk1 when forks break in S phase. We also provide evidence that hyperactive Cdc2.1w locks cells in a G1-like DNA repair mode which favours non-homologous end joining over interchromosomal recombination. Taken together, our data support a model such that elevated Cdc2 activity delays the transition of Crb2 from its G1 to its G2 mode by blocking Srs2 DNA helicase and Casein Kinase 1 (Hhp1).  相似文献   

8.
In fission yeast, inactivation of the Cdc25 phosphatase by checkpoint kinases participates in the signaling cascade that temporarily stops cell cycle progression after DNA damage. In human, CDC25B and C are also known to be targeted by a similar checkpoint machinery. We have examined by homologous recombination, whether CDC25B and CDC25C were able to substitute for the function of fission yeast Cdc25. We demonstrate that (i) CDC25B and C efficiently replace Cdc25 for vegetative growth, (ii) CDC25C is able to restore a functional checkpoint in response to ionizing radiation in both a Chk1- and Cds1-dependent manner, (iii) CDC25B and C are equally efficient in the response to UV irradiation, CDC25B being only dependent on Chk1, while CDC25C depends on both Chk1 and Cds1, and (iv) CDC25C is able to restore a functional DNA replication checkpoint induced by hydroxyurea in a Cds1-dependent manner. The consequences of these findings on our current view of the checkpoint cascade are discussed.  相似文献   

9.
In Xenopus embryos, cell cycle elongation and degradation of Cdc25A (a Cdk2 Tyr15 phosphatase) occur naturally at the midblastula transition (MBT), at which time a physiological DNA replication checkpoint is thought to be activated by the exponentially increased nucleo-cytoplasmic ratio. Here we show that the checkpoint kinase Chk1, but not Cds1 (Chk2), is activated transiently at the MBT in a maternal/zygotic gene product-regulated manner and is essential for cell cycle elongation and Cdc25A degradation at this transition. A constitutively active form of Chk1 can phosphorylate Cdc25A in vitro and can target it rapidly for degradation in pre-MBT embryos. Intriguingly, for this degradation, however, Cdc25A also requires a prior Chk1-independent phosphorylation at Ser73. Ectopically expressed human Cdc25A can be degraded in the same way as Xenopus Cdc25A. Finally, Cdc25A degradation at the MBT is a prerequisite for cell viability at later stages. Thus, the physiological replication checkpoint is activated transiently at the MBT by developmental cues, and activated Chk1, only together with an unknown kinase, targets Cdc25A for degradation to ensure later development.  相似文献   

10.
Six checkpoint Rad proteins (Rad1, Rad3, Rad9, Rad17, Rad26, and Hus1) are needed to regulate checkpoint protein kinases Chk1 and Cds1 in fission yeast. Chk1 is required to prevent mitosis when DNA is damaged by ionizing radiation (IR), whereas either kinase is sufficient to prevent mitosis when DNA replication is inhibited by hydroxyurea (HU). Checkpoint Rad proteins are required for IR-induced phosphorylation of Chk1 and HU-induced activation of Cds1. IR activates Cds1 only during the DNA synthesis (S) phase, whereas HU induces Chk1 phosphorylation only in cds1 mutants. Here, we investigate the basis of the checkpoint signal specificity of Chk1 phosphorylation and Cds1 activation. We show that IR fails to induce Chk1 phosphorylation in HU-arrested cells. Release from the HU arrest following IR causes substantial Chk1 phosphorylation. These and other data indicate that Cds1 prevents Chk1 phosphorylation in HU-arrested cells, which suggests that Cds1 actively suppresses a repair process that leads to Chk1 phosphorylation. Cds1 becomes more highly concentrated in the nucleus only during the S phase of the cell cycle. This finding correlates with S-phase specificity of IR-induced activation of Cds1. However, constitutive nuclear localization of Cds1 does not enhance IR-induced activation of Cds1. This result suggests that Cds1 activation requires DNA structures or protein activities that are present only during S phase. These findings help to explain how Chk1 and Cds1 respond to different checkpoint signals.  相似文献   

11.
The conserved PIK-related kinase Rad3 is required for all DNA-integrity-checkpoint responses in fission yeast. Here we report a stable association between Rad3 and Rad26 in soluble protein extracts. Rad26 shows Rad3-dependent phosphorylation after DNA damage. Unlike phosphorylation of Hus1, Crb2/Rhp9, Cds1 and Chk1, phosphorylation of Rad26 does not require other known checkpoint proteins. Rad26 phosphorylation is the first biochemical marker of Rad3 function, indicating that Rad3-related checkpoint kinases may have a direct role in DNA-damage recognition.  相似文献   

12.
Activation of Cdc2/cyclin B kinase and entry into mitosis requires dephosphorylation of inhibitory sites on Cdc2 by Cdc25 phosphatase. In vertebrates, Cdc25C is inhibited by phosphorylation at a single site targeted by the checkpoint kinases Chk1 and Cds1/Chk2 in response to DNA damage or replication arrest. In Xenopus early embryos, the inhibitory site on Cdc25C (S287) is also phosphorylated by a distinct protein kinase that may determine the intrinsic timing of the cell cycle. We show that S287-kinase activity is repressed in extracts of unfertilized Xenopus eggs arrested in M phase but is rapidly stimulated upon release into interphase by addition of Ca2+, which mimics fertilization. S287-kinase activity is not dependent on cyclin B degradation or inactivation of Cdc2/cyclin B kinase, indicating a direct mechanism of activation by Ca2+. Indeed, inhibitor studies identify the predominant S287-kinase as Ca2+/calmodulin-dependent protein kinase II (CaMKII). CaMKII phosphorylates Cdc25C efficiently on S287 in vitro and, like Chk1, is inhibited by 7-hydroxystaurosporine (UCN-01) and debromohymenialdisine, compounds that abrogate G2 arrest in somatic cells. CaMKII delays Cdc2/cyclin B activation via phosphorylation of Cdc25C at S287 in egg extracts, indicating that this pathway regulates the timing of mitosis during the early embryonic cell cycle.  相似文献   

13.
In eukaryotic cells, fidelity in transmission of genetic information during cell division is ensured by the action of cell cycle checkpoints. Checkpoints are surveillance mechanisms that arrest or delay cell cycle progression when critical cellular processes are defective or when the genome is damaged. During meiosis, the so-called meiotic recombination checkpoint blocks entry into meiosis I until recombination has been completed, thus avoiding aberrant chromosome segregation and the formation of aneuploid gametes. One of the key components of the meiotic recombination checkpoint is the meiosis-specific Mek1 kinase, which belongs to the family of Rad53/Cds1/Chk2 checkpoint kinases containing forkhead-associated domains. In fission yeast, several lines of evidence suggest that Mek1 targets the critical cell cycle regulator Cdc25 to delay meiotic cell cycle progression. Here, we investigate in more detail the molecular mechanism of action of the fission yeast Mek1 protein. We demonstrate that Mek1 acts independently of Cds1 to phosphorylate Cdc25, and this phosphorylation is required to trigger cell cycle arrest. Using ectopic overexpression of mek1+ as a tool to induce in vivo activation of Mek1, we find that Mek1 promotes cytoplasmic accumulation of Cdc25 and results in prolonged phosphorylation of Cdc2 at tyrosine 15. We propose that at least one of the mechanisms contributing to the cell cycle delay when the meiotic recombination checkpoint is activated in fission yeast is the nuclear exclusion of the Cdc25 phosphatase by Mek1-dependent phosphorylation.  相似文献   

14.
Human checkpoint kinase 2 is a major actor in checkpoint activation through phosphorylation by ataxia telangiectasia mutated in response to DNA double-strand breaks. In the absence of de novo DNA damage, its autoactivation, reported in the event of increased Cds1/checkpoint kinase 2 (Chk2) expression, has been attributed to oligomerization. Here we report a study performed on autoactivated recombinant Chk2 proteins that aims to correlate kinase activity and phosphorylation status. Using a fluorescence-based technique to assay human checkpoint kinase 2 catalytic activity, slight differences in the ability to phosphorylate Cdc25C were observed, depending on the recombinant system used. Using mass spectrometry, the phosphorylation sites were mapped to identify sites potentially involved in the kinase activity. Five phosphorylated positions, at Ser120, Ser260, Thr225, Ser379 and Ser435, were found to be common to bacteria and insect cells expression systems. They were present in addition to the six known phosphorylation sites induced by ionizing radiation (Thr68, Thr432, Thr387, Ser516, Ser33/35 and Ser19) detected by immunoblotting. After phosphatase treatment, Chk2 regained activity via autorephosphorylation. The determination of the five common sites and ionizing-radiation-inducible positions as rephosphorylated confirms that they are potential positive regulators of Chk2 kinase activity. For Escherichia coli's most highly phosphorylated 6His-Chk2, 13 additional phosphorylation sites were assigned, including 7 novel sites on top of recently reported phosphorylation sites.  相似文献   

15.
Calonge TM  O'Connell MJ 《Genetics》2006,174(1):113-123
Activation of the Chk1 protein kinase by DNA damage enforces a checkpoint that maintains Cdc2 in its inactive, tyrosine-15 (Y15) phosphorylated state. Chk1 downregulates the Cdc25 phosphatases and concomitantly upregulates the Wee1 kinases that control the phosphorylation of Cdc2. Overproduction of Chk1 causes G(2) arrest/delay independently of DNA damage and upstream checkpoint genes. We utilized this to screen fission yeast for mutations that alter sensitivity to Chk1 signaling. We describe three dominant-negative alleles of cdr1, which render cells supersensitive to Chk1 levels, and suppress the checkpoint defects of chk1Delta cells. Cdr1 encodes a protein kinase previously identified as a negative regulator of Wee1 activity in response to limited nutrition, but Cdr1 has not previously been linked to checkpoint signaling. Overproduction of Cdr1 promotes checkpoint defects and exacerbates the defective response to DNA damage of cells lacking Chk1. We conclude that regulation of Wee1 by Cdr1 and possibly by related kinases is an important antagonist of Chk1 signaling and represents a novel negative regulation of cell cycle arrest promoted by this checkpoint.  相似文献   

16.
The S checkpoint response to ultraviolet radiation (UVC) that inhibits replicon initiation is dependent on the ATR and Chk1 kinases. Downstream effectors of this response, however, are not well characterized. Data reported here eliminated Cdc25A degradation and inhibition of Cdk2-cyclin E as intrinsic components of the UVC-induced pathway of inhibition of replicon initiation in human cells. A sublethal dose of UVC (1 J/m(2)), which selectively inhibits replicon initiation by 50%, failed to reduce the amount of Cdc25A protein or decrease Cdk2-cyclin E kinase activity. Cdc25A degradation was observed after irradiation with cytotoxic fluences of UVC, suggesting that severe inhibition of DNA chain elongation and activation of the replication checkpoint might be responsible for the UVC-induced degradation of Cdc25A. Another proposed effector of the S checkpoint is the Cdc7-Dbf4 complex. Dbf4 interacted weakly with Chk1 in vivo but was recognized as a substrate for Chk1-dependent phosphorylation in vitro. FLAG-Dbf4 formed complexes with endogenous Cdc7, and this interaction was stable in UVC-irradiated HeLa cells. Overexpression of FLAG- or Myc-tagged Dbf4 abrogated the S checkpoint response to UVC but not ionizing radiation. These findings implicate a Dbf4-dependent kinase as a possible target of the ATR- and Chk1-dependent S checkpoint response to UVC.  相似文献   

17.
Checking in on Cds1 (Chk2): A checkpoint kinase and tumor suppressor   总被引:9,自引:0,他引:9  
Together, DNA repair and checkpoint responses ensure the integrity of the genome. Coordination of cell cycle checkpoints and DNA repair are especially important following genotoxic radiation or chemotherapy, during which unusually high loads of DNA damage are sustained. In mammalian cells, the checkpoint kinase, Cds1 (also known as Chk2) is activated by ATM in response to DNA damage. The role of Cds1 as a checkpoint kinase depends on its ability to phosphorylate cell cycle regulators such p53, Cdc25 and Brca1. A role for Cds1 in repair is suggested by the finding that it interacts with the Holliday junction resolving activity Mus81. This review focuses on the many questions generated by recent progress in understanding the function and regulation of human Cds1.  相似文献   

18.
19.
Cdc25A regulates cell cycle progression, has oncogenic and anti-apoptotic activity, and is over-expressed in many human tumors. Phosphorylation by Chk1 and Cds1/Chk2 down-regulates Cdc25A levels in response to genotoxic stresses. Nevertheless, it remains unclear whether Chk1 and Cds1/Chk2 are uniquely responsible for regulating Cdc25A stability during interphase or if other kinase activities contribute. Here we report that treatment of HeLa cells with the cyclin-dependent kinase inhibitor roscovitine caused a concentration- and time-dependent increase in Cdc25A protein levels. Transfection with dominant-negative Cdk mutants demonstrated that only a Cdk2 mutant increased Cdc25A protein levels; Cdk1 and Cdk3 mutants had no effect. The increased Cdc25A protein levels were the result of an increase in the half-life of the protein; no increase in Cdc25A mRNA levels was observed. These results demonstrate Cdk2 kinase activity contributes to the labile nature of Cdc25A during interphase and redefine the nature of the Cdc25A-Cdk2 autoamplification feedback loop.  相似文献   

20.
Checkpoints respond to DNA damage by arresting the cell cycle to provide time for facilitating repair. In mammalian cells, the G(2) checkpoint prevents the Cdc25C phosphatase from removing inhibitory phosphate groups from the mitosis-promoting kinase Cdc2. Both Chk1 and Chk2, the checkpoint kinases, can phosphorylate Cdc25C and inactivate its in vitro phosphatase activity. Therefore, both Chk1 and Chk2 are thought to regulate the activation of the G(2) checkpoint. Here we report that A1-5, a transformed rat embryo fibroblast cell line, shows much more radioresistance associated with a much stronger G(2) arrest response when compared with its counterpart, B4, although A1-5 and B4 cells have a similar capacity for nonhomologous end-joining DNA repair. These phenotypes of A1-5 cells are accompanied by a higher Chk1 expression and a higher phosphorylation of Cdc2. On the other hand, Chk2 expression increases slightly following radiation; however, it has no difference between A1-5 and B4 cells. Caffeine or UCN-01 abolishes the extreme radioresistance with the strong G(2) arrest and at the same time reduces the phosphorylation of Cdc2 in A1-5 cells. In addition, Chk1 but not Chk2 antisense oligonucleotide sensitizes A1-5 cells to radiation-induced killing and reduces the G(2) arrest of the cells. Taken together these results suggest that the Chk1/Cdc25C/Cdc2 pathway is the major player for the radioresistance with G(2) arrest in A1-5 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号