首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Immunofluorescence and electron microscopy were used to evaluate the formation of swollen endosomes in NRK cells after treatment with wortmannin or sucrose and to study the relationship between lumenal and limiting membrane. Both treatments resulted in the formation of two populations of swollen late endocytic vacuoles, positive for lysosomal glycoproteins or cation-independent mannose 6-phosphate receptors, but those induced by wortmannin were characterised by time-dependent accumulation of lumenal vesicles, whereas those induced by sucrose uptake did not accumulate lumenal vesicles. In both cases, the distribution of the late endosomal marker, lysobisphosphatidic acid, remained unchanged and was present within the lumen of the swollen vacuoles. Consumption of plasma membrane and peripheral early endosomes, and the appearance of transferrin receptors in swollen late endosomes, indicated that continued membrane influx from early endocytic compartments, together with inhibition of membrane traffic out of the swollen compartments, is sufficient to account for the observed phenotype of cells treated with wortmannin. The accumulation of organelles with the characteristic morphology of endocytic carrier vesicles in cells that have taken up sucrose offers an explanation for the paucity of lumenal vesicles in swollen sucrosomes. Our data suggest that in fibroblast cells the swollen endosome phenotype induced by wortmannin is a consequence of endocytic membrane influx, coupled with the failure to recycle membrane to other cellular destinations, and not the inhibition of multivesicular body biogenesis.  相似文献   

2.
Vacuoles of ungerminated Colletotrichum graminicola conidia engulf cytoplasmic structures by a process analogous to microautophagy, demonstrated by using a vacuolar membrane acid phosphatase marker. Fusion of vesicles with vacuoles, without deposition of the acid phosphatase reaction product has been observed, suggesting other pathways of material delivery to vacuoles than microautophagy. Plasma membrane invaginations, multivesicular bodies and retention of neutral red into small vesicles, which were internalized by the vacuole, were verified. These results provided evidence for endocytosis and an active endosomal system. Together, our findings with C. graminicola demonstrated that vacuoles are very dynamic compartments, playing roles in autophagy and endocytic processes.  相似文献   

3.
ABSTRACT: BACKGROUND: In yeast and mammals, many plasma membrane (PM) proteins destined for degradation are tagged with ubiquitin. These ubiquitinated proteins are internalized into clathrin-coated vesicles and are transported to early endosomal compartments. There, ubiquitinated proteins are sorted by the endosomal sorting complex required for transport (ESCRT) machinery into the intraluminal vesicles of multivesicular endosomes. Degradation of these proteins occurs after endosomes fuse with lysosomes/lytic vacuoles to release their content into the lumen. In plants, some PM proteins, which cycle between the PM and endosomal compartments, have been found to be ubiquitinated, but it is unclear whether ubiquitin is sufficient to mediate internalization and thus acts as a primary sorting signal for the endocytic pathway. To test whether plants use ubiquitin as a signal for the degradation of membrane proteins, we have translationally fused ubiquitin to different fluorescent reporters for the plasma membrane and analyzed their transport. RESULTS: Ubiquitin-tagged PM reporters localized to endosomes and to the lumen of the lytic vacuole in tobacco mesophyll protoplasts and in tobacco epidermal cells. The internalization of these reporters was significantly reduced if clathrin-mediated endocytosis was inhibited by the coexpression of a mutant of the clathrin heavy chain, the clathrin hub. Surprisingly, a ubiquitin-tagged reporter for the Golgi was also transported into the lumen of the vacuole. Vacuolar delivery of the reporters was abolished upon inhibition of the ESCRT machinery, indicating that the vacuolar delivery of these reporters occurs via the endocytic transport route. CONCLUSIONS: Ubiquitin acts as a sorting signal at different compartments in the endomembrane system to target membrane proteins into the vacuolar degradation pathway: If displayed at the PM, ubiquitin triggers internalization of PM reporters into the endocytic transport route, but it also mediates vacuolar delivery if displayed at the Golgi. In both cases, ubiquitin-tagged proteins travel via early endosomes and multivesicular bodies to the lytic vacuole. This suggests that vacuolar degradation of ubiquitinated proteins is not restricted to PM proteins but might also facilitate the turnover of membrane proteins in the early secretory pathway.  相似文献   

4.
Phosphatidylinositol 3-kinase (PI3K) regulates several vital cellular processes, including signal transduction and membrane trafficking. In order to study the intracellular localization of the PI3K product, phosphatidylinositol 3-phosphate [PI(3)P], we constructed a probe consisting of two PI(3)P-binding FYVE domains. The probe was found to bind specifically, and with high affinity, to PI(3)P both in vitro and in vivo. When expressed in fibroblasts, a tagged probe localized to endosomes, as detected by fluorescence microscopy. Electron microscopy of untransfected fibroblasts showed that PI(3)P is highly enriched on early endosomes and in the internal vesicles of multivesicular endosomes. While yeast cells deficient in PI3K activity (vps15 and vps34 mutants) were not labelled, PI(3)P was found on intralumenal vesicles of endosomes and vacuoles of wild-type yeast. vps27Delta yeast cells, which have impaired endosome to vacuole trafficking, showed a decreased vacuolar labelling and increased endosome labelling. Thus PI(3)P follows a conserved intralumenal degradation pathway, and its generation, accessibility and turnover are likely to play a crucial role in defining the early endosome and the subsequent steps leading to multivesicular endosome formation.  相似文献   

5.
Summary Stimulation of secretion by pilocarpine results in a 70% loss of zymogen granules from pancreatic acinar cell during the first hr after injection of the drug. In previous work (Geuze and Poort, 1973), we found that the amount of membrane stored in the surface of the microvilli and of the numerous infoldings present in highly stimulated cells, increases during the first 2 hr and then decreases again during the 3rd hr after stimulation, concurrently with maximal endocytosis of sorbitol-[su14C].Further observations on the fine structure of stimulated cells at various time intervals after injection of pilocarpine showed that during the first hr numerous smooth vesicles and multivesicular bodies (mvb's) appear in the apical cytoplasm, while the number of coated vesicles and their relative total volume increase significantly 3 hr after stimulation.By infusion of ferritin in the pancreatic duct system in vivo and application of cytochemical techniques (osmium impregnation, electron microscope autoradiography and acid phosphatase cytochemistry) it could be established that after stimulated exocytotic secretion, redundant apical cell membrane is withdrawn by at least two routes: 1) During the initial rapid increase of the amount of apical cell membrane, withdrawal is accomplished by interiorization of luminal invaginations into smooth endocytotic vesicles, which in turn give rise to mvb's by infolding and subsequent fission of their limiting membrane. 2) Once the bulk of stored secretion granules has been discharged, endocytotic coated vesicles become gradually more prominent as carriers for redundant cell membrane. The contents of endocytotic structures ultimately become incorporated in residual bodies, suggesting lysosomal degradation of cell membrane prior to eventual reutilization.Coated vesicles also originate by pinching off from mature Golgi cisternae and condensing vacuoles. A possible function of the coated membranes in the concentration of exportable protein within forming secretory granules is discussed.  相似文献   

6.
Phosphatidylinositol 3-kinases (PI 3-kinases) regulate cellular functions through the 3'-phosphorylation of phosphatidylinositol (PI) and its derivatives. The PI 3-kinase product phosphatidylinositol 3-phosphate [PI(3)P] functions to recruit and activate effector proteins containing FYVE zinc finger domains. These proteins have various functions in endocytic membrane trafficking, cytoskeletal regulation and signal transduction. In order to understand the function of FYVE proteins, it is essential to study the formation, localisation, trafficking and turnover of PI(3)P. Here we review recent evidence that PI(3)P is formed on early endosomes through the activity of a PI 3-kinase which is recruited by the GTPase Rab5, and that the PI(3)P is subsequently internalised into intralumenal vesicles of multivesicular endosomes for turnover.  相似文献   

7.
The endocytic pathway transports cargo from the plasma membrane to early endosomes, where certain cargoes are sorted to the late endosome/multivesicular body. Biosynthetic cargo destined for the lysosome is also trafficked through the multivesicular body. Once delivered to the multivesicular body, cargo destined for the interior of the lysosome is selectively sorted into vesicles that bud into the lumen of the multivesicular body. These vesicles are released into the lumen of the lysosome upon the fusion of the multivesicular body and lysosomal limiting membranes. The yeast protein Fab1, which catalyzes the production of phosphatidylinositol (3,5) bisphosphate [PtdIns(3,5)P2], is necessary for proper sorting of biosynthetic cargo in the multivesicular body. Utilizing an endocytosis screen, we isolated a novel allele of FAB1 that contains a point mutation in the lipid kinase domain. Characterization of this allele revealed reduced PtdIns(3,5)P2 production, altered vacuole morphology, and biosynthetic protein sorting defects. We also found that endocytosis of the plasma membrane protein Ste3 is partially blocked downstream of the internalization step, and that delivery of the dye FM4-64 to the vacuole is delayed in fab1 mutants. Additionally, Ste3 is not efficiently sorted into multivesicular body vesicles in fab1 mutants and instead localizes to the vacuolar limiting membrane. These data show that PtdIns(3,5)P2 is necessary for proper trafficking and sorting of endocytic cargo through the late endosome/multivesicular body.  相似文献   

8.
This electron microscopical study was performed in order to follow the endocytic pathway of horseradish peroxidase and colloidal gold tracers and to determine the involvement of endocytosis in postnatal differentiation in superficial cells of the mouse urinary bladder epithelium. Morphometric analyses of late endosomes/multivesicular bodies from day of birth to day 25 were performed. The internalisation and intracellular transport of luminal plasmalemma to multivesicular bodies via endocytic vesicles, early endosomes and pleomorphic compartments was established. Dynamic changes in endocytic activity took place within the first few days of postnatal differentiation. During this period the number of multivesicular bodies changed in an inverse ratio to their size. After the third day endocytic activity gradually approached the low rate of adult urothelium.  相似文献   

9.
Immunoelectron microscopy was used to localize the brush border hydrolases sucrase-isomaltase (SI) and dipeptidylpeptidase IV (DPPIV) in the human colon carcinoma cell line Caco-2. Both enzymes were detected at the microvillar membrane, in small vesicles and multivesicular bodies (MVBs), and in lysosomal bodies. In addition, DPPIV was found in the Golgi apparatus, a variety of apical vesicles and tubules, and at the basolateral membrane. To investigate whether the hydrolases present in the lysosomal bodies were endocytosed from the apical membrane, endocytic compartments were marked with the endocytic tracer cationized ferritin (CF). After internalization from the apical membrane through coated pits, CF was first recovered in apical vesicles and tubules, and larger electronlucent vesicles (early endosomes), and later accumulated in MVBs (late endosomes) and lysosomal bodies. DPPIV was localized in a subpopulation of both early and late endocytic vesicles, which contained CF after 3 and 15 min of uptake, respectively. Also, internalization of the specific antibody against DPPIV and gold labeling on cryosections showed endocytosed DPPIV in both early and late endosomes. However, unlike CF, no accumulation of DPPIV was seen in MVBs or lysosomal bodies after longer chase times. The results indicate that in Caco-2 cells the majority of brush border hydrolases present in lysosomal bodies are not endocytosed from the brush border membrane. Furthermore, the labeling patterns obtained, suggest that late endosomes may be involved in the recycling of endocytosed DPPIV to the microvilli.  相似文献   

10.
R. D. Record  L. R. Griffing 《Planta》1988,176(4):425-432
Ultrastructural analysis of endocytosis of cationized ferritin (CF) has been combined with ultrastructural localization of acid phosphatases (AcPase) in soybean (Glycine max (L.) Merr.) protoplasts. While CF is an electron-dense marker of organelles of the endocytic pathway, ultrastructural histochemistry of AcPase identifies the organelles involved in the synthesis, transport, and storage of lytic-compartment enzymes, i.e. the lysosomal pathway. Acid phosphatases have been localized using both lead- and cerium-precipitation techniques. Protoplasts have been exposed to CF for 5 min, 30 min, or 3 h and processed for AcPase localization. At 5 min, smooth vesicles contain both CF and AcPase. By 30 min, Golgi cisternae and multivesicular bodies contain both labels. By 3 h, vacuoles become labelled with both CF and AcPase. The large central vacuoles contain intraluminal membranes which are associated with both AcPase and CF. These observations extend the analogy between plant vacuoles and animal lysosomes and demonstrate the points at which the endocytic pathway of plants converges with the lysosomal pathway.Abbreviations AcPase acid phosphatase - CF cationized ferritin - ER endoplasmic reticulum - MVB multivesicular body - PCR partially coated reticulum - PM plasma membrane  相似文献   

11.
Microautophagy is the transfer of cytosolic components into the lysosome by direct invagination of the lysosomal membrane and subsequent budding of vesicles into the lysosomal lumen. This process is topologically equivalent to membrane invagination during multivesicular body formation and to the budding of enveloped viruses. Vacuoles are lysosomal compartments of yeasts. Vacuolar membrane invagination can be reconstituted in vitro with purified yeast vacuoles, serving as a model system for budding of vesicles into the lumen of an organelle. Using this in vitro system, we defined different reaction states. We identified inhibitors of microautophagy in vitro and used them as tools for kinetic analysis. This allowed us to characterize four biochemically distinguishable steps of the reaction. We propose that these correspond to sequential stages of vacuole invagination and vesicle scission. Formation of vacuolar invaginations was slow and temperature-dependent, whereas the final scission of the vesicle from a preformed invagination was fast and proceeded even on ice. Our observations suggest that the formation of invaginations rather than the scission of vesicles is the rate-limiting step of the overall reaction.  相似文献   

12.
Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes   总被引:28,自引:0,他引:28  
Hrs and the endosomal sorting complexes required for transport, ESCRT-I, -II, and -III, are involved in the endosomal sorting of membrane proteins into multivesicular bodies and lysosomes or vacuoles. The ESCRT complexes are also required for formation of intraluminal endosomal vesicles and for budding of certain enveloped RNA viruses such as HIV. Here, we show that Hrs binds to the ESCRT-I subunit Tsg101 via a PSAP motif that is conserved in Tsg101-binding viral proteins. Depletion of Hrs causes a reduction in membrane-associated ESCRT-I subunits, a decreased number of multivesicular bodies and an increased size of late endosomes. Even though Hrs mainly localizes to early endosomes and Tsg101 to late endosomes, the two proteins colocalize on a subpopulation of endosomes that contain lyso-bisphosphatidic acid. Overexpression of Hrs causes accumulation of Tsg101 on early endosomes and prevents its localization to late endosomes. We conclude that Hrs mediates the initial recruitment of ESCRT-I to endosomes and, thereby, indirectly regulates multivesicular body formation.  相似文献   

13.
We have raised specific polyclonal immunoglobulin G (IgG) against a major lysosomal membrane sialoglycoprotein (LGP107) taken from rat liver and have prepared a conjugate of its Fab' fragment with horseradish peroxidase (HRP-anti LGP107 Fab') as a probe for the subcellular antigen. Electron immunocytochemistry in primary cultured rat hepatocytes showed that LGP107 resided primarily within lysosomes and was associated with luminal amorphous materials as well as limiting membranes. In addition, LGP107 was shown to be substantially distributed throughout the endocytic vacuolar system. The glycoprotein was found clustered in coated pits at the cell surface and localized along the surrounding membranes in endocytic vesicles. When cultured cells were exposed to HRP-anti LGP107 Fab', the antibody which was bound to its antigen within the coated pits was internalized via a system of endocytic vesicles and transported to lysosomes. During 20 min of incubation at 37 degrees C, the HRP tracer appeared at an early stage in small vesicles and moved progressively to larger vesicles, including multivesicular bodies. After 1 h, the tracer could be clearly seen in lysosomes heterogeneous in shape and size. The existence of LGP107 in endocytic compartments and the uptake of anti LGP107 antibody by hepatocytes were not blocked by prior treatment of the cells with cycloheximide and excess amounts of anti LGP107 IgG. These data suggest that LGP107 circulates between the cell surface and lysosomes through the endocytic membrane traffic in hepatocytes.  相似文献   

14.
The intracellular transport and location of major histocompatibility complex (MHC) class II molecules and associated invariant chain (Ii) were investigated in a human melanoma cell line. In contrast to the class II molecules, which remain stable for greater than 4 h after synthesis, the associated Ii is proteolytically processed within 2 h. During or shortly after synthesis the NH2-terminal cytoplasmic and membrane-spanning segment is in some of the Ii molecules cleaved off; during intracellular transport, class II associated and membrane integrated Ii is processed from its COOH terminus in distinct steps in endocytic compartments. Immunocytochemical studies at the light and electron microscopic level revealed the presence of class II molecules, but not of Ii on the cell surface. Intracellularly both Ii and class II molecules were localized in three morphologically and kinetically distinct compartments, early endosomes, multivesicular bodies, and prelysosomes. This localization in several distinct endosomal compartments contrasts with the localization of class II molecules in mainly one endocytic compartment in B lymphoblastoid cell lines. As in these lymphoblastoid cell lines Ii is known to be rapidly degraded it is conceivable that the rate of proteolysis of the class II associated Ii and its dissociation from class II molecules modulates the retention of the oligomeric complex in endocytic compartments, and as a consequence the steady-state distribution of these molecules within the endosomal system.  相似文献   

15.
本实验用酶细胞化学和示踪细胞化学方法观察了睾丸间质细胞中多泡体的形成过程及其与溶酶体的关系。实验结果表明,睾丸间质细胞中多泡体的形成可分三个阶段:首先,一些含内吞物质的泡状结构进入高尔基体区域,与那里的小泡融合,形成内含少量小泡的前多泡体;然后,前多泡体互相融合,形成体积较大、基质电子密度低、内含小泡排列稀疏的低电子密度多泡体;最后,低电子密度多泡体通过表面长出微绒毛样结构并不断断裂的方式去除多余的界膜,形成体积较小、基质电子密度高、内含小泡排列紧密的高电子密度多泡体。因此,多泡体的形成既与内吞活动有关,又与高尔基体区域小泡有关。前多泡体和低电子密度多泡体不含溶酶体酶。在多泡体形成过程中,只有到高电子密度多泡体阶段,才与溶酶体发生关系,从溶酶体中获取溶酶体酶。多泡体形成后,常与自体吞噬泡靠近,可能参与睾丸间质细胞的自体吞噬活动。  相似文献   

16.
多泡体形成过程的细胞化学研究   总被引:1,自引:0,他引:1  
Multivesicular bodies were observed frequently in electron microscope photographs of Leydig cells from normal adult rat testes. Their formation, evolution and fate were analyzed morphologically in preparations treated to show cytidine monophosphatase (CMPase) activity and in animals sacrificed at various time intervals ranging from 5 min to 2 hrs after a single intratesticular injection of cationic ferritin (CF). Analysis of morphological and cytochemical data led to the following interpretation for the origin and fate of the multivesicular bodies in Leydig cells. The formation of multivesicular bodies in Leydig cells can be divided into three steps. Step 1, some endocytic vacuoles in Golgi region fuse with small vesicles to form pre-multivesicular bodies. Step 2, the pre-multivesicular bodies fuse together to form pale multivesicular bodies which are characterized by their large size, pale matrix and paucity of internal vesicles. Step 3, the pale multivesicular bodies remove their surplus enveloping membrane to become dense multivesicular bodies which are characterized by their smaller size, dense matrix and filling with internal vesicles. The pre-multivesicular bodies and pale multivesicular bodies do not contain hydrolytic enzymes, the dense multivesicular bodies acquire their hydrolytic enzymes by fusion with lysosomes and show CMPase activity. The dense multivesicular bodies often show a very close association with autophagosomes, and they might be involved in the autophagic activity of Leydig cells.  相似文献   

17.
A novel method has been developed using ferric particles to label endosomes, and to achieve magnetic sorting of the various endocytic compartments involved in lipoprotein uptake into cells. Ferric particles conjugated to a receptor-recognized ligand are bound to coated membrane pits and become internalized into the cytoplasm inside coated vesicles. After apparent fusion of the vesicles to tubular endosomes, the conjugates accumulate and finally discharge into multivesicular endosomes. Pulse-chase experiments elucidate the pathway of internalized conjugates and allow both early compartments (pinosomes and tubular endosomes) and late compartments (multivesicular endosomes and storage organelles) to be selectively labelled. After ferroloading of the various transport compartments, the cells are homogenized and subcellularly fractionated. Sorting of labelled endosomes is performed by a specially designed "free-flow" magnetic chamber. Prophase I-arrested oocytes of the toad Xenopus laevis are used as a model system for studying the transport pathway and the conversion of the yolk precursor vitellogenin. It is possible to follow the route of internalization of vitellogenin-iron conjugates via coated pits, coated vesicles, uncoated vesicles, tubular endosomes, multivesicular endosomes, and light primordial yolk platelets. These endosomes shuttle the ferric particles together with the vitellogenin from oolemma to performed heavy yolk organelles which are still growing. In addition, these various compartments can be isolated according to their function and subjected to electron microscopy and to gel electrophoresis for detailed characterization of their limiting membranes as well as their contents.  相似文献   

18.
Phosphatidylinositol 3-phosphate [PI(3)P] is a phosphatidylinositol 3-kinase product whose localisation is restricted to the limiting membranes of early endosomes and to the internal vesicles of multivesicular bodies. In this study the intracellular distribution of PI(3)P was compared with those of another phosphoinositide and a number of endosomal proteins. Using a 2xFYVE probe specific for PI(3)P we found that PI(3)P is present in microdomains within the endosome membrane, whereas a phosphoinositide required for clathrin-mediated endocytosis, PI(4,5)P2, was only detected at the plasma membrane. The small GTPase Rab5 as well as the PI(3)P-binding proteins EEA1, SARA and CISK were found to be abundant within PI(3)P-containing endosomal microdomains. In contrast, another PI(3)P-binding protein, Hrs, was found concentrated in clathrin-coated endosomal microdomains with low levels of PI(3)P. While PI(3)P-containing microdomains could be readily distinguished on enlarged endosomes in cells transfected with a constitutively active Rab5 mutant, such domains could also be detected in endosomes of non-transfected cells. We conclude that the membranes of early endosomes consist of microdomains in which PI(3)P and specific proteins are concentrated. These microdomains may be necessary for the assembly of distinct multimolecular complexes that specify organelle identity, membrane trafficking and receptor signalling.David J. Gillooly and Camilla Raiborg contributed equally  相似文献   

19.
Helicobacter pylori VacA is a secreted protein toxin that may contribute to the pathogenesis of peptic ulcer disease and gastric adenocarcinoma. When added to cultured mammalian cells in the presence of weak bases (e.g., ammonium chloride), VacA induces the formation of large cytoplasmic vacuoles. Here, we report a previously unrecognized capacity of VacA to induce clustering and perinuclear redistribution of late endocytic compartments. In contrast to VacA-induced cell vacuolation, VacA-induced clustering and redistribution of late endocytic compartments are not dependent on the presence of weak bases and are not inhibited by bafilomycin A1. VacA mutant toxins defective in the capacity to form anion-selective membrane channels fail to cause clustering and redistribution. VacA-induced clusters of late endocytic compartments undergo transformation into vacuoles after the addition of ammonium chloride. VacA-induced clustering and redistribution of late endocytic compartments occur in cells expressing wild-type or constitutively active Rab7, but not in cells expressing dominant-negative mutant Rab7. In VacA-treated cells containing clustered late endocytic compartments, overexpression of dominant-negative Rab7 causes reversion to a nonclustered distribution. Redistribution of late endocytic compartments to the perinuclear region requires a functional microtubule cytoskeleton, whereas clustering of these compartments and vacuole formation do not. These data provide evidence that clustering of late endocytic compartments is a critical mechanistic step in the process of VacA-induced cell vacuolation. We speculate that VacA-induced alterations in late endocytic membrane traffic contribute to the capacity of H. pylori to persistently colonize the human gastric mucosa.  相似文献   

20.
Ligand-induced activation of the epidermal growth factor receptor (EGFR) initiates trafficking events that relocalize the receptors from the cell surface to intracellular endocytic compartments. We recently reported that leucine-rich repeat kinase 1 (LRRK1) is involved in the trafficking of EGFR from early to late endosomes. In this study, we demonstrate that EGFR regulates the kinase activity of LRRK1 via tyrosine phosphorylation and that this is required for proper endosomal trafficking of EGFR. Phosphorylation of LRRK1 at Tyr-944 results in reduced LRRK1 kinase activity. Mutation of LRRK1 Tyr-944 (Y944F) abolishes EGF-stimulated tyrosine phosphorylation, resulting in hyperactivation of LRRK1 kinase activity and enhanced motility of EGF-containing endosomes toward the perinuclear region. The compartments in which EGFR accumulates are mixed endosomes and are defective in the proper formation of intraluminal vesicles of multivesicular bodies. These results suggest that feedback down-regulation of LRRK1 kinase activity by EGFR plays an important role in the appropriate endosomal trafficking of EGFR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号