首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The experiments with albino female rats showed that whole-body gamma-irradiation with a dose of 1 Gy caused various alterations in concentrations of cytoplasmic and nuclear glucocorticoid receptors depending on tissue radiosensitivity (liver, thymus) and postirradiation time-intervals (1, 3, 10, 30, and 60 days). There was also a change in the receptor affinity to glucocorticoids.  相似文献   

2.
The value and radiosensitivity of human haemopoietic stem pool may be assessed by the number of colonies of nondifferentiated cells (CFUnc) formed in situ during regeneration of the haemopoietic organ from the postirradiation aplasia. The time required for doubling the population, that constitutes nondifferentiated cell endocolonies, was reduced as the radiation dose increased.  相似文献   

3.
A study was made of the combined effect of 5-fluorouracil, metronidazole, caffeine and radiation on radiosensitivity of Pliss lymphosarcoma and protein synthesis rate during the first few hours following irradiation. A complete regression of the tumor was noted in 100% of animals after a 3-fold exposure. Effective postirradiation inhibition of protein synthesis was achieved by injection of metronidazole and caffeine together with 5-fluorouracil.  相似文献   

4.
Mouse lymphoma L5178 Y-S and Y-R cells differing in radiosensitivity by 1.5 times were treated with benzamide, an inhibitor of poly(ADP-ribosylation), for 24 h before and 18 h after X-irradiation, and incubated after irradiation at 25 degrees C and 37 degrees C. Clonogenic capacity of LY-S cells incubated at 25 degrees C exceeded that of the same cells incubated at 37 degrees C; the clonogenic capacity of LY-R cells did not vary with the postirradiation incubation temperature. Benzamide increased equally the radiosensitivity of LY-R cells incubated at both temperatures, whereas that of LY-S cells was only increased at 37 degrees C. Repair of potentially lethal damages to LY-S cells incubated at 25 degrees C was independent of the effectiveness of poly(ADP-ribosylation).  相似文献   

5.
A study was made of the influence of gamma-radiation on DNA synthesis in cells of 3-day and 7-day Ehrlich ascites tumor cultures. DNA synthesis in cells of the 3-day culture was more sensitive to moderate radiation doses than those of the 7-day culture as was observed during the first 30 min after irradiation. After 3-hour postirradiation incubation, no appreciable difference was noted in radiosensitivity of DNA synthesis in the cells of the 3-day and 7-day cultures.  相似文献   

6.
Moderate hyperthermia (4 h at 40 degrees C) enhances V-79 cell radiosensitivity at low irradiation dose rates with a maximum thermal enhancement ratio (TER) of 1.38. In comparison, the TER measured at acute dose rate is 1.13. Heat treatments given before and during irradiation are equally effective, and more so than postirradiation hyperthermia. Hyperthermia-induced inhibition of sublethal damage repair is a probable cause of the observed effect.  相似文献   

7.
This study investigates the hypothesis that CuZn superoxide dismutase (SOD1) overexpression confers radioresistance to human glioma cells by regulating the late accumulation of reactive oxygen species (ROS) and the G(2)/M-checkpoint pathway. U118-9 human glioma cells (wild type, neo vector control, and stably overexpressing SOD1) were irradiated (0-10 Gy) and assayed for cell survival, cellular ROS levels, cell-cycle-phase distributions, and cyclin B1 expression. SOD1-overexpressing cells were radioresistant compared to wild-type (wt) and neo vector control (neo) cells. Irradiated wt and neo cells showed a significant increase (approximately twofold) in DHE fluorescence beginning at 2 days postirradiation, which remained elevated at 8 days postirradiation. Interestingly, the late accumulation of ROS was suppressed in irradiated SOD1-overexpressing cells. The increase in ROS levels was followed by a decrease in cell growth and viability and an increase in the percentage of cells with sub-G(1) DNA content. SOD1 overexpression enhanced radiation-induced G(2) accumulation within 24 h postirradiation, which was accompanied by a decrease in cyclin B1 mRNA and protein levels. These results support the hypothesis that long after radiation exposure a "metabolic redox response" regulates radiosensitivity of human glioma cells.  相似文献   

8.
The radiosensitivity of mouse hepatocytes in vivo was measured in terms of clonogenicity or chromosome damage (micronucleus production). Within 24 h of irradiation there was a dose-dependent increase in clonogenicity (dose-modifying factor, DMF = 1.37 +/- 0.09) followed by long-term repair which resulted in a DMF of 3.49 +/- 0.23 at 11 months. Such repair also took place, but to a lesser extent, after the end of fractionated irradiation. Cell proliferation, measured by tritiated thymidine autoradiography, was insufficient to explain the long-term reduction in radiosensitivity in terms of a dose-dependent replacement of damaged cells. Although there was a reduction in the frequency of cells with micronuclei, postirradiation, the magnitude of this decrease was relatively small; the DMF for micronucleus-free cells at 11 months was only 1.49 +/- 0.25. Thus the long-term increase in clonogenicity can only partially be explained in terms of repair of chromosome injury, assessed by the production of micronuclei.  相似文献   

9.
Heating of mouse bone marrow cells up to 42 degrees C was shown to increase their radiosensitivity (DMF = 0.80 +/- 0.12). At this temperature, the radioprotective efficiency of cysteamine was lost completely (DMF = 0.78 +/- 0.09), and radioprotective activity of d,l-isoproterenol significantly decreased (DMF declined from 2.41 +/- 0.23 to 1.67 +/- 0.16). It is assumed that the radioprotective effect of cysteamine on mammalian cells is associated with the processes of the postirradiation DNA repair for just these processes are inhibited by heating. The mechanism of action of a beta-agonist of isoproterenol is perhaps only partially associated with DNA repair.  相似文献   

10.
To test the efficacy of magnetic resonance spectroscopy (MRS) in identifying radiation-induced brain injury, adult male Fischer 344 rats received fractionated whole-brain irradiation (40 or 45 Gy given in 5-Gy fractions twice a week for 4 or 4.5 weeks, respectively); control rats received sham irradiation. Twelve and 52 weeks after whole-brain irradiation, rats were subjected to high-resolution MRI and proton MRS. No apparent lesions or changes in T(1)- or T(2)-weighted images were noted at either time. This is in agreement with no gross changes being found in histological sections from rats 50 weeks postirradiation. Analysis of the MR spectra obtained 12 weeks after fractionated whole-brain irradiation also failed to show any significant differences (P > 0.1) in the concentration of brain metabolites between the whole-brain-irradiated and sham-irradiated rats. In contrast, analysis of the MR spectra obtained 52 weeks postirradiation revealed significant differences between the irradiated and sham-irradiated rats in the concentrations of several brain metabolites, including increases in the NAA/tCr (P < 0.005) and Glx/tCr (P < 0.001) ratios and a decrease in the mI/tCr ratio (P < 0.01). Although the cognitive function of these rats measured by the object recognition test was not significantly different (P > 0.1) between the irradiated and sham-irradiated rats at 14 weeks postirradiation, it was significantly different (P < 0.02) at 54 weeks postirradiation. These findings suggest that MRS may be a sensitive, noninvasive tool to detect changes in radiation-induced brain metabolites that may be associated with the radiation-induced cognitive impairments observed after prolonged fractionated whole-brain irradiation.  相似文献   

11.
Okui T  Endoh D  Kon Y  Hayashi M 《Radiation research》2002,157(5):553-561
The DNA-dependent protein kinase (DNA-PK) complex has been implicated in the repair of DNA double-strand breaks (DSBs). DNA-PK is a heterotrimeric protein complex comprised of two components: a large catalytic subunit, Prkdc, with serine/threonine kinase activity and a DNA-targeting component, G22p1 and Xrcc5. In previous report, we showed that approximately 80% of the G22p1 and Xrcc5 proteins were observed in the cytoplasm of rat fibroblasts, and that nuclear translocation of the proteins from the cytoplasm is important for the repair of DNA DSBs. In the present study, we showed that nuclear accumulation of the G22p1 and Xrcc5 proteins was not observed in fibroblasts from a mutant strain of Long-Evans Cinnamon (LEC) rat that has an enhanced radiosensitivity and a reduced level of repair of DSBs after X irradiation. Nuclear translocation of the proteins was observed in both LEC rat cells and control rat cells with normal radiosensitivity at 5 min after X irradiation. Although high levels of G22p1 and Xrcc5 proteins were observed in the nuclei of control rat cells until 60 min postirradiation, the amounts of the proteins decreased rapidly in the nuclei of LEC rat cells in the first 10 min after X irradiation. These findings suggest that there are some defects in maintaining the levels of G22p1 and Xrcc5 proteins in the nuclei of LEC rat cells. An analysis of fibroblasts from backcross rats showed that the deficiency in nuclear accumulation of G22p1 and Xrcc5 proteins is genetically linked to enhanced radiosensitivity. Since the nucleotide sequences of the G22p1 and Xrcc5 genes of the LEC rats coincided with those of the control rats, the deficiency in nuclear accumulation may not be caused by mutations of the G22p1 and Xrcc5 proteins.  相似文献   

12.
When differentiated 15-day-old cultures of human thyroid glands were irradiated they exhibited a high degree of radiosensitivity, an absence of split-dose recovery, an increase in the number of non-senescent colonies observed over four passages, increased focus formation on the confluent postirradiation monolayer and a shift in the isozyme pattern of LDH towards the anaerobic form (LD 5). The effects are similar to those previously observed for irradiated sheep thyroid cultures, but occurred at lower radiation doses.  相似文献   

13.
In experiments with rats it was shown that pharmacological substances that deplete the biogenic amine pool or selectively arrest dopamine and serotonin receptors prevent or considerably reduce the postirradiation gastrostasis. It is suggested that activation of dopamine- and serotonergic inhibiting mechanisms of regulation of motor-evacuative function of the stomach is responsible for the postirradiation delay in gastric evacuation.  相似文献   

14.
The neutral (pH 9.6) filter elution technique was used to evaluate DNA damage induced in CHO cells irradiated at mitosis or in G1-phase under various incubation and postirradiation treatment conditions. Mitotic and G1/S border cells were more sensitive to radiation than G1 cells with respect to cell killing, but showed similar (G1/S) or lower (M) DNA elution dose--response curves. Similar cell survival and DNA/elution dose--response curves were obtained with plateau-phase cultures containing mainly G1-cells, as well as with G1 cells obtained after division of mitotic cells in either fresh or conditioned medium. However, survival of plateau-phase cells could be modified substantially by delayed-plating or postirradiation treatment with araA. These results, together with previously published observations, indicate that induction of DNA dsb cannot be invoked as an explanation for the variations in radiosensitivity observed through the cycle, or as an explanation for the formation of the survival curve shoulder. It is proposed that repair and fixation of radiation-induced DNA damage, expressed at the cell survival level as repair and fixation of alpha-PLD, are responsible for these effects.  相似文献   

15.
Induction and repair of DNA double-strand breaks (dsb) was investigated in plateau phase Chinese hamster V79 cells and three radiosensitive mutant cell lines derived from them, irs-1, irs-2 and irs-3, using a pulsed-field gel electrophoresis assay, Asymmetric Field Inversion Gel Electrophoresis (AFIGE). There was no difference in the induction of DNA dsb per Gy and dalton between the radiosensitive mutant cells and wild-type V79 cells despite the wide differences in their radiosensitivity. Also, repair of DNA dsb proceeded in all cell lines with similar kinetics. In contrast to these observations at the DNA level, irradiation of exponentially growing cells showed a prolonged delay in G2 for irs-2 cells and a shortened delay in G2 for irs-1 cells, as compared to wild-type V79 cells. These results confirm previous observations suggesting that a deficiency in the rejoining of DNA dsb is unlikely to be the cause of the increased radiosensitivity of irs cells, and implicate alterations in postirradiation cell cycle progression as a possible cause for this phenomenon, although the mechanism is not known.  相似文献   

16.
The PCR amplification of fragments of transcribed (beta-actin, p53) and nontranscribed (IgE, heavy chain) genes in brain and spleen DNA from gamma-irradiated and unirradiated 2- and 28-month-old rats was studied. The amplification levels of fragments of these genes in DNA from old rats were substantially lower than those from young rats, which suggested that these gene fragments in old-rat DNA contained lesions blocking thermostable polymerase in PCR. The beta-actin and IgE gene fragments of spleen DNA from old rats exhibited a significantly higher level of lesions inhibiting Tth polymerase compared to analogous fragments of brain DNA from the same animals. DNA from the tissues of gamma-irradiated rats showed the amount of damage inhibiting amplification to be dependent on animal age and the postirradiation time before DNA isolation. As judged from the changes in the amplification level of gene fragments, there was no preferential fast repair of lesions in the actively transcribed gene beta-actin compared to the nontranscribed gene IgE (heavy chain) in the brain and spleen of gamma-irradiated young and old rats. The amplification results suggest that equal amounts of DNA lesions were repaired in the brain of both old and young rats during the first 0.5 h of the postirradiation time (fast-repair phase), whereas in the subsequent postirradiation period over 5 h (slow-repair phase), the efficiency of damage elimination in the brain DNA of old rats was markedly lower. As for the spleen tissue, the elimination of lesions blocking Tth polymerase was much lower in old gamma-irradiated animals for both of the repair phases.  相似文献   

17.
The purpose of this study was to investigate effects of the treatment prior to irradiation with granulocyte colony-stimulating factor (G-CSF) on hematopoiesis in B10CBAF1 mice exposed to a sublethal dose of 6.5 Gy of 60Co gamma radiation. G-CSF was administered in a 4-day regimen (3 microg/day); irradiation followed 3 h after the last injection of G-CSF. Such a treatment was found to stimulate granulopoiesis, as shown by increased counts of granulocyte-macrophage progenitor cells (GM-CFC) and of granulocytic cells in the femoral marrow and spleen at the time of irradiation. However, postirradiation counts of GM-CFC and granulocytic cells in the marrow of mice pretreated with G-CSF were reduced up to day 18 after irradiation. Interestingly, the D0 values for marrow GM-CFC determined 1 h after in vivo irradiation were 1.98 Gy for controls and 2.47 Gy for mice pretreated with G-CSF, indicating a decreased radiosensitivity of these cells after drug treatment. The inhibitory effects of the pretreatment with G-CSF on the postirradiation granulopoiesis could be attributed to the phenomenon of "rebound quiescence" which can occur after cessation of the treatment with growth factors. Postirradiation recovery of erythropoiesis in the spleen of mice pretreated with G-CSF exhibited a dramatic increase and compensated for the decreased erythropoiesis in the marrow at the time of irradiation. This complexity of the hematopoietic response should be taken into account when administering G-CSF in preirradiation regimens.  相似文献   

18.
We showed that gamma irradiation of the developing mouse brain with 2 Gy induced a massive apoptosis of neural precursors but not of neurons within 24 h. Successive phosphorylation and dephosphorylation of histone H2AX have been linked to DNA breaks and repair. Similar numbers of nuclear foci of phosphorylated H2AX (gamma-H2AX) were found 1 h postirradiation in neural precursors and in neurons, suggesting that differences in radiosensitivity were not related to variations in the numbers of DNA double-strand breaks induced by radiation. Surviving neural precursors like neurons totally lost gamma-H2AX within 24 h after irradiation, but they had a slower kinetics of loss of gamma-H2AX foci. This suggests that the DNA repair machinery processed damage more slowly in these neural precursors in relation to their greater radiosensitivity. We also found a bright and diffuse gamma-H2AX staining of nuclei of cells at an early stage of apoptosis, whereas cells at later stages of apoptosis were unstained. This was probably related to phosphorylation and subsequent degradation of H2AX in the course of DNA fragmentation during apoptosis. Detection of gamma-H2AX-bright nuclei may thus be a useful marker of neural cells at an early stage of apoptosis.  相似文献   

19.
The underlying physiological mechanisms leading to tumor reoxygenation after irradiation have elicited considerable interest, but they remain somewhat unclear. The current study was undertaken to determine the effects of a single dose of 10 Gy gamma radiation on both tumor pathophysiology and radiobiologically hypoxic fraction. Immunohistochemical staining and perfusion markers were used to quantify tumor vasculature, uptake of the hypoxia marker EF5 to assess the distribution of hypoxia, and intravascular HbO(2) measurements to determine oxygen availability. Tumor radiosensitivity was measured by a clonogenic assay. At 24 h postirradiation, oxygen availability increased, perfused vessel numbers decreased, EF5 uptake decreased, and the radiobiologically hypoxic fraction was unchanged. Together, these results demonstrate that tumor hypoxia develops at an increased distance from perfused blood vessels after irradiation, suggesting a decrease in oxygen consumption at 24 h. By 72 h postirradiation, all physiological parameters had returned to the levels in volume-matched, nonirradiated controls. These studies clearly show that single measures of either tumor oxygenation or vascular structure are inadequate for assessing the effects of radiation on tumor clonogenicity. Although such direct measurements have previously proven valuable in predicting tumor response to therapy or oxygen manipulation, a combination of parameters is required to adequately describe the mechanisms underlying these changes after irradiation.  相似文献   

20.
From experiments in albino mongrel rats it is shown that the radiosensitivity of gamma-irradiated (60Co) animals follows a daily rhythm. A synchronization of the daily rhythms in radiosensitivity was noted in winter and during the first spring month which was impaired in April. Established were the rhythms of radiosensitivity for three seasons, i. e. winter, spring and summer, with the extremes in the dependence upon mean annual values varying significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号