首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 70 毫秒
1.
高时空分辨的脑功能光学成像研究进展   总被引:1,自引:0,他引:1  
脑功能成像技术对深入分析脑的信息加工过程,揭示脑的高级功能至关重要,是目前国际研究热点,已经在神经科学研究和神经系统疾病的临床诊断方面取得了很大的进展.已有脑功能成像技术如:功能磁共振成像(fMRI)、正电子断层成像(PET)、脑电图(EEG)、脑磁图(MEG)等等,虽然已被成功用于脑功能研究,但是目前这些方法也存在着时间或空间分辨率不够的局限.比较而言,光学成像方法表现出其独特魅力.激光散斑衬比成像和内源信号光学成像由于能提供空间取样、时间分辨率及空间分辨率三者的最佳组合和不需加入外源性标记物等特点,与其他脑功能成像技术相比其优势可能更为突出.具有较高的时间和空间分辨率的这两种脑功能光学成像技术及其应用都取得了重大发展,成为研究脑皮层功能构筑和脑病理生理的有力工具.但是目前这两种成像方法也面临着一些挑战.  相似文献   

2.
Because the lung is a major target organ of metastatic disease, animal models to study the physiology of pulmonary metastases are of great importance. However, very few methods exist to date to investigate lung metastases in a dynamic fashion at the microcirculatory level, due to the difficulty to access the lung with a microscope. Here, an intravital microscopy method is presented to functionally image and quantify the microcirculation of superficial pulmonary metastases in rats, using a closed-chest pulmonary window and automated analysis of blood flow velocity and direction. The utility of this method is demonstrated to measure increases in blood flow velocity in response to pharmacological intervention, and to image the well-known tortuous vasculature of solid tumors. This is the first demonstration of intravital microscopy on pulmonary metastases in a closed-chest model. Because of its minimized invasiveness, as well as due to its relative ease and practicality, this technology has the potential to experience widespread use in laboratories that specialize on pulmonary tumor research.  相似文献   

3.
激光针灸对穴位组织温度和血流灌注率的影响   总被引:3,自引:0,他引:3  
本文在Pennes方程的基础上研究了激光针灸治疗对穴位组织的温度和血流灌注率的影响。结果显示,连续激光与脉冲激光针灸都能使穴位组织的温度和血流灌注率升高,随着激光的功率密度升高则穴位组织的温度和血流灌注率亦升高。通过这些研究为激光针灸的临床实际应用提供了理论基础。  相似文献   

4.
电针对小鼠肝脏血流灌注量影响的激光散斑成像显示   总被引:1,自引:0,他引:1  
目的:应用激光散斑成像技术连续监测电针过程小鼠肝脏表面血流灌注图像,研究电针不同穴位对肝脏血流灌注量的影响,探讨激光散斑技术在针灸效应研究中的应用价值。方法:采用Moor.FLPI激光散斑血流成像系统分别对足三里组、曲泉组、非经非穴组正常小鼠电针30min以及不电针对照组连续观察30min过程中肝脏表面血流灌注量变化进行观察,分析电针不同穴位、各个时点肝脏血流变化的规律。结果:(1)肝脏激光散斑图显示电针后各电针组肝脏表面整体血流灌注均增加,肝门附近区域灌注量增加幅度大于肝脏边缘区域;(2)电针各时点各电针组肝脏血流灌注量均出现增加,电针0~20min灌注量增加率为足三里组〉曲泉组〉非经非穴组;电针25~30min为足三里组〉非经非穴组〉曲泉组。结论:激光散斑血流成像技术能够精确记录显示电针过程肝脏表面的微循环变化情况,电针可以增强正常小鼠肝脏血流灌注量,电针增加肝脏血流灌注的效应存在穴位特异性。  相似文献   

5.
大鼠放射性脊髓损伤脊髓血流量变化规律   总被引:1,自引:0,他引:1  
目的:放射性脊髓损伤(Radiation spinal cord injury,RSCI)是头颈部、胸部及上腹部肿瘤放射治疗和射线意外照射时的常见并发症,一般认为,白质坏死、脱髓鞘为其主要的病理学变化.然而,越来越多的证据表明血-脊髓屏障破裂和血管通透性增加等血管损伤远早于白质坏死和脱髓鞘改变.所以本文阐明大鼠放射性脊髓损伤病理生理过程中脊髓血流量变化规律.方法:将60只Sprague-Dawley (SD)大鼠随机分为12组,1组为对照,其余11组采用60Co放射治疗机行30 Gy大鼠颈髓C2-T2单次照射,剂量率为153 cGy/min,源皮距为80 cm,照射时长为1153 s,照射范围为2.0× 1.0 cm,对照组大鼠于麻醉后置于60Co放射治疗机下,佯照,照射前及照射后分别采用激光多普勒法测量脊髓血流量,11组大鼠于照射前以及照射后1、3、7、14、21、30、60、90、120、150、180天进行测量,以照射前测量值为基数,各时间点以基数的百分比表示该时间点脊髓血流量.结果:大鼠放射性脊髓损伤后,脊髓血流量在照射早期即有降低,照射后90天达到最低,随后脊髓血流量进入平台期.结论:阐明了大鼠放射性脊髓损伤后脊髓血流量的变化规律.大鼠放射性脊髓损伤可影响脊髓血流量,导致脊髓长期处于持续低灌流、缺血缺氧状态,最终导致脊髓不可逆性损伤.临床上放射性脊髓损伤的病人感到疲乏无力,出现神经系统的症状体征,通常死于脑疝.本文为临床上疲乏无力,出现神经系统的症状体征,死于脑疝放射性脊髓损伤的病人的早期防治提供病理生理基础.  相似文献   

6.
In this study, we use dual‐wavelength optical imaging‐based laser speckle technique to assess cerebral blood flow and metabolic parameters in a mouse model of acute hyperglycemia (high blood glucose). The effect of acute glucose levels on physiological processes has been extensively described in multiple organ systems such as retina, kidney, and others. We postulated that hyperglycemia also alters brain function, which in turn can be monitored optically using dual‐wavelength laser speckle imaging (DW‐LSI) platform. DW‐LSI is a wide‐field, noncontact optical imaging modality that integrates the principles of laser flowmetry and oximetry to obtain macroscopic information such as hemoglobin concentration and blood flow. A total of eight mice (C57/BL6) were used, randomized into two groups of normoglycemia (control, n = 3) and hyperglycemia (n = 5). Hyperglycemia was induced by intraperitoneal injection of a commonly used anesthetic drug combining ketamine and xylazine (KX combo). We found that this KX combo increases blood glucose (BG) levels from 150 to 350 mg/dL, approximately, when measured 18 minutes post‐administration. BG continues to increase throughout the test period, with BG reaching an average of 463 ± 20.34 mg/dL within 60 minutes. BG levels were measured every 10 minutes from tail blood using commercially available glucometer. Experimental results demonstrated reductions in cerebral blood flow (CBF) by 55%, tissue oxygen saturation (SO2) by 15%, and cerebral metabolic rate of oxygen (CMRO2) by 75% following acute hyperglycemia. The observed decrease in these parameters was consistent with results reported in the literature, measured by a variety of experimental techniques. Measurements with laser Doppler flowmetry (LDF) were also performed which confirmed a reduction in CBF following acute hyperglycemia. In summary, our findings indicate that acute hyperglycemia modified brain hemodynamic response and induced significant changes in blood flow and metabolism. As far as we are aware, the implementation of the DW‐LSI to monitor brain hemodynamic and metabolic response to acute hyperglycemia in intact mouse brain has not been previously reported.   相似文献   

7.
The umbilical cord is a vital structure between the fetus and placenta for the growth and well-being of the fetus. Although the umbilical cord may be the only organ that dies at the beginning of life, it is one of the most important parts of the feta-placental unit and plays a role in determining how life begins. In general, the prenatal examination of the umbilical cord is limited to the observation of the number of vessels and the evaluation of umbilical artery blood flow parameters. Pathologists have done more research on the morphological characteristics of the umbilical cord and linked them to perinatal outcomes. The introduction of advanced imaging technology makes it possible to study the characteristics of fetal umbilical cord from early to late gestation. Many studies have shown that the changes of umbilical cord structure may be related to pathological conditions, such as preeclampsia, fetal growth restriction. Prenatal morphometric umbilical cord characteristics and arterial blood flow parameters in normal and pathologic conditions are discussed in this review.  相似文献   

8.
Abstract: Progressive neurological depression leading to coma was produced in unanesthetized rats at a constant level of hypoglycemia induced by insulin. High-energy phosphate concentrations in brain remained normal during hypoglycemic lethargy, but ATP declined by 6% during stupor and by 40% during coma that was characterized by an isoelectric EEG. Cerebral blood flow (CBF) remained normal during hypoglycemia whereas the cerebral metabolic rates for oxygen (CMRo2) and glucose (CMRglucose) decreased by 45 and 73%, respectively, indicating oxidation of nonglucose fuels. A plot of CMRo2 and CMRglucose versus plasma glucose indicated increasing oxidation of alternate substrates (elevated CMRo2/CMRglucose) at plasma glucose concentrations below 2.5 mm . The cerebral uptake of β-hydroxybutyrate increased during hypoglycemic stupor and its complete oxidation could account for the CMRo2 in excess of glucose utilization. Brain ammonia, a byproduct of amino acid metabolism, reached a level during hypoglycemic coma sufficient to produce coma in normoglycemic animals. The rate and degree of recovery after glucose administration depended on the duration of hypoglycemia and the pretreatment neurological state of the animal. Following 10 min of glucose infusion, ATP levels that were modestly depressed in stuporous rats recovered fully, paralleling the animals' apparently full neurological recovery. Rats that had been in hypoglycemic coma for 1 min or less fully recovered high-energy phosphate concentrations in brain. However, when normalization of plasma glucose was delayed for more than 1 min of coma, the CMRo2 remained depressed, CBF decreased to 40% of control, and high-energy substrates failed to normalize. In keeping with the depression of oxidative metabolism and blood flow, neurological function and the EEG remained abnormal even after 1 h of glucose infusion. The findings suggest that irreversible brain injury may develop within the first minutes of hypoglycemic coma.  相似文献   

9.
The impairments of cerebral blood flow microcirculation brought on by cardiac and respiratory arrest were assessed with multi-modal diagnostic facilities, utilising laser speckle contrast imaging, fluorescence spectroscopy and diffuse reflectance spectroscopy. The results of laser speckle contrast imaging show a notable reduction of cerebral blood flow in small and medium size vessels during a few minutes of respiratory arrest, while the same effect was observed in large sinuses and their branches during the circulatory cessation. Concurrently, the redox ratio assessed with fluorescence spectroscopy indicates progressing hypoxia, NADH accumulation and increase of FAD consumption. The results of diffuse reflectance spectra measurements display a more rapid grow of the perfusion of deoxygenated blood in case of circulatory impairment. In addition, consequent histopathological analysis performed by using new tissue staining procedure developed in-house. It shows notably higher reduction of size of the neurons due to their wrinkling within brain tissues influenced by circulation impair. Whereas, the brain tissues altered with the respiratory arrest demonstrate focal perivascular oedema and mild hypoxic changes of neuronal morphology. Thus, the study suggests that consequences of a cessation of cerebral blood flow become more dramatic and dangerous compare to respiratory arrest.  相似文献   

10.
To investigate the effect of selective hypothermia of the brain (brain cooling) on regional cerebral blood flow and tissue metabolism, we have developed a brain thermo-regulator. Brain temperature was modulated by a water-cooled metallic plate placed on the surface of the rats' scalp to get the appropriate brain temperature precisely with ease. Regional cerebral blood flow and brain temperature were measured simultaneously using a Teflon-coated platinum electrode and thermocouple probe inserted stereotaxically into the parietal cortex and thalamus in spontaneously hypertensive rats. Experimental forebrain ischemia was induced by the occlusion of bilateral common carotid artery under normo- and hypothermic brain condition, and the supratentorial brain tissue metabolites were measured enzymatically after 60 min of forebrain ischemia. When cortical temperature was set to hypothermia, cortical blood flow was significantly lowered by 40% at 30°C and 20% at 33°C as compared with that at 36°C (p < 0.0001 and p < 0.05, respectively). Thalamic blood flow was also significantly reduced by 20% when cortical temperature was set to 30°C as compared with 36°C (p < 0.05). There were no significant differences in arterial blood pressure and gas parameters throughout these experiments. In the rats with selective brain hypothermia (30°C) immediately after the induction of cerebral ischemia, the level of brain ATP concentration after 60 min of ischemia was significantly higher than that in normothermia rats (36°C) (p < 0.05). Our findings indicate that: 1) the metallic plate brain thermo-regulator is useful in small animal experiments; 2) regional brain temperature regulates regional cerebral blood flow; and 3) selective brain hypothermia, even started after the forebrain ischemia, ameliorates the derangement of brain metabolism, suggesting its effectiveness as a cytoprotective strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号